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Preface

The ECML/PKDD workshop AAIP 2007—“Approaches and Applications of Induc-
tive Programming”—was held at the 18th European Conference on Machine Learning
(ECML) and the 11th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD) in Warsaw, Germany on 17 September, 2007. The
main goal of AAIP was to bring together researchers working on different approaches
to inductive programming as well as researchers from different areas of machine learn-
ing who are especially interested in the inductive synthesis of programs.

Inductive programming (or inductive program synthesis) incorporates all approaches
which are concerned with learning programs or algorithms from incomplete specifica-
tions such as, e.g., input/output examples describing the desired behavior of the in-
tended program or traces describing steps of computation of specific outputs. Typical
additional input to an IP system is background knowledge such as predefined functions
and predicates to be used or schemas/templates defining the general data flow of the
intended program. Output of an IP system is a program in some arbitrary programming
language containing conditionals and loop- or recursive control structures.

Inductive programming is a research topic of crucial interest for machine learning
and artificial intelligence in general. The ability to generalize a program—containing
control structures as recursion or loops—from examples is a challenging problem which
calls for approaches going beyond the requirements of algorithms for concept learning.
Pushing research forward in this area can give important insights in the nature and
complexity of learning as well as enlarging the field of possible applications.

Typical application areas where learning of programs or recursive rules are called
for, are first in the domain of software engineering where structural learning, software
assistants and software agents can help to relieve programmers from routine tasks, give
programming support for endusers, or support of novice programmers and program-
ming tutor systems. Further areas of application are language learning, learning recur-
sive control rules for AI-planning, learning recursive concepts in web-mining or for
data-format transformations.

Today, different inductive programming algorithms are developed in and use tech-
niques from different research fields, these are evolutionary computation, inductive
logic programming, classical (Summers-like) inductive synthesis of functional pro-
grams, and grammar inference. They can be clustered into two major approaches: (i)
the analytical/example-driven approach where programs are derived by analyzing given
examples and (ii) the search-based/generate-and-test approach where programs are enu-
merated heuristically and then tested against given examples. Both approaches have
different strengths and limits. The papers in these proceedings cover both approaches.

The AAIP 2007 workshop brought together researchers from different communities
considering inductive programming from different perspectives and with the common
interest on induction of general programs regarding theory, methodology and applica-
tions. The two invited speakers represent inductive program synthesis research in the



areas of evolutionary algorithm design (Roland Olsson, Østfold University College,
Norway) and algebraic specification (Lutz Hamel, University of Rhode Island, USA).

We want to thank all those who contributed to AAIP 2007. We thank all members of
the program committee for their support in promoting the workshop and for reviewing
submitted papers and we thank the ECML organizers, especially the workshop chair
Marzena Kryszkiewicz for technical support.

Bamberg, July 2007 Emanuel Kitzelmann
Ute Schmid
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Automatic Design of Algorithms through
Evolution (ADATE)

Roland Olsson

Faculty of Computer Science, Østfold University College, Norway
roland.olsson@hiof.no

http://www-ia.hiof.no/~rolando/

Automatic Design of Algorithms through Evolution (ADATE) is a system for
automatic functional programming that is able to synthesize recursive programs
with automatic invention of recursive help functions.

The invited talk will first present two recent applications of ADATE where
it appears to be highly competitive with the best known alternative methods.
The first application is synthesis of programs that drive an autonomous vehicle
given input from gyros and range sensors. In the second application, ADATE
generates algorithms for image segmentation, that is separating a possibly noisy
image into regions representing objects of interest.

The autonomous driving example shows that ADATE is suitable for rein-
forcement learning and does not need explicitly provided outputs in order to
generate desirable programs.

We will explain the basic program transformations employed by ADATE as
well as briefly discuss the combinatorial search algorithms needed to efficiently
and effectively search for suitable transformation combinations. The talk will
also show the population management of ADATE and how it considers both the
time complexity of synthesized programs and the need for syntactic complexity
minimization in order to avoid overfitting.
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An Inductive Programming Approach to
Algebraic Specification

Lutz Hamel and Chi Shen

Department of Computer Science and Statistics
University of Rhode Island
Kingston, RI 02881, USA

hamel@cs.uri.edu, shenc@cs.uri.edu

Abstract. Inductive machine learning suggests an alternative approach
to the algebraic specification of software systems: rather than using test
cases to validate an existing specification we use the test cases to induce a
specification. In the algebraic setting test cases are ground equations that
represent specific aspects of the desired system behavior or, in the case
of negative test cases, represent specific behavior that is to be excluded
from the system. We call this inductive equational logic programming.
We have developed an algebraic semantics for inductive equational logic
programming where hypotheses are cones over specification diagrams.
The induction of a hypothesis or specification can then be viewed as a
search problem in the category of cones over a specific specification di-
agram for a cone that satisfies some pragmatic criteria such as being as
general as possible. We have implemented such an induction system in
the functional part of the Maude specification language using evolution-
ary computation as a search strategy.

1 Introduction

Inductive machine learning [1, 2] suggests an alternative approach to the alge-
braic specification of software systems: rather than using test cases to validate
an existing specification we use the test cases to induce a specification. In the
algebraic setting specifications are equational theories of a system where the test
cases are ground equations that represent specific aspects of the desired system
behavior or, in the case of negative test cases, represent specific behavior that
is to be excluded from the system. Acceptable specifications must satisfy the
positive test cases and must not satisfy the negative test cases. It is interest-
ing to observe that in this alternative approach the burden of constructing a
specification is placed on the machine. This leaves the system designer free to
concentrate on the quality of the test cases for the desired system behavior. In
addition to the positive and negative test cases an inductive equational logic
program can also contain a background theory.

A simple example illustrates our notion of inductive equational logic pro-
gramming. Here we are concerned with the induction of a stack specification
from a set of positive test cases for the stack operations top, push, and pop. In



4 Lutz Hamel and Chi Shen

fmod STACK-PFACTS is
sorts Stack Element .
ops a b : -> Element .
op v: -> Stack .
op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .

eq top(push(v,a)) = a .
eq top(push(push(v,a),b)) = b .
eq top(push(push(v,b),a)) = a .
eq pop(push(v,a))= v .
eq pop(push(push(v,a),b)) = push(v,a) .
eq pop(push(push(v,b),a)) = push(v,b) .

endfm

(a)

fmod STACK is
sorts Stack Element .
op top : Stack -> Element .
op pop : Stack -> Stack .
op push : Stack Element -> Stack .
var S : Stack . var E : Element .

eq top(push(S,E)) = E .
eq pop(push(S,E)) = S .

endfm

(b)

Fig. 1. (a) Positive test cases for the inductive acquisition of the specification for the
stack operations top, push, and pop. (b) An hypothesis that satisfies the test cases.

Figure 1(a) the positive facts are given as a theory in the syntax of the Maude
specification language [3]. Here the function symbol push can be viewed as a
stack constructor and each of the test cases gives an instance of the relationship
between the constructor and the function top or pop. The set of negative ex-
amples and the background knowledge are empty. A hypothesis or specification
that satisfies the positive facts is given in Figure 1(b). It is noteworthy that
our implementation of an inductive equational logic system within the Maude
specification system induces the above specification unassisted.

Since our system is implemented in an algebraic setting, that is, it is im-
plemented in the functional part of the Maude specification languages, it made
sense to develop an algebraic semantics for inductive equational logic program-
ming. As we will develop later on in this paper, an inductive equational logic
program can be viewed as a specification diagram in the category of equational
theories. A hypothesis is a cone over a specification diagram and the induction of
a hypothesis can then be viewed as a search problem in the category of cones over
a specification diagram for a cone that satisfies pragmatic criteria such as being
as general as possible without being trivial. As it turns out, the most general
cone for a specification diagram is trivial (the empty theory). It is interesting
to note that the simplest possible hypothesis which is obtained from “memo-
rizing” all the facts is an initial object in the category of cones or a co-limit of
the specification diagram. We believe that this view of inductive equational logic
programming is novel and its algebraic nature crystallized many implementation
issues for us in the Maude setting that were murky in the normal semantics [4]
usually associated with inductive logic programming. This is especially true with
dealing with negative facts in the algebraic setting.

The search strategy of our system is based on genetic programming employing
evolutionary concepts to identify appropriate cones or hypotheses. Our system
sets itself apart from other induction systems in that we consider multi-concept
learning and robustness vital aspects for the usability of an induction system.
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Multi-concept learning [5] allows the system to induce specifications for multiple
function symbols at the same time (see Figure 1). Robustness enables the system
to induce specifications even in the presence of inconsistencies in the facts [6].

This paper is structured as follows. Section 2 describes the algebraic seman-
tics that underlies the design of our system. Due to space constraints we state
all our results without proofs. A manuscript is in preparation which will eluci-
date our mathematical constructions in more detail. In Section 3 we sketch our
implementation. We describe some experiments using our system in Section 4.
In Section 5 we describe work closely related to ours. And finally, Section 6
concludes the paper with some final remarks and future research.

2 An Algebraic Semantics

Many sorted equational logic, at the foundation of algebraic specification, is the
logic of substituting equals for equals with many sorted algebras as models and
term rewriting as the operational semantics [7, 8]. Briefly, an equational theory
or specification is a pair (Σ,E) where Σ is an equational signature and E is
a set of Σ-equations. Each equation in E has the form (∀X)l = r, where X is
a set of variables distinct from the equational signature and l, r ∈ TΣ(X) are
terms. 1 If X = ∅, that is, l and r contain no variables, then we say the equation
is ground. When there is no confusion theories are denoted by their collection
of equations, in this case E. We say that a theory E semantically entails an
equation e, E |= e, iff A |= e for all algebras A where A |= E. We say that
a theory E deductively entails an equation e, E ` e, iff e can be derived from
E via equational reasoning. Given two theories T = (Σ,E) and T ′ = (Σ′, E′),
then a theory morphism φ : T → T ′ is a signature morphism φ : Σ → Σ′ such
that E′ |= φ(e), for all e ∈ E. Soundness and completeness for many-sorted
equational logic is defined in the usual way [9]: E |= e iff E ` e.

Inductive logic programming concerns itself with the induction of first-order
theories or hypotheses from facts and background knowledge [4]. Although it
is possible to induce theories from positive facts only, including negative facts
helps to constrain the domain. Therefore, both positive as well as negative facts
are typically given. This is also true for the case of inductive equational logic
programming. Here the positive facts represent a theory that needs to hold in
the hypothesis and the negative facts represent a theory that should not hold
in the hypothesis. Before we develop our semantics we have to define what we
mean by facts and background knowledge.

Definition 1. A theory (Σ,F ) is called a Σ-facts theory (or simply facts)
if each f ∈ F is a ground equation. A theory (Σ,B) is called a background
theory if it defines auxiliary concepts that are appropriate for the domain to be
learned. The equations in B do not necessarily have to be ground equations.

1 Here we only consider many-sorted, unconditional equations, but the material de-
veloped here easily extends to more complicated equational logics.
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In the algebraic setting it is cumbersome to express theories in terms of a sat-
isfaction relation that does not satisfy a set of equations. Therefore, we need a
little bit more machinery in order to deal with negative facts more readily.

Definition 2. Given a many-sorted signature Σ, then an equation of the form
(∀∅)t 6= t′ = true is called an inequality constraint, where t, t′ ∈ TΣ(∅) and
{6=, true} ⊂ Σ with the usual boolean sort assignments and interpretations. A
theory (Σ,E) is called an inequality constraints theory iff all equations in
E are inequality constraints.

Our inequality constraints are not unlike Ehrig and Mahr’s first order logical
constraints [10]. We use inequality constraints to rewrite a negative Σ-facts
theory as an inequality constraints theory. The idea being that we move from
models that should not satisfy the negative facts to models that should satisfy the
corresponding inequality constraints theory. We need the following proposition.

Proposition 1. Given a theory (Σ,E) and an equation (∀∅)l = r, where l, r ∈
TΣ(∅), such that E 6|= (∀∅)l = r, then E |= (∀∅)(l 6= r) = true iff E 6|= (∀∅)l = r.

Let E be some Σ-theory and let N be a Σ-facts theory such that E 6|= e, for
all e ∈ N . We can now rewrite every equation (∀∅)l = r in N as an inequality
constraint (∀∅)(l 6= r) = true. Call this new set of equations N̂ , the inequality
constraints theory. Observe that E |= ê, ê ∈ N̂ iff E 6|= e, e ∈ N , as required.

A positive fact theory, a background theory, and an inequality constraint
theory together make up an inductive equational logic program. This gives rise
to the notion of a specification diagram.
Definition 3. Given a background theory B, (positive) facts F , and an inequal-
ity constraints theory N̂ derived from negative facts N , we say that the following
diagram is a specification diagram,

B F

N̂

ψ

__??????? φ

??�������

where φ and ψ are theory morphisms.

The intuition behind a specification diagram is that in an inductive equational
logic program neither the background theory nor the positive facts should violate
the inequality constraints. Now we define a cone over a specification diagram.

Definition 4. Let ψ : N̂ → B and φ : N̂ → F be a specification diagram, then
a cone over the specification diagram is defined as,

A

B

αB

>>~~~~~~~~
F

αF

``@@@@@@@

N̂

ψ

__???????

α
N̂

OO

φ

??�������
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where αB, αF , and αN̂ are theory morphisms and the diagram commutes. We
call the apex or cone object A a hypothesis. When there is no confusion we
often denote cones by their apex objects.

It is easy to see that the cones over a specification diagram S form a category, call
it H(S), with cone morphisms between them; let P and Q be objects in H(S),
then a cone morphism c : Q → P is a theory morphism such that c|S = idS .
From an inductive programming point of view we are interested in the most
general cone in H(S), where we define the relation more general as follows.

Definition 5. Let P and Q be cones in H(S), then we say that P is more
general than Q iff there exists a cone morphism Q→ P .

Intuitively we might say that we are interested in the terminal object of the
category H(S), since by definition this is the most general cone. Unfortunately,
the terminal object in H(S) is a cone whose apex object is the empty theory.
Thus, from a machine learning point of view this object is not very interesting.
On the other hand, it is worthwhile to note that the initial object in H(S), that
is the least general cone in H(S), is the co-limit of the specification diagram S
and is easily constructed by simply pasting together or memorizing the theories
in the specification diagram. Given this, it is easy to see that we have to resort to
searching the category of cones over a specification diagram for an appropriate
cone that is more general than the initial cone but not as general as the terminal
cone. Therefore, our semantics seems to corroborate the well established notion
of “generalization as search” [11].

Notions similar to the normal semantics developed for first order inductive
logic programming [4] can be recovered from our semantics. Prior and posterior
satisfiability as well as posterior sufficiency are direct consequences of our def-
inition of a cone over a specification diagram. Prior necessity is a consequence
of our definition of a specification diagram in that we do not admit morphisms
from F to B.

3 Implementation

We have implemented an equational theory induction system within the func-
tional part of the Maude specification language [3, 6, 12]. The mathematical view
of inductive equational logic programming given in the previous section is more
refined than those given in our previous accounts and reflects more accurately
what happens in our implementation. The induction system is accessible from
the Maude prompt via the induce command. The induce command returns an
equational theory given a positive and a negative fact theory, as well as a back-
ground theory,

> induce theory-name pfacts nfacts background parameters

where theory-name is the name to be given to the induced theory, pfacts is
the name of the positive fact theory, nfacts is the name of the negative facts
theory, and background is the name of the background theory. Finally, parameters
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denotes parameters that allow the user to assert some control over the induction
process. In the terminology of the previous section the returned equational theory
is the apex object of the most appropriate cone given the specification diagram
derived from the pfacts, nfacts, and background theories.

Our induction process is an evolutionary search in the category of cones over
a specification diagram for the most general cone whose apex object is not an
empty theory (or an approximation to this cone, since evolutionary systems are
not guaranteed to find the global optimum). More specifically, our system is
based on genetic programming [13]. Genetic programming distinguishes itself
from other evolutionary techniques in that it directly manipulates abstract syn-
tax trees making it well suited for the induction of equational theories. In the
following we refer to apex objects as hypotheses or pre-hypotheses (the mean-
ing of which will be made precise below). It is clear that given a specification
diagram and a hypothesis we can always recover the cone and given a cone we
can always extract the hypothesis.

One key aspect of any search strategy and in particular evolutionary search
strategies is that it needs to quantitatively distinguish between “good” and “bad”
hypotheses. In order to accomplish this we endowed our induction system with
the following objective function to be maximized:

fitness(H) = facts(H) + constraints(H) +
1

length(H)
+

1

terms(H)
, (1)

where H denotes a (pre-) hypothesis, facts(H) is the number of (positive) facts
satisfied by H, constraints(H) is the number of inequality constraints satisfied
by H, length(H) and terms(H) denote the number of equations and terms in
H, respectively. The fitness function is designed to primarily exert evolutionary
pressure towards finding true hypotheses that satisfy all the facts and constraints
(first and second terms). In addition, in the tradition of Occam’s Razor, the fit-
ness function also exerts pressure towards finding the shortest hypothesis (third
and fourth terms). Note that we call a hypothesis a pre-hypothesis or pre-cone
if it does not satisfy some of the facts or constraints.

Our search strategy based on genetic programming can be summarized as
follows:

1. Compute an initial (random) population of (pre-) hypotheses;

2. Evaluate the fitness of each (pre-) hypothesis;

3. Perform theory reproduction using genetic crossover and mutation opera-
tors;

4. Compute new population of (pre-) hypotheses;

5. Goto step 2 or stop if target criteria have been met.

This series of steps does not significantly differ from the standard genetic pro-
gramming paradigm [13]. The only real difference being that the fitness evalua-
tion is mainly a proof obligation that the following theory morphism conditions
hold: H |= αF (f) for all f ∈ F and H |= αN̂ (n) for all n ∈ N̂ given a hypothesis
H, facts F , and inequality constraints N̂ . The morphism αB is usually taken
to be the theory inclusion and therefore there is no proof obligation. Soundness
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and completeness of many-sorted equational logic allows us to replace semantic
entailment with its proof-theoretic counterpart. This, in turn, allows us to au-
tomate the proofs by using the equations in the hypotheses as rewrite rules. It
is interesting to note that hypotheses for which the theory morphism conditions
do not hold will usually score a lower fitness value than hypotheses for which the
theory morphism conditions do hold, especially in later generations of the evolu-
tionary computation. From a genetic programming point of view it is important
to not simply discard the theories for which the theory morphism conditions do
not hold, because these pre-hypotheses could represent important partial solu-
tions that upon later genetic recombination with other partial solutions could
represent interesting hypotheses in their own right. In the evolutionary frame-
work it is sufficient to simply label (pre-) hypotheses according to their fitness
instead of discarding low performing ones outright.

Another important aspect of the evolutionary computation is the design of
the genetic crossover and mutation operators. The design of these operators have
a large impact on the quality of the solutions found by evolutionary computa-
tions. Our crossover operator allows for two types of crossovers:

1. Expression-level crossover - allows expression subtrees at the level of the
left and right sides of equations to be exchanged between theories.

2. Equation-level crossover - allows the exchange of whole equations or sets
of equations between theories.

The crossover operator works as expected with the only caveat that it has to
respect typing information within the terms. Our system implements three dif-
ferent mutation operators:

1. Expression-level mutation - non-deterministally select an expression node
in the abstract syntax of a theory, generate a new expression tree with the
same sort, replace the original expression with the newly generated expres-
sion tree.

2. Equation addition/deletion - non-deterministically select an equation to
be deleted from some theory, or generate a new equation and add it to some
theory.

3. Literal generalization - non-deterministically choose a terminal expression
node and replace it with a variable of the appropriate sort.

Again, the biggest difference between our mutation operator and the standard
genetic programming mutation operator is that it has to respect the strict typing
rules of many-sorted equational logic.

In our implementation we use the fitness convergence rate as a termination
criterion. Should the fitness of the best individuals increase by less than 1%
over 25 generations we terminate the evolutionary search since significant fitness
improvement seems highly unlikely.

Our genetic programming engine is implemented as a strongly typed genetic
programming system using Matthew Wall’s GALib C++ library [14] within
Maude. The system uses Maude’s rewrite engine to dispense with the theory
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morphism proof obligations during fitness evaluation. Since the equations in the
hypotheses are generated at random, there is no guarantee that the theories do
not contain circularities throwing the rewriting engine into an infinite rewriting
loop while computing the fitness of a particular hypothesis. To guard against
this situation we allow the user to set a parameter that limits the number of
rewrites the engine is allowed to perform during the proof of each equation in
the fact and constraints theories. This pragmatic approach proved very effective.
The alternative would have been an in-depth analysis of the equations in each
hypothesis adding significant overhead to the execution time of the evolutionary
algorithm.2

As a final note on our implementation we need to acknowledge that prema-
ture convergence is a general problem in evolutionary computation. In this case,
the population of an evolutionary algorithm converges on a suboptimal solution
early on during the computation. Once this happens, there is little chance for
the algorithm to discover other, more appropriate solutions. In order to prevent
an evolutionary algorithm to converge prematurely a population is divided into
multiple sub-populations (also called demes [15]) with only limited communica-
tion between them. The idea is that even if premature convergence occurs in
some of the demes, diversity is maintained in the overall population due to the
limited communication among the demes. The limited communication among
the demes also serves to reseed diversity should some of the demes have prema-
turely converged. In our implementation we divide our population of hypotheses
into ten demes where each deme carries a population of typically between 20
and 30 individual hypotheses.

4 Experiments

We have already mentioned that our system is able to induce the canonical stack
theory given in the introduction, Figure 1. It is probably worthwhile to list some
statistics in association with that experiment: We used an overall population of
200 individuals distributed over 10 demes; it took an average of 30 generations
in the 50 trial runs to converge on the canonical solution; every single of the
50 trial runs converged on the canonical solution; each run took about 100 sec-
onds on a 1.3GHz G4 Apple iBook.3 It is also noteworthy that the hypothesis
shown is virtually unedited with the exception for some renaming of variables
for readability purposes. This is true with all hypotheses discussed here.

The stack induction problem looks straight forward from a conceptual point
of view, however, from a machine learning point of view we are faced with a multi-
concept learning problem in the sense that both the top and pop operations each
represent a different concept to be acquired. That multi-concept learning is not
2 At this point the authors are not even sure if circularity in a term rewriting system is

a decidable property making an even stronger argument for our pragmatic approach.
3 This experimental setup applies to all following experiments: a population of 200

individuals spread over 10 demes and 50 trial runs performed on a 1.3GHz G4 Apple
iBook.
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a guaranteed property of an induction algorithm is witnessed by the fact that
other theory induction algorithms fail to produce a sensible theory in context of
multi-concept learning (e.g. [16]).

fmod SUM-PFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(0,0) = 0 .

eq sum(s(0),s(0)) = s(s(0)) .

eq sum(0,s(0)) = s(0) .

eq sum(s(s(0)),0) = s(s(0)) .

eq sum(s(0),0) = s(0) .

eq sum(s(0),s(s(0))) = s(s(s(0))) .

eq sum(s(s(0)),s(s(0))) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(0)) = s(s(s(s(0)))) .

eq sum(s(s(s(0))),s(s(0))) = s(s(s(s(s(0))))) .

endfm

(a)

fmod SUM-NFACTS is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

eq sum(s(0),0) = 0 .

eq sum(0,0) = s(0) .

eq sum(s(0),s(0)) = s(0) .

eq sum(s(0),s(0)) = 0 .

eq sum(s(s(0)),s(s(0))) = s(s(0)) .

endfm

(b)

fmod SUM is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B C : Nat .

eq sum (A,0) = A .

eq sum (A,s(C)) = sum(s(A),C) .

endfm

(c)

Fig. 2. Positive facts (a) and negative facts (b) for the induction of the sum function.
A hypothesis for the sum function (c).

In our next experiment we illustrate that our system can acquire recursive
specifications. In this experiment we induce the specification of the function
sum that adds two natural numbers. The natural numbers are given in Peano
notation, where the numbers are represented as 0 7→ 0, s(0) 7→ 1, s(s(0)) 7→ 2,
etc. The positive and negative facts are given by the theories in Figure 2 (a)
and (b), respectively. The positive facts specify examples of applying the sum
function to a number of small natural numbers. Also included are examples that
show that summation is commutative. The negative facts consist of equations
that should not hold in the induced specification for sum. Each equation in this
theory is a counter example to the definition of the function sum. The background
theory for this experiment is empty. Given the above theories our system will
induce a hypothesis (or a variant that is isomorphic to this theory) as given
in Figure 2(c). Some quick statistics: it took an average of 40 generations to
produce a solution; we produced a minimal, recursive solution 32 times over 50
runs (for the other solutions the system noticed that it only had to produce a
solution that specified the functionality of sum over the given small integers and
it devised a non-recursive hypothesis); each run took about 120 seconds.

In our final experiment we demonstrate the usage of background knowledge
during the induction process. The problem is to find a recursive way to sum the
numbers in a list, given the knowledge of how to sum two numbers. Figure 3
displays the relevant theories. It is perhaps noteworthy that we use the theory
induced in the previous experiment as background knowledge for the current
experiment. Note that in Figure 3(d) the first two equations are due to the
background information and the last two equations specify the actual solution.
Some statistics on this experiment: it took an average of 35 generations to pro-
duce a solution; 38 of our 50 runs produced a solution similar to the one shown
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fmod SUM-LIST-PFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = 0 .

eq suml(c(nl,s(0))) = s(0) .

eq suml(c(nl,s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(s(0))),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),s(s(0)))) = s(s(s(s(0)))) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(s(0))))) = s(s(s(0))) .

eq suml(c(c(nl,s(s(0))),0)) = s(s(0)) .

endfm

(a)

fmod SUM-LIST-NFACTS is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

eq suml(c(nl,0)) = s(0) .

eq suml(c(nl,s(0))) = 0 .

eq suml(c(nl,s(s(0)))) = s(0) .

eq suml(c(c(nl,0),s(0))) = s(s(0)) .

eq suml(c(c(nl,s(0)),s(0))) = s(s(s(0))) .

eq suml(c(c(nl,s(0)),s(0))) = s(0) .

eq suml(c(c(nl,s(0)),s(s(0)))) = s(s(0)) .

eq suml(c(c(nl,0),s(s(0)))) = s(s(s(0))) .

eq suml(c(c(c(nl,s(0)),s(0)),s(0))) = s(s(0)) .

eq suml(c(c(c(nl,s(0)),0),s(0))) = s(0) .

endfm

(b)

fmod SUM-LIST-BACKGROUND is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

vars A B : Nat .

eq sum(0,A) = A .

eq sum(s(A),B) = s(sum(A,B)) .

endfm

(c)

fmod SUM-LIST is

sorts Nat NatList .

op 0 : -> Nat .

op s : Nat -> Nat .

op sum : Nat Nat -> Nat .

op nl : -> NatList .

op c : NatList Nat -> NatList .

op suml : NatList -> Nat .

vars NatA NatB NatC : Nat .

vars NatListA NatListB NatListC : Nat .

eq sum(0,NatA) = NatA .

eq sum(s(NatA),NatB) = s(sum(NatA,NatB)) .

eq suml(nl) = 0 .

eq suml(c(NatListA,NatB)) = sum(suml(NatListA),NatB) .

endfm

(d)

Fig. 3. Induction with background information: (a) positive facts, (b) negative facts,
(c) background theory, and (d) resulting hypothesis.

in Figure 3(d) (the other solutions were non-recursive and did not generalize
well beyond the test cases); each run took about 130 seconds.

These experiments highlight both the strength and weakness of the evolution-
ary approach to theory induction. The weakness is that in order to gain some
confidence in an induced theory one needs to rerun the induction experiment
multiple times. Only if the same or isomorphic theories are being discovered
multiple times does one gain some confidence that the found theory constitutes
a reasonable hypothesis. The strength of the evolutionary approach is that the
likelihood of the search space being traversed in exactly the same way with ev-
ery run is very low. Therefore, running the induction algorithm multiple times
and inducing the same or isomorphic theories in different runs means that the
induced (isomorphic) theories do represent a quasi global optimum. Perhaps a
more statistical approach by applying leave-one-out cross-validation would be
appropriate here in order to establish some confidence that the induced speci-
fications generalize well. For additional and more complex examples please see
Shen’s thesis [12].4

4 http://homepage.cs.uri.edu/faculty/hamel/dm/theses/Chi-thesis-2006.pdf
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5 Related Work

The synthesis of equational and functional programs has a long history in com-
puting extending back into the mid 1970’s, e.g. [17–20]. The approaches use
deductive as well as inductive techniques for the induction of recursive func-
tional programs from formal specifications. This is in contrast to our machine
learning setting where generalization is achieved by searching through an ap-
propriate space. The advantages of the machine learning setting is that we can
include positive and negative examples, as well as background information in a
natural way. We also can incorporate “meta-properties” such as multi-concept
learning and robustness [6]. For an insightful overview of the synthesis of equa-
tional programs see [21]. A survey that looks at the synthesis of predicate logic
programs is [22].

The two approaches most related to ours are [16] and [23]. Both approaches
use inductive learning with positive and negative examples of the functions to
be induced. The former approach considers unsorted equational logic as the rep-
resentation language using inverse narrowing as the search heuristic. Although
this approach is very fast in inducing programs it is not robust and cannot be
used in multi-concept settings. The latter approach uses a many-sorted, higher-
order functional language as its representation language and uses an evolutionary
algorithm as its induction heuristic. We should also mention Roland Olsson’s in-
ductive functional programming system Adate [24].

6 Conclusions and Further Work

We presented a system that given a set of positive and negative examples and
relevant background knowledge will induce an algebraic specification. In this
setting the examples are ground equations that can be considered test cases:
the positive examples need to hold in the induced specification and the negative
examples should not hold in the induced specification. We have implemented
this system in the functional part of the Maude specification language. Our
algebraic semantics for inductive equational logic programming elucidates many
of the details necessary for the implementation of the system.

Future work will extend our approach to include full order-sorted, conditional
equational logic. We will also investigate whether our approach can be extended
to hidden-sorted equational logic. In this context it will be interesting to see
how our evolutionary induction system can deal with function symbol invention
(similar to predicate invention) which will most likely be necessary in order to
evolve objects with hidden state and visible behavior. We would like to inves-
tigate the integration of our induction engine in Maude using its metalanguage
facilities [25] .
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Abstract. We describe a technique for inducing recursive functional
programs over algebraic datatypes from few non-recursive and only pos-
itive ground example-equations. Induction is data-driven and based on
structural regularities between example terms. In our approach, func-
tional programs are represented as constructor term rewriting systems
containing recursive rewrite rules. In addition to the examples for the
target functions, background knowledge functions that may be called by
the induced functions can be given in form of ground equations. Our
algorithm induces several dependent recursive target functions over ar-
bitrary user-defined algebraic datatypes in one step and automatically
introduces auxiliary subfunctions if needed. We have implemented a pro-
totype of the described method and applied it to a number of problems.

1 Introduction

Automatic induction of recursive functional or logic programs from input/output-
examples (I/O-examples) is an active area of research since the sixties (see [1]
for classical methods, [2] for systems in the field of inductive logic programming,
and [3] for recent research).

There exist two general approaches to tackle inductive synthesis of programs:
(i) In the generate-and-test approach (e.g., the ADATE system [4]), programs
of a defined class are enumerated heuristically and then tested against given
examples. (ii) In the analytical approach, programs of a defined class are de-
rived by detecting recurrences in given examples which are then generalized to
recursively defined functions. That is, hypotheses1 are (more or less) computed
instead of searched. Generate-and-test methods are applicable for very general
program classes since there are no principal difficulties in enumerating programs.
They naturally facilitate usage of predefined functions (background knowledge)
in induced programs. On the other side, generate-and-test methods are search
intensive and therefore time consuming. Analytical approaches have more re-
stricted program classes and generally do not facilitate the usage of background

1 We adopt machine learning terminology here: The output program of an induction
is called hypothesis, the function(s) to be induced are called target function(s)
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knowledge. On the other side, analysis minimizes search and makes these ap-
proaches fast. The goal of the approach described in this paper was to relax the
analytical approach by applying a search for hypotheses but by keeping ana-
lytical concepts within the search. The result is a functional program induction
system that data-driven searches a comparatively less restricted hypothesis space
and allows the use of background knowledge.

One classical and influential analytical approach is from Summers [5], who
put inductive synthesis on a firm theoretical foundation. His system induces
functional Lisp programs containing one function definition whose body con-
sists of a conditional for an arbitrary number of base cases and one recursive
case containing one recursive call. Parameters are restricted to be S-expressions
(the general datatype in Lisp) and I/O-examples have to be linearly ordered.
An interesting feature is a particular heuristic for automatically introducing an
additional parameter if needed, e.g., the accumulator variable for list reversing.
Analytical systems inspired by this approach are the BMWk algorithm [6,7] and
the more recent system described in [8].

Another line of research is the field of inductive logic programming (ILP).
Though ILP has a focus to non-recursive concept learning problems, there has
also been research in inducing recursive logic programs on inductive datatypes
(see [2]). One relatively recent analytical ILP method for inducing recursive logic
programs is DIALOGS [9]. In order to induce more complex functions, e.g., the
quicksort algorithm and to automatically invent needed subfunctions, e.g., the
partitioning function for quicksort, it makes use of some general schemas, e.g.,
divide-and-conquer, which the user must chose and requires further information
from the user. The schemas strongly restrict the hypothesis space. Moreover,
DIALOGS is restricted to some predefined datatypes like lists and numbers.

The new approach described in this paper is a major extension of [10]. It in-
duces multiple dependent target functions over arbitrary user defined algebraic
datatypes in one step, facilitates the use of background knowledge and allows
complex recursion patterns (nested calls of induced recursive functions, mutual
recursion, tree recursion, arbitrary numbers of base- and recursive cases). Ad-
ditionally needed subfunctions are introduced automatically if the calling rela-
tion fulfills some conditions. Its integrated analytical concepts lead to induction
times which are very small compared to powerfull generate-and-test systems like
ADATE. E.g., to induce the Reverse-function, our system needs milliseconds
whereas ADATE needs more than a minute on the same computer. Particularly
the capability of inducing multiple related target functions as for example mu-
tual recursive definitions for Even and Odd on natural numbers is a feature not
provided by most program induction systems. A recent ILP system also capable
of learning multiple related recursively defined target concepts is ATRE [11].

2 Preliminaries

We represent functional programs as sets of equations (pairs of terms) over a
many-sorted first order signature Σ. That is, we abstract from any concrete



Data-Driven Induction of Recursive Functions from Input/Output-Examples 17

functional programming language and do not consider higher order functions.
Each equation specifying a function F has a left hand side (lhs) of the form
F (t1, . . . , tn) where neither F nor the name of any other of the defined functions
occur in the ti. Thus, the symbols in the signature Σ are divided into two
disjunct subsets F of defined function symbols, e.g., F , and C of constructors.
Terms without defined function symbols are called constructor terms. Ground
constructor terms denote values. The constructor terms ti in the lhss of the
equations for a defined function F may contain variables and are called pattern.
This corresponds to the concept of pattern matching in functional programming
languages and is the only form of case distinction. Each variable in the rhs of
an equation must occur in the lhs, i.e., in the pattern. To evaluate a function
defined by equations we read the equations as simplification rules from left to
right. A set of simplification (or rewrite) rules is called term rewriting system
(TRS). TRSs whose lhss have defined function symbols as roots and constructor
terms as arguments, i.e., whose lhss have the described pattern-matching form,
are called constructor term rewriting systems (CSs).

In order to formalize the simplification process we first introduce some stan-
dard concepts on terms: One can denote each subterm of a term t by its unique
position within t, a sequence of positive integers. The term t itself stands at
position ε—the empty sequence—called root position. If t = f(t1, . . . , tn) then
each ti stands at position i. If a subterm s of ti stands at position u within ti
then it stands at position i.u within t. The subterm at position u is written t|u.
Consider the term t = f(a, g(x, y)). Then, e.g., holds t|2 = g(x, y) and t|2.1 = x.

A substitution σ is a mapping from variables to terms and is extended to a
mapping from terms to terms which is also denoted by σ and written in postfix
notation; tσ is the result of applying σ to all variables in term t. If s = tσ, then t
is called generalization of s and we say that t subsumes s and that s matches t by
σ. Given two terms t1, t2 and a substitution σ such that t1σ = t2σ, then we say
that t1, t2 unify and call σ unifier of t1 and t2. We generalize the subsumption
relation to sets of terms and say that a set of terms T subsumes another set of
terms S if each term s ∈ S is subsumed by a term t ∈ T . Given a set of terms,
S = {s, s′, s′′, . . .}, then there exists a term t which subsumes all terms in S and
which is itself subsumed by each other term subsuming all terms in S. The term
t is called least general generalization (lgg) of the terms in S [12].

A context is a term that contains a distinguished symbol �, denoting wholes,
at at least one position. If C is a context containing n wholes then C[t1, . . . , tn]
denotes the term resulting from replacing the n wholes in C by the ti from left
to right. The rewrite relation →R established by a CS R is defined as follows: A
term t rewrites to s according to R, written t →R s iff there exists a rule l → r
in R, a substitution σ, and a context C such that t = C[lσ] and s = C[rσ].
Evaluating an n-ary function F for an input i1, . . . , in consists of repeatedly
rewriting the term F (i1, . . . , in) w.r.t. the rewrite relation until the term is in
normal form, i.e., cannot be further rewritten. A sequence of (in)finitely many
rewrite steps t0 →R t1 →R · · · is called derivation. If a derivation starts with
term t and results in a normal form s, then s is called normal form of t, written
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t
!→ s. We say that t normalizes to s. In order to define a function on a domain (a

set of ground terms) by a CS, no two derivations starting with the same ground
term may lead to different normal forms, i.e., normal forms must be unique.
A sufficient condition for this is that no two lhss of a CS unify; then the CS is
confluent. A CS is terminating if each possible derivation terminates. A sufficient
condition for termination is that the arguments/inputs of recursive calls strictly
decrease within each derivation and w.r.t. a well founded order.

3 Analytical Induction of Recursive Functions

For better readability we write tn for a sequence of terms t1, . . . , tn.
If in is an input to a recursively defined function F with a corresponding out-

put term o and in′ is the input to F resulting from a recursive call of F within
computing i, then o contains the output term o′ for in′ as subterm. Using this
structural regularity between computations of recursively defined functions in
order to infer the recursive definition from I/O-examples is the core of analytical
function induction as proposed by Summers [5]. Examples for a target function
F are equations of the form F (in) = o where the in and o are ground construc-
tor terms and are called example inputs and outputs respectively. A necessary
condition for applying the described principle is that for each example input, all
inputs resulting from recursive calls are also included in the example set. The
following definition states this condition formally and extended to more than
one target function.

Definition 1 (Recursively Subsumed Examples). Let R be a CS which
correctly computes a set of example equations. The example equations are called
recursively subsumed w.r.t. R if for all example inputs in hold: Let F (pn) → t be
a rule in R such that in matches pn by substitution σ. Then for each (recursive)
call F ′(rm) of a defined function F ′ of R in t the instantiation rmσ is contained
as an example input in the example equations.

4 Function Induction by Pattern Refinement, Matching,
and Ubiquitous Subprogram Introduction

We require that induced CSs are terminating and that they represent functions,
i.e., that they have unique normal forms. With regard to the given examples we
require that a hypothesis is correct :

Definition 2. A hypothesis, i.e., a CS R is consistent/ complete w.r.t. a set of
example equations iff for each example equation F (in) = o holds

consistent: F (in) !→R o or F (in) !→R s for a non-constructor term s,
complete: F (in) !→R s for a constructor term s.

A hypothesis is correct iff it is both consistent and complete.
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The consistency condition assures that if the induced function is defined for
an input then the corresponding function value is the specified output. The com-
pleteness condition assures that the induced function is total on the example in-
puts. We do not require the induced function to be total w.r.t. all Σ-constructor
terms. Fig. 1 shows example equations for the Reverse-function and the equa-
tions induced by our system. Only the example equations and the corresponding
datatype definitions were provided. Note that the example equations contain
variables. Using variables where possible reduces the amount of needed example
equations and makes the induction more time efficient. Two subfunctions have
been introduced automatically, Last and Init , which compute the last element of
a list and the list without the last element respectively. Note that automatically
introduced subfunctions are simply named “Sub1”, “Sub2” etc. by the system.

Example equations:

1. Reverse([]) = []
2. Reverse([X]) = [X]

3. Reverse([X, Y ]) = [Y, X]
4. Reverse([X, Y, Z]) = [Z, Y, X]

5. Reverse([X, Y, Z, V ]) = [V, Z, Y, X]

Induced CS:

Reverse([]) → []
Reverse([X|Xs]) → [Last([X|Xs])|Reverse(Init([X|Xs]))]
Last([X]) → X
Last([X1, X2|Xs]) → Last([X2|Xs])
Init([X]) → []
Init([X1, X2|Xs]) → [X1|Init([X2|Xs])]

Fig. 1. Example equations and the induced solution for the Reverse-function

The induction of a terminating, confluent, correct CS is organized as a kind
of best first search. During search, a hypothesis is a set of equations entailing the
example equations and constituting a terminating and confluent CS but poten-
tially with variables in the rhss not occurring in the lhss. That is, the equations of
a hypothesis during search do not necessarily represent functions. We call such
equations and hypotheses containing them unfinished equations and hypothe-
ses. A goal state is reached, if at least one of the best—according to a criterion
explained below—hypotheses is finished, i.e., does not contain unfinished equa-
tions. Such a finished hypothesis is terminating and confluent by construction
and since its equations entail the example equations, it is also correct.

Our induction bias is to prefer CSs whose patterns partition the example in-
puts into fewer subsets. This corresponds to preferring programs with fewer case
distinctions. This leads, in some sense, to a most general hypothesis. Regarding
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one defined function, this bias prefers a CS with fewer rules, since the pattern
of each rule determines one unique subset. But consider the solution for the
Reverse-function with the subfunctions Last and Init as shown in Fig. 1. The
solution contains six rules but the number of induced example input subsets is
only three, because Last and Init induce the same subsets (pattern [X] subsumes
the second example, pattern [X1, X2|Xs] examples 3 - 5) which are again par-
titions of the subset induced by pattern [X|Xs] of Reverse such that pattern []
from Reverse remains and induces the subset containing the first example input.
So if we would have chosen fewer rules as preference bias then obviously the five
example equations themselves would have been favored over the solution with
Init and Last such that no generalization would have taken place.

With respect to the described bias and in order to get a complete hypoth-
esis w.r.t. the examples, the initial hypothesis is a CS with one rule per target
function such that its pattern subsumes all example inputs. In most cases (e.g.,
for all recursive functions) one rule is not enough and the rhss will remain un-
finished. Then for one of the unfinished rules successors will be computed which
leads to one or more (unfinished) hypotheses. Now repeatedly unfinished rules
of currently best hypotheses are replaced until a currently best hypothesis is
finished. Since one and the same rule may be member of different hypotheses,
the successor rules originate successors of all hypotheses containing this rule.
Hence, in each induction step several hypotheses are processed.

4.1 Initial Rules

Given a set of example equations for one target function, the initial rule is con-
structed by first antiunifying [12] all example inputs.2 This leads to the lgg of
the example inputs, i.e., to the most specific pattern subsuming all example
inputs. Second, the example outputs are antiunified w.r.t. the substitutions re-
sulting from antiunification of the inputs. This gives the lgg of all outputs were
variables from the pattern are used if possible. Considering only lggs of example
inputs as patterns narrows the search space. It does not constrain completeness
of hypotheses regarding the example equations as shown by the following lemma.

Lemma 1. Let R be a CS with non-unifying patterns and which is correct re-
garding a set of recursively subsumed example equations. Then there exists a CS
R′ such that R′ contains exactly one pattern p′ for each pattern p in R, each p′

is the lgg of all example inputs matching the corresponding pattern p, and R and
R′ compute the same normal form for each example input.

Proof. It suffices to show (i) that if pattern p of a rule r is replaced by the lgg
of the example inputs matching p then also the rhs of r can be replaced by a
new rhs such that the rewrite relation remains the same for the example inputs
matching p, and (ii) that if the rhs of r contains a call to a defined function
2 Note that for functions with arity > 1 inputs are sequences in, n > 1, of terms. We

may consider such a sequence as one term by assuming a distinguished constructor
symbol as root and the in as direct subterms.
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then each instance of this call regarding the example inputs matching p is also
an example input (matched by p or another pattern and, hence, also matched
by patterns constituting lggs of example inputs). Proving these two conditions
suffices because (i) assures equal rewrite relations for the example inputs and
(ii) assures that each resulting term of one rewrite step which is not in normal
form regarding R is also not in normal form regarding R′.

The second condition is assured if the example inputs are recursively sub-
sumed. To show the first condition let p be a pattern in R which is not the
lgg of the input examples matching it. Then there exists a position u with
p|u = x, x ∈ Var(p) and p′|u = s 6= x if p′ is the lgg of the input examples
matching p. First assume that x does not occur in the rhs of the rule r with
pattern p, then replacing x by s in p does not change the rewrite relation of r
for the example inputs because still all example inputs are subsumed and are
rewritten to the same term as before. Now assume that x occurs in the rhs of r.
Then the rewrite relation of r for the input examples remains the same if x is
replaced by s in p as well as in the rhs. ut

4.2 Processing Unfinished Rules

This section describes the three methods for replacing unfinished rules by suc-
cessor rules. All three methods are applied to a chosen unfinished rule. The first
method, splitting rules by pattern refinement, replaces an unfinished rule with
pattern pn by at least two new rules with more specific patterns in order to
establish a case distinction on the example inputs. The second method, intro-
ducing function calls, implements the principle described in Sec. 3 in order to
introduce recursive calls or calls to other defined functions. Other defined func-
tions can be further target functions or background knowledge functions. The
third method, introducing subfunctions, generates new induction problems, i.e.,
new example equations, for the unfinished subterms of an unfinished rhs. These
new problems are treated the same way as the “original” problems, i.e., this
method implements the capability to automatically find auxiliary subfunctions.

Splitting Rules by Pattern Refinement The first method for generating
successors of a rule is to replace its pattern pn by a set of more specific patterns,
such that the new patterns induce a partition of the example inputs matching
pn. This results in a set of new rules replacing the original rule and—from a
programming point of view—establishes a case distinction.

Suppose a rule with pattern pn which is the lgg of the example inputs match-
ing it. Then the examples whose inputs match pn have to be partitioned into a
minimum number of at least two subsets and pn has to be replaced by the lggs of
the inputs of the respective subsets. It has to be assured that no two of the new
lggs unify. This is done as follows: First a position u is chosen at which a variable
stands in pn. Since pn is the lgg of all inputs matching it it holds that at least
two inputs have different constructor symbols at position u. Then respectively
all example inputs with the same constructor at position u are taken into the
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same subset. This leads to a partition of the example inputs. Finally, for each
subset the lgg is computed. The new lggs do not unify, since they have different
constructors at at least one position.

Possibly different positions of variables in pattern pn lead to different par-
titions. Then all partitions and the corresponding sets of specialized patterns
are generated. Each new pattern determines the lhs of a new rule. The corre-
sponding initial rhss are computed as lggs of the respective outputs as described
in Sect. 4.1. Since the refined patterns subsume fewer examples, the number of
variables in the initial rhss which are not contained in the corresponding lhs
(non-strictly) decreases with each refinement step. Eventually, if no correct hy-
pothesis with fewer partitions exists, each example input is subsumed by itself
such that the example equations are simply reproduced.

For example, let

1. Reverse([]) = [], 2. Reverse([a]) = [a], 3. Reverse([b]) = [b],
4. Reverse([a, b]) = [b, a], 5. Reverse([b, a]) = [a, b]

be some examples for the Reverse-function. The pattern of the initial rule is
simply a variable X, since the example input terms have no common root symbol.
Hence, the unique position at which the pattern contains a variable and the
example inputs different constructors is the root position. The first example
input consists of only the constant [] at the root position. All remaining example
inputs have the constructor cons as root. I.e., two subsets are induced by the
root position, one containing the first example, the other containing all remaining
examples. The lggs of the example inputs of these two subsets are [] and [X|Xs]
respectively which are the patterns of the two successor rules.

Introducing Function Calls The second method to generate successor sets
for an unfinished rule with pattern pn for a target function F is to replace its
rhs by a call to a defined function F ′, i.e. by a term F ′(R1(pn), . . . , Rm(pn)).
Each Ri denotes a new introduced defined (sub)function. This finishes the rule,
since now the rhs does not longer contain variables not contained in the lhs. In
order to get a rule leading to a correct hypothesis, for each example equation
F (in) = o of function F whose input in matches pn with substitution σ must
hold: F ′(R1(pn), . . . , Rm(pn))σ !→ o. This holds if for each output o an example
equation F ′(i′1, . . . , i

′
m) = o of function F ′ exists such that Ri(pn)σ !→ i′i for

each Ri and i′i. Thus, if we find example equations of F ′ with outputs o, then we
abduce example equations Ri(in) = i′i for the new subfunctions Ri and induce
them from these examples. Provided, the final hypothesis is correct for F ′ and
all Ri then it is also correct for F .

In order to assure termination of the final hypothesis it must hold im′ < in

according to any reduction order < if the function call is recursive.3

3 Assuring decreasing arguments is more complex if mutual recursion is allowed.
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Introducing Subfunctions The last method to generate successor equations
can be applied, if all outputs o of the inputs matching the pattern of the con-
sidered unfinished rule have the same constructor c as roots. Let c be of arity
m then the rhs of the rule is replaced by the term c(Sub1(pn), . . . , Subm(pn))
where each Subi denotes a new introduced defined (sub)function. This finishes
the rule since all variables from the new rhs are contained in the lhs. The ex-
amples for the new subfunctions are abduced from the examples of the current
function as follows: If o|i are the ith subterms of the outputs o, then the equa-
tions Subi(in) = o|i are the example equations of the new subfunction Subi.
Thus, correct rules for Subi compute the ith subterm of the outputs o such that
the term c(Sub1(pn), . . . , Subm(pn)) normalizes to the outputs o.

A Remark on the Described Successor Functions As described in Sect. 4.2,
(recursive) calls to defined functions specified by examples are only introduced
at the root of a rhs (since such calls are introduced by replacing an unfinished
rhs). Of course, generally, function calls can occur at any position in a rhs, com-
pare for example the recursive definition for Init in Fig. 1. The reason why e.g.
Init can be induced by our approach though function calls are only introduced at
root positions is that deeper positions are (indirectly) considered as consequence
of subprogram introduction as described in Sect. 4.2. Rhs root positions of such
subprograms correspond to deeper positions of the rhs of the rule calling these
subprograms.

5 Experimental Results

We have implemented a prototype of the described algorithm in the program-
ming language Maude [13]. Maude is a reflective language which is based on equa-
tional and rewriting logic. Reflection means that Maude programs can deal with
Maude programs as data. The implementation includes two extensions compared
to the approach described in the previous section: First, example equations may
contain variables such that the amount of example equations needed to specify a
target function decreases. This is advantageous for the specifier as well as it leads
to smaller induction times. Second, different variables within a pattern can be
tested for equality This establishes—besides pattern refinement—a second form
of case distinction.

In Tab. 1 we have listed experimental results for sample problems. The first
column lists the names for the induced target functions, the second the names
of additionally specified background functions, the third the number of given
examples (for target functions), the fourth the number of automatically intro-
duced recursive subfunctions, the fifth the maximal number of calls to defined
functions within one rule, and the sixth the times in seconds consumed by the
induction. Note that the example equations contain variables if possible (except
for the Add -function); compare Fig. 1. The experiments were performed on a
Pentium 4 with Linux and the Maude 2.3 interpreter.
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target functions bk funs #expl #subfuns #funcalls times

Length / 3 0 1 .012

Last / 3 0 1 .012

Odd / 4 0 1 .012

ShiftL / 4 0 1 .024

Reverse Snoc 4 0 2 .024

Even, Odd / 3, 3 0 1 .028

Mirror / 4 0 2 .036

Take / 6 0 1 .076

ShiftR / 4 2 2 .092

DelZeros / 7 0 1 .160

Insertion Sort Insert 5 0 2 .160

PlayTennis / 14 0 0 .260

Add / 9 0 1 .264

Member / 13 0 1 .523

Reverse / 4 2 3 .790

Quick Sort Append ,P1 ,P2 6 0 5 63.271

Table 1. Some inferred functions

All induced programs compute the intended functions with more or less “nat-
ural” definitions. Length, Last , Reverse, and Member are the well known func-
tions on lists. Reverse has been specified twice, first with Snoc as background
knowledge which inserts an element at the end of a list and second without
background knowledge. The second case (see Fig. 1 for given data and computed
solution), is an example for the capability of automatic subfunction introduction
and nested calls of defined functions. Odd is a predicate and true for odd natural
numbers, false otherwise. The solution contains two base cases (one for 0, one
for 1) and in the recursive case, the number is reduced by 2. In the case where
both Even and Odd are specified as target functions, both functions of the so-
lution contain one base case for 0 and a call to the other function reduced by 1
as the recursive case. I.e. the solution contains a mutual recursion. ShiftL shifts
a list one position to the left and the first element becomes the last element of
the result list, ShiftR does the opposite, i.e., shifts a list to the right such that
the last element becomes the first one. The induced solution for ShiftL contains
only the ShiftL-function itself and simply “bubbles” the first element position
by position through the list, whereas the solution for ShiftR contains two au-
tomatically introduced subfunctions, namely again Last and Init , and conses
the last element to the input list without the last element. Mirror mirrors a
binary tree. Take keeps the first n elements of a list and “deletes” the remaining
elements. This is an example for a function with two parameters where both
parameters are reduced within the recursive call. DelZeros deletes all zeros from
a list of natural numbers. The solution contains two recursive equations. One
for the case that the first element is a zero, the second one for all other cases.
Insertion Sort and Quick Sort respectively are the well known sort algorithms.
The five respectively six well chosen examples as well as the additional exam-
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ples to specify the background functions are the absolute minimum to generate
correct solutions. The solution for Insertion Sort has been generated within a
time that is not (much) higher as for the other problems, but when we gave a
few more examples, the time to generate a solution explodes. The reason is, that
all outputs of lists of the same length are equal such that many possibilities of
matching the outputs in order to find recursive calls exist. The number of possi-
ble matches increases exponentially with more examples. The comparatively very
high induction time for Quick Sort results from the many examples needed to
specify the background functions and from the complex calling relation between
the target function and the background functions. P1 and P2 are the functions
computing the lists of smaller numbers and greater numbers respectively com-
pared to the first element in the input list. For Add we have a similar problem.
First of all, we have specified Add by ground equations such that more examples
were needed as for a non-ground specification. Also for Add holds, that there are
systematically equal outputs, since, e.g., Add(2, 2),Add(1, 3) etc. are equal and
due to commutativity. Finally, PlayTennis is an attribute vector concept learn-
ing example from Mitchell’s machine learning text book [14]. The 14 training
instances consist of four attributes. The five non-recursive rules learned by our
approach are equivalent with the decision tree learned by ID3 which is shown
on page 53 in the book. This is an example for the fact, that learning decision
trees is a subproblem of inducing functional programs.

6 Conclusions and Further Research

We described a method to induce functional programs represented as confluent
and terminating constructor systems. The presented methodology is inspired
by classical and recent analytical approaches to the fast induction of functional
programs. One goal was to overcome the drawback that “pure” analytical ap-
proaches does not facilitate the use of background knowledge and generally have
relatively restricted hypothesis languages and on the other side to keep the an-
alytical approach as far as possible in order to be able to induce more complex
functions in a reasonable amount of time. This has been done by applying a
search in a more comprehensive hypothesis space but where the successor func-
tions are data-driven and not generate-and-test based, such that the number
of successors is more restricted and the hypothesis spaced is searched in a con-
trolled manner. Though the successor functions are data-driven, the search is
complete and only favors hypotheses inducing fewer partitions but applies no
further heuristics to estimate, how many partitions the final hypothesis will
have. Developing such heuristics will be one of the further research topics.
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Abstract. This paper introduces a multi objective function based ap-
proach for evolving programs with emphasis on modularity and repetitive
code execution. A functional paradigm based programming language for
evolution of programs is presented. The evolution of recursive functions
using code structure abstraction is discussed henceforward and a kind
of structure abstracting functions (AR-functions) is introduced. Some
examples and results are presented.

1 Introduction

One of the most important research areas in the field of automatic programming
is evolving of modular programs. The support for modularity is among oth-
ers essential to enable more efficient evolution of complex programs containing
iteration or recursion.

There are several approaches to repetitive code execution in genetic program-
ming, the most widely used automatic programming approach, like iteration
functions [1, 2] and recursion [2, 3]. Another interesting approach to evolution of
recursive programs represent the abstraction of code structure of common types
of recursion - the so called implicit recursion. Some research with genetic pro-
gramming and predefined implicit recursion functions in a function set was done
by Yu [4]. There are several other approaches to automatic programming, for
instance PIPE [5] or ADATE [6] which well supports the induction of recursive
programs using exhaustive search and heuristic transformation rules.

In this paper we present a very simple approach to efficient evolution of
modular programs. We will utilise the advantages of modularity and functional
programming language described thereunder to enable more efficient evolution of
recursive programs using abstraction of code structure. The central idea behind
our approach is to take advantages of the interconnection of multiple objective
function approach and adaptive representation of code. The multiple objective
function, nor adaptive representation of code are not generally new ideas, how-
ever we present a slightly different approach. The main differences are shortly
summarised in Table 1. A handy paradigm to deal with modularity is offered
by functional programming. We have developed a special functional automatic
programming language called apFSM. The syntax and semantics of apFSM are
inspired by Common LISP [7] and Scheme [8] functional programming languages.
The crucial apFSM features are following:
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property ADF MA ARL our approach

random module identification yes yes no no
fitness function single single single multiple
measuring the quality of individual discrete discrete discrete bool
subject of evolution (I-individual, L-language) I, L I, L I, L L
predefined structure of modules yes no no yes

Table 1. Comparison of approaches to modularity

– universal computing power (Turing-completeness)
– uniform data and code representation
– small function set and minimal number of data types
– in conjunction with a modular approach to objective function it serves as a

language with evolvable code representation
– in conjunction with a modular approach to objective function it produces a

modular solution of problems
– a priori support for repetitive execution of code using recursion
– modularity via first-order functions (bottom-up modularity)
– a priori support for code abstraction (top-down modularity) via higher-order

functions with support of lexical scoping by lexical closures1

2 apFSM: A Functional Paradigm Based Computational
Model for Automatic Programming

The apFSM language has simple syntax, built-in support for lexical scoping and
NIL-bound variables2. Programs as well as data are represented as lists.

The basic language elements are data types (atom, cons, lexical closure),
built-in (the so called primitive) functions (atom, eq, cons, car, cdr) and special
operators (quote, if, lambda, label). Atoms name variables, functions and special
operators. Functions may be primitive or user defined by the special operator
lambda. Program code execution is application of functions on data. Program
execution is driven by the evaluation process and it is called evaluation.

2.1 Data Types

Atom is a sequence of letters and digits. Atoms T and NIL have special meaning
(see later). For instance, A, 25, LISP, A3324ABC are atoms.
Primitive functions related to atoms:
atom is a function of one argument, returns T if its argument is an atom,

otherwise returns NIL.
1 it avoids the variable capture problem
2 unbound variables (atoms) are evaluated to NIL instead of signaling error



A Functional Approach to Evolving Recursive Programs 29

eq is a function of two arguments, returns T if arguments are identical atoms,
otherwise returns NIL.

Cons is a pair of arbitrary objects, first component is called car, second cdr.
Cons of objects α and β is notated as (α . β). If cdr of a cons is another
cons then it can be used a simplified notation 3, where dot and parentheses
of the inner cons are omitted. If cdr of a cons is NIL then dot and atom NIL
is omitted.
Primitive functions related to conses:
cons is a function of two arguments. It creates a new cons where first argu-

ment is car and second argument is cdr of new cons.
car is a function of one argument. If argument is cons, returns car of cons

argument, otherwise returns NIL.
cdr is a function of one argument. If argument is cons, returns cdr of cons

argument, otherwise returns NIL.
List of elements a1, a2 . . . an is defined as follows:

1. for n = 0 it is the atom NIL4.
2. for n > 0 it is a cons whose car is a1 and cdr is a list of elements a2

. . . an.
Lexical closure is an object with special role in evaluation process. It will

be described in the evaluation process description. Instead of term lexical
closure it can be used term function.

Truth values false represents atom NIL, other objects are true. Primitive func-
tions use atom T to express true. For instance, expressions T, (A B C), LISP
are true.

2.2 Evaluation Process

Expressions (of the apFSM language) are atoms and lists composed of expres-
sions. Expressions are evaluated by the evaluation process. If an expression
e yields value v we say that e returns v, or that value of e is v.

Binding is a pair of an atom and a value which is an object. It is called the
value of atom.

Lexical environment is a set of bindings in which every atom appears at most
once.

Lambda expression is a list (lambda args exp) where args is a list of atoms
called argument list, exp is an expression.

Lexical closure is a pair of a lambda expression and a lexical environment.
Global lexical environment is lexical environment where exist bindings of

atoms atom, eq, cons, car and cdr, to primitive functions5, atom t to t
eventually bindings of atoms to objects. Other atoms are bound to NIL.

Special operators are atoms quote, if, lambda and label. These atoms have
special evaluation rules.

3 for instance, cons (A . (B . (C . NIL))) in simplified notation: (A B C)
4 it is called the empty list and it can be alternatively notated as ().
5 car to primitive function (pf.) car, cdr to pf. cdr, cons to pf. cons, atom to pf. atom

eq to pf. eq
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Expressions are evaluated in a lexical environment. If an expression has not
specified a lexical environment, then it is the global lexical environment used.
Evaluation process of an expression exp in lexical environment env is as follows:

1. if exp is an atom then the value of exp is the value of binding of the atom
exp in the lexical environment env.

2. if exp is a list whose car is a special operator then evaluation of exp is
driven by special evaluation rules. Each special operator has defined count,
type and eventually the structure of arguments. If this requirement is not
fulfilled, then value of exp is undefined.
(a) quote: expression (quote a) returns (unevaluated) a.
(b) if: expression (if pred exp1 exp2) is evaluated as follows: first of all

pred is evaluated. If pred is true exp1 is evaluated, otherwise exp2.
(c) label: expression (label name lambda exp v1 ...vn) is evaluated as

follows: If name is an atom and lambda exp a lambda expression, it
is evaluated lambda exp in environment env. Then (name v1 ...vn)
is evaluated in environment env with new bindings of arguments of
lambda exp to values v1 . . . vn and binding of atom name to value of
lambda exp.

(d) lambda: expression exp must be a lambda expression. Value of exp is a
lexical closure whose lambda expression is exp and lexical environment
is env.

3. otherwise all elements of exp are evaluated. Denote evaluated elements of
exp as a1 . . . an. If value of a1 is a:
(a) primitive function: evaluation of exp is the value of primitive function

a1 applied to a2 . . . an.
(b) lexical closure: it is created a new lexical environment with bindings of

exp and bindings of arguments of lambda expression to values a2 . . . an.
In this new lexical environment lambda expression of closure exp is eval-
uated.

3 Automatic Programming Technique

The proposed automatic programming technique is based on the utilisation of
multiple objective function simultaneously with principle of evolution of lan-
guage for representing programs. The central idea behind our technique is the
evolution of language for representing programs to be more appropriate to ex-
press a solution of a problem.

One of the main design intentions is to propose as simple as possible tech-
nique which will well demonstrate the advantages of proposed multi objective
function approach. Nevertheless, it is possible to incorporate our multi objective
function approach to another automatic programming technique, for instance
genetic programming. The multiple objective function is defined as (one) main
objective function and arbitrary number of subordinate objective functions, the
so called sub-objective functions. Sub-objective functions represent such subor-
dinate problems of a problem which solution may be useful in evolving solution
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of the main objective function which will reduce search effort required to find
a solution of a problem. In other words, sub-objective functions represent an
additional heuristic knowledge about structure of a problem domain (or a pre-
sumable modularisation of a problem domain). Evolutionary algorithms deal
with the discovery of building blocks. The (useful) building blocks in the point
of view of automatic programming can be understood as modules of problem
which acquisition may be very useful to evolve solution of a problem. Our mod-
ularity approach enables more effective acquisition of building blocks. When a
solution of a sub-objective function found then it is immediately used to evolve
function set of the representational language. More clearly, the proposed auto-
matic programming technique can be described by following algorithm:

1. If maximum count of programs evolved then go to step 8.
2. Generate new program p.
3. If p is a solution of main objective function then return p else continue.
4. Set current objective function to first sub-objective function.
5. If p is a solution of the current objective function then go to step 6 else go

to step 7.
6. Add new function to language. It represents a solution of current objective

function. Set the name of new function identical to the name of sub-objective
function.

7. If all sub-objective functions were tested then go to step 1 else set current
objective function to next sub-objective function and go to step 5.

8. End.

The multiple objective function is defined by the user and therefore its defi-
nition drastically affects efficiency of program evolution. Some of the approaches
to modularity attempt to discover sub-routines automatically, nevertheless we
resign from this idea. In particular, the main reason is that the methods for
automatic identification of proper building blocks (in other words, the central
question is ”which subroutine is better to take place as a module of problem
solution than another ?”) are not reliable enough to recognise valid building
blocks. Many of automatically discovered building blocks by present approaches
often represent a disingenuous pieces of code. Such building blocks are mostly
useless. Let us conclude the main differences between the proposed approach
and traditional genetic programming.

1. Multi objective fitness function (multi objective function based approaches
to genetic programming are also known, but they diverge from our approach,
see introduction and Table 1) in comparison to the traditional approach to
objective (fitness) function.

2. The adaptation of language for representing programs instead of adaptation
of individuals in population. Nevertheless both approaches could be com-
bined together.

3. No recombination operators (no crossover or mutation). Our programs are
randomly generated and tested for multiobjective function and then retained
in evolved language or discarded.
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4. Multi objective function does not measure a quality of programs as ”close-
ness of a program to a solution” as it does genetic programming. In our
approach, objective functions measure if program represents a solution of
main objective function or a sub-objective function, or neither. Main ob-
jective and Sub-objective function measures a program using a set of test
cases. Test case is a pair of input and output value. A program represents a
solution of a (sub- or main) objective function if satisfyies every test case of
the objective function.

Our approach enables two types of modularity:

Bottom-up modularity is realised using first-order functions. The solution of
a sub-objective function (a building block) is represented as a function. A simple
example follows:

Example: Even-3-Parity Problem let us consider a non-modular case at the be-
ginning. The main objective function was E-PARITY3, none sub-objective func-
tions were defined. The sample solution depicted below follows that it is not well
modular:

(LABEL E-PARITY3
(LAMBDA (A B C)
(IF (IF C

(IF (IF T (IF B NIL T) B) (CDR NIL) T)
(IF T (IF B NIL T) B))

(IF A NIL T) A)))

Now we will attempt to take advantage of proposed multi objective function
approach. We put the main objective function to E-PARITY3 and the set of
sub-objective functions to E-NOT (negation) and E-XOR (exclusive OR). Following
code represents a sample solution of the main objective (E-PARITY3) and sub-
objective functions (E-NOT, E-XOR):

(LABEL E-NOT (LAMBDA (A) (IF A NIL T)))
(LABEL E-XOR (LAMBDA (A B) (IF A (E-NOT B) B)))
(LABEL E-PARITY3 (LAMBDA (A B C) (E-XOR (E-XOR C (E-XOR T B)) A)))

In comparison to first E-PARITY3 solution it can be seen that the second so-
lution is much more straightforward and modular than first E-PARITY3 solution.
Sub-objective functions can effectively modularise solution of a problem and
rapidly reduce required search effort, see [9] for results and further discussion.

Top-down modularity is realised using higher-order functions for code struc-
ture abstraction. Certain types of functions, such as some types of recursion
may be defined using structure abstraction. It may be useful to improve evolu-
tion of complex functions by abstracting useful code structure of a function into
higher-order function that is programable by another functions.
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The structure abstraction approach realises a top-down modularity approach:
a general (structure abstraction) function is used as a sub-objective function
and when its solution is found we have obtained (abstracted) a presumable code
structure useful for evolving solution of objective function.

4 Evolving of Recursive Functions

The apFSM language introduced thereunder has built-in support for recursive
functions. Nevertheless, the above mentioned support for code structure abstrac-
tion may be very useful to enable more efficient evolution of recursive functions
than without structure abstraction.

It can be seen that code structure of many recursive functions falls into a few
repeating standard forms. If we inspect a recursive function, it can be seen that
it is composed of a terminating condition(s) and a body function which is recur-
sively applied to the current element and successive elements. The critical part
of evolving recursive function is to obtain a proper structure of recursion, espe-
cially a correct definition of recursive call. See Table 3 for comparison of results.
Therefore for reduction of search effort it would be helpful to abstract structure
of common types of recursive functions. The recursion abstracting functions may
serve as highly parametrisable recursive functions. The structure abstraction can
be thought as sub-objective functions in the same way as any other objective
function in our approach.

4.1 Implicit Recursion

The concept of structure abstraction is not generally new. The recursion struc-
ture abstracting functions can be found in many functional programming lan-
guages like Haskell [10], Scheme [8] or Common LISP [7] and they are titled
implicit recursion functions (IR-functions). The best known ones are FOLDL,
FOLDR and MAP.

FOLDR - left folding recursion
(+ 10 ’(1 2 3)) => (+ 1 (+ 2 (+ 10 3)))

FOLDL - right folding recusrion
(+ 10 ’(1 2 3)) => (+ (+ (+ 10 1) 2) 3)

MAP - consing implicit recursion
((+ x 1) ’(1 2 3)) => ((+ 1 1) (+ 1 2) (+ 1 3)) = (2 3 4)

4.2 AR-functions

IR-functions may be useful for some types of recursive functions, nevertheless
these functions are not general enough (see Sect. 4.3 for example). Now we in-
troduce more parametrisable structure abstraction functions which are better
suited for automatic programming, the so called AR-functions (Abstract Re-
cursive Functions or ARF). Henceforward we present definition of certain IR-
functions using AR-functions.
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AR-function arguments:
FB body function - represents body or ”main” function of recusrsion
FA accessor function - returns current element
FR restrictor function - returns successive elements
A, B input parameters

ARF-2R, right folding recursion on two input arguments:

(LABEL ARF-2R
(LAMBDA (FB FA FR A B)
(IF A

(FB (FA A B)
(ARF-2R FB FA FR (FR A B) B))
B)))

ARF-2L, left folding recursion on two input arguments:

(LABEL ARF-2L
(LAMBDA (FB FA FR A B)
(IF B

(ARF-2L FB FA FR (FB A (FA A B))
(FR A B))
A)))

AR-functions may be also defined for more input arguments analogously. See [9]
for details.

Definition of IR-functions using AR-functions: the definition of FOLDR
and FOLDR is similar. The accessor and restriction function is almost identical,
the only difference is that ARF-FOLDR is defined using ARF-2R and ARF-FOLDL
using ARF-2L because of the folding direction of recursion. The definition of
ARF-MAP is a bit more complicated. Body function is (CONS A B) because MAP
conses results of application of accessor function to the arguments. The accessor
function is (FB (CAR A) B) where FB represents a body function. This is because
the body function is applied on every element of A and result is accumulated in
B.

(LABEL ARF-FOLDR
(LAMBDA (FB A B)
(ARF-2R FB

(LAMBDA (A B) (CAR A))
(LAMBDA (A B) (CDR A))
A B)))

(LABEL ARF-FOLDL
(LAMBDA (FB A B)
(ARF-2L FB
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(LAMBDA (A B) (CAR B))
(LAMBDA (A B) (CDR B))
A B)))

(LABEL ARF-MAP
(LAMBDA (FB A B)
(ARF-2R
(LAMBDA (A B) (CONS A B))
(LAMBDA (A B) (FB (CAR A) B))
(LAMBDA (A B) (CDR A))

A B)))

4.3 Evolving of Recursive Functions Using AR-functions

This subsection introduces several examples of the utilisation of AR-functions to
recursive functions. Table 2 summarises search effort required to evolve AR-FOLDR
and AR-FOLDL structure abstraction function. ARF-2R and ARF-2R was predefined
in language function set.

objective I(1, i, 0.99)

AR-FOLDR 28.6
AR-FOLDL 26.1

Table 2. Search effort required to evolve AR-FOLDR and AR-FOLDL

Example 1, ADD: let us imagine natural numbers as lists, where length of list de-
notes the value of number. For instance: NIL as 0, (NIL) as 1, (NIL NIL) as 2 and
so forth. The ADD function appends input lists. It can be viewed as addition op-
eration. For instance, (ADD ’(NIL NIL) ’(NIL)) evaluates to (NIL NIL NIL).

Recursive version: multiple objective function definition: main objective func-
tion: ADD, none sub-objective function.

(LABEL ADD
(LAMBDA (A B)
(IF A (CONS (CAR A) (ADD (CDR A) B)) B)))

ARF version: multiple objective function definition: main objective function:
ADD, sub-objective function: ARF-FOLDR.

(LABEL ADD
(LAMBDA (A B)
(ARF-FOLDR (LAMBDA (A B) (CONS A B)) A B)))
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Example 2, SUB: this function subtracts natural numbers represented as lists.
For instance, (SUB ’(NIL NIL NIL) ’(NIL)) evaluates to (NIL NIL).

sub(a, b) =
{

a− b if a > b
nil else (1)

Recursive version: multiple objective function definition: main objective func-
tion: SUB, none sub-objective function.

(LABEL SUB
(LAMBDA (A B)
(IF B (SUB (CDR A) (CDR B))) A))

ARF version: multiple objective function definition: main objective function:
SUB, sub-objective function: ARF-FOLDL.

(LABEL SUB
(LAMBDA (A B)
(ARF-FOLDL (LAMBDA (A B) (CDR A)) A B)))

Example 3, EP-N: this function computes the even-n-parity problem. For in-
stance, (EP-N ’(NIL NIL NIL T T NIL)) evaluates to T.

Recursive version: multiple objective function definition: main objective func-
tion: EP-N, sub-objective function: XOR.

(LABEL EP-N
(LAMBDA (A B)
(IF A

(XOR (CAR A) (EP-N (CDR A) B))
B)))

ARF version: multiple objective function definition: main objective function:
EP-N, sub-objective function: ARF-FOLDR.

(LABEL EP-N
(LAMBDA (A B)
(ARF-FOLDR XOR A B))))

Let’s see example 1 and example 3 which well demonstrate the advantages
of structure abstraction. Both of the ADD and EP-N functions compute different
problems, nevertheless the definitions using ARF are nearly identical (except
XOR, CONS) due to abstracting their code structure into function ARF-FOLDR.
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Example 4, FACTORIAL: multiple objective function definition: main objective
function: FACTORIAL, sub-objective function: ADD, MUL (multiplication, see [9]
for details). We present this function as an example where AR-functions are
appropriate to define FACOTRIAL whereas IR-functions do not. However, even
with AR-functions comes a complication. The FACTORIAL uses quite unusually
two input arguments. The first argument represents input value and second
argument, represent constant ’(NIL). This is due to ARF-2R returns B when A is
empty list so that this captures a situation when factorial of zero is computed.
Therefore (FACTORIAL NIL ’(NIL) will evaluate to ’(NIL).

(FACTORIAL ’(NIL NIL NIL) ’(NIL)) => (NIL NIL NIL NIL NIL NIL)

(LABEL FACTORIAL
(LAMBDA (A B)
(ARF-2R
(LAMBDA (A B) (MUL A B))
(LAMBDA (A B) A)
(LAMBDA (A B) (CDR A))
A B)))

Table 3 presents results of reduction of search effort using AR-functions in
comparison to recursive version. The ARF-powered experiment used apFSM
language extended with ARF-2R, ARF-2L, ARF-FOLDR and ARF-FOLDL acquired
as sub-objective functions. The table values are stated in thousands and does
not include search effort required to evolve solution of AR-FOLDR and AR-FOLDL.
The corresponding values are depicted in Table 2. For more detail about code
structure abstraction and obtained results see [11].

objective I(1, i, 0.99), recursive I(1, i, 0.99), ARF

EP-N 2483.2 3.6
ADD 5948.8 3.4
SUB 13480.5 7.8
FACTORIAL not found 32.6

Table 3. Comparison of search effort required to evolve recursive functions

5 Conclusion

This paper introduced functional paradigm based language apFSM for auto-
matic programming of modular and recursive programs. We demonstrated our
approach on the code structure abstraction of certain types of recursion. The
results of experiments proved the advantages of structure abstraction on recur-
sive functions in comparison to classical recursion. The results obtained on the
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even parity problem outperform Koza’s results with traditional GP [2], GP with
ADF, GP with ARL [12], GP with MA [13] and PushGP [14].
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Abstract. This paper shows how to deduce the data structure that
gave rise to a trace of memory accesses. The proposed methodology is
general enough to classify different sets of data structures and is based
on machine learning techniques.

1 Introduction

1.1 The Problem

The paper discusses the following problem:

Given a trace, i.e., a sequence of address accesses to the data area of a
program, detect what is the data structure that gave rise to the trace.

We assume that the set of possible data structures is given in advance. Also,
since many data structures have several slightly different implementations (a
linked list can be implemented with either a dummy header node or without
it; it can also have a dummy end node) each distinct implementation is consid-
ered a distinct data structure. In this research we have limited ourselves to the
case where the program uses a single static data structure, i.e. it only supports
searches (no insertions/deletions) and all searches are to a single data structure.

Our thesis is that each data structure gives rise to a distinct pattern of traces,
thus by classifying the traces one can recover the data structure that produced
them. Machine learning algorithms were applied to perform the classification: In
the training phase we extracted features from the traces and then passed them
to the Machine Learning algorithm for classification. In the validation phase, we
employed the resultant classification algorithm to classify new traces.

We have experimented with a number of popular classification algorithms
(C4.5 [1], SVM [2], Näıve Bayes [3]) and compared their accuracy. The deci-
sion tree that results from the C4.5 classifier provides us also with an easy to
understand algorithm for classifying data structures.

1.2 Motivation

Predicting the behavior of a program’s use of memory is of high interest for
different level tools, from operating systems and compiler optimization engines
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to data structure implementations. They all can improve their performance given
an effective algorithm for making such predictions.

(a) Current memory hierarchy solutions are based mostly on time and space
locality of accesses and the LRU approach for ageing of cache lines (for asso-
ciative caches) and memory pages. An algorithm for predicting the behavior
of memory access at a high level of abstraction might provide much better
solutions. For example, the Symmetrix Disk Array (of EMC) [4] used the
patterns of accesses to prefetch elements of arrays and matrices.

(b) An operating system or a compiler can optimize memory allocation layout,
given the feedback of an algorithm for detection of data structures from a
previous run. For example, in case of hashing with chaining we would like
to allocate nodes from the same chain at the same physical page. We may
also try to activate the data structure detection algorithm on a prefix of the
current run to achieve a performance improvement for the rest of the run.
The JVM uses Just-in-Time compilation, i.e., the frequently executed parts
of the JAVA programs are compiled dynamically, while the less frequently
executed JAVA code is interpreted [5]. Thus, by the time of the dynamic
compilation the compiler may utilize the feedback of the data structure de-
tection algorithm on a prefix of the current run.

(c) The actual usage of generic data structures can be far from optimal for a
specific insertion/deletion/search sequence. For example, choosing the STL
class ’list’ to implement a buffer can be a bad choice if the stored objects
are not processed in LIFO or FIFO order. It is surely poor design to have
chosen a list. However, if chosen we would like to have a methodology to
detect such cases so that an inappropriate data structure could possibly be
replaced online.

2 Problem Definition

“A data structure is a way to store and organize data in order to facilitate access
and modifications” [6]. Data is organized as records each consisting of a sequence
of fields. A field is either:

(a) a primitive type, or
(b) a pointer to a record, or
(c) one or more sub-records (allowing for recursion).

Following software engineering design principles, we assume that all data struc-
tures are encapsulated, i.e., all access to the data structures is via access func-
tions. In particular every search initiates at the root of the tree, head of a list
or at an arbitrary place in an array. Consequently, pointers that are not related
to the implementation of the data structure are not allowed in this study.

Note that a data structure is characterized not only by its organization but
also by its access pattern and the modifications it supports. For example, a
heap can be implemented by an array, i.e., its organization is identical to the
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organization of an array while its operations and hence its access pattern are
different.

Since in this paper we restrict our study to searches only (no insertions or
deletions) the data structure is static – its structure (topology of records and
relations between them) doesn’t change throughout the program.

We look at traces of memory accesses (address sequences) resulting from a
series of searches to detect the underlying data structure organization and the
traversal methods.

If we know the correspondence between an address and the record that resides
at that address we can replace each address in the trace by some symbolic
representation of the set of corresponding records. The resultant trace is called
the symbolic trace.

We have thus defined two subproblems: learning the symbolic trace from
the address trace, and learning the data structure associated with the symbolic
trace. Decoupling the two problems sets a yardstick by which we can measure the
effectiveness of the learning method, and the success in deducing the symbolic
trace, as well as how are our results affected by the lack of knowledge about the
layout structure of the records.

3 The Symbolic Trace

We first examine the symbolic trace and describe an approach to recover the
topology of records and the relations between them, as well as the traversal
methods.

The association between addresses and records is not one-to-one: an address
can correspond to an entire record or its first subrecord. To distinguish between
such cases, the symbolic trace is partitioned into levels: the top level being the
records themselves, the next level is that of the subrecords etc.

For example, an address may be associated with a matrix entry, a row of the
matrix and the matrix as a whole (if it is implemented as one long array). Thus
we consider three traces: first level trace for matrices, second level trace rows
and third level trace for the matrix elements.

We consider each level of record traces in isolation. Each level corresponds
to a specific topology of the subset of records of this level and the subset of
relationships between them, as well as the traversal methods. To detect the data
structure we combine data from all levels.

Since the data structures are encapsulated, within a level the program can
only move from one record to another via a pointer or from a subrecord to
another subrecord (an important special case is moving from an array element
to the next array element). Since a record and its subrecord belong to different
levels, a symbolic trace of a single level does not include such moves.

For any two records A and B we would like to capture the relation “there is
a pointer from A to B” from the symbolic trace. However, the trace manifests
only the proximity of accesses to two records, which could arise from a sequential
access to an array where adjacent elements will be accessed one after the other.
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Since this access pattern is typical of arrays it may be used to characterize data
structures.

To count how many times B appears immediately after A in the trace, we
constructed the following binary matrix M :

M [A,B] =

{

1 if A immediately precedes B at least θ times;
0 otherwise

θ is a predetermined constant, which in our implementation was equal to 1.
For a record B let its in-degree be the number of records A for which

M [A,B] = 1, and its out-degree the number of records C for which M [B,C] = 1.
Let in/out-degree stand for edges in both directions, i.e., for the case where both
(A,B) and (B,A) exist. Let us look at the distribution of tiplets of (in-degree,
out-degree, in/out-degree) for records of several common data structures:

1. A binary search tree: the distribution consists of the tuples (1,1,0), (1,2,0)
for nodes, (1,0,0) for leaves and (0, 2,0) or (0,1,0) for the root.

2. A deterministic skip list: we should have (0, many,0) for the −∞ node,
(many,0,0) for the +∞ node and (1,2,0) for most of other nodes.

3. A singly linked list: we have (1,1,0), (0,1,0), (1,0,0).
4. A doubly linked list: the most common tuple is (2,2,2).

Thus the distributions of tuples differ significantly among data structure. Note
that even for the same data structure the distribution of the tuples of a single
search and multiple searches may differ. For example, for a binary search tree
we expect the root to incur (0, 2, 0) or (0, 1, 0). In a trace of a sequence of
several searches the in-degree of the root will be much greater than 0, because
we return to the root to start the next search.

These degrees have a range from 0 to ∞. Since the exact value of any such
degree is significant only when it is small but for large values we need only
a qualitative measure, we partitioned the entire range to a finite number of
subranges. The records are thus partitioned into equivalence classes depending
on the values of the subranges of their (in-degree, out-degree, in/out-degree).
We then replaced the occurrence of each record in the trace by its equivalence
class.

To capture the time dependency, we looked at short subsequences in the
trace. We limited their length to 3, since longer subsequences produced more
features than the learning programs could handle, while limiting the length to 1
or 2 produced poor results. The learning of the data structure from the symbolic
trace will be discussed in Section 5.

4 Address Trace

To deduce the symbolic trace from the address trace we use clustering algorithms.
I.e., we first partitioned the addresses into clusters and then we examined cluster
trace – the occurrence of the clusters in the trace.
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As in the symbolic trace of Section 3 we would like to partition the cluster
trace into levels. To achieve this we ran the clustering algorithm with different
resolutions (the exact set of resolutions depends on the clustering algorithm
and it will be discussed in the next paragraph). The problem of detecting a
data structure has thus become a problem of detecting the topology of clusters
and relations between clusters, and the traversal methods. As in Section 3 we
converted this problem into a set of sub-problems, one for each clustering level.
Then we combined data from several sources, one for each trace level, to detect
the data structure.

We examined three clustering algorithms:

(a) Single-pass clustering [7] – a clustering technique that joins addresses A and
B into the same cluster if the distance between these addresses is below
some threshold. We may calculate such clusters by a single pass through a
sorted list of addresses. We partitioned the distances into subranges whose
sizes grow as 22

n

.
(b) Agglomerative hierarchical clustering [8] — a clustering technique that starts

with singleton clusters (with a single address per cluster) and then merges
a number of pairs of clusters one by one. The two clusters with the best
similarity measure are selected for merging. The similarity measure that we
used is the distance between centroids (mean elements) of the clusters [9].
The number of merges is a function of the clustering resolution.

(c) Paging clustering – an approach that zeroes the least significant bits of an
address to calculate the corresponding cluster (page). The number of bits
zeroed depends on the resolution, i.e., the cluster (page) size and alignment
vary for different clustering resolutions. Note, that the calculation of the clus-
ter of an address is independent of other addresses. This clustering technique
is very sensitive to the alignment of records in memory, but it is not aware
of the actual distribution of memory accesses. Even though this clustering
technique can be very inexact in some cases, it is still interesting to examine
its performance because it takes only O(1) time to calculate to which cluster
an address belongs.

We proceed with the cluster trace as we did with the symbolic trace.

5 Applying Machine Learning

We examined three popular classification approaches (C4.5, SVM and Näıve
Bayes) to classify data structures. SVM and Näıve Bayes provide us only with a
classification, while C4.5 results also in a decision tree, which helps us visualize
the classification decisions. The common paradigm for the training phase is as
follows:

(a) Prepare a set of training examples that contains a number of samples for
each data structure.

(b) Convert each example into a set of features.
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(c) Train the classifier on a set of pairs of the form (data structure, set of feature values)
and prepare all the files that are necessary for the testing phase (these files
constitute the learning model and they are specific to each classifier).

The common paradigm for the testing phase is as follows:

(a) Prepare a set of testing examples that contains a number of samples for each
data structure.

(b) Convert each example into a set of features.
(c) Run the classifier on the set of features of each example and output the

predicted data structure.

Both the training and the testing examples were generated artificially. To
create examples we first generated a sample of the data structure with random
parameters and random entry values. Then we generated a series of searches,
which are typical for this type of data structure (e.g., searches to random keys
that start at the root of the tree, at the head of a singly linked list, at an arbitrary
place in an array and so on), applied to the current sample. We recorded the
trace of the memory accesses (the address sequence) resulting from this series
of searches. In the symbolic trace mode we recorded symbols (which encode
information about all the records that correspond to the appropriate address)
instead of addresses.

We collected tuples and treated them as words in the Bag-of-Words ap-
proach for text categorization [10]. In the Bag-of-Words approach the question
of whether taking the existence of a feature or the number of occurrences is
called feature evaluation. Taking the existence it is called binary and the number
is called natural. Finally, as is customary, we take the logarithm of the number
of occurrences instead of the occurrences .

6 The Experiment

6.1 The Setup

We examined classification approaches from the previous chapters for eight data
structures (for each data structure we examined searches to several random keys
that either belong or do not belong to the data structure):

(a) An AVL tree.
(b) A deterministic skip list.
(c) A doubly linked list with searches, which start from the first or from the last

node at random.
(d) A singly linked list.
(e) A hash table with conflict resolution solved by chaining.
(f) A matrix where each search starts at some random displacement from the

row (column) start and continues for a random number of steps with a
random step length. The direction of the search is also random.
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(g) A vector where each search starts at some random displacement from the row
(column) start and continues for a random number of steps with a random
step length. The direction of the search is also random. We examine two
different cases of this data structure:
i) A vector with a mainly random access pattern, which is produced by

a high percentage of long steps (we will quickly go out of the vector
boundary with such steps).

ii) A vector with a mainly sequential access pattern, which is produced by
a high percentage of short steps.

We covered all combinations of the next input parameters:

– The type of a classifier.
– The symbolic trace or the address trace with all the clustering algorithms.
– The binary vs. natural feature evaluation.
– The noise threshold.
– Clustering levels (resolutions) supported.

We generated 300 training examples and 300 testing examples per data struc-
ture and per each combination of input parameters. The generation of the data
structure sample incurs the execution of several memory allocations that are
produced by the compiler. It follows an allocation algorithm that might be bi-
ased. For example, the Microsoft Visual C++ compiler attempts to allocate all
records sequentially in memory. This might lead to a bias: the addresses of con-
secutive elements in a list might form an arithmetic sequence, and thus will be
indistinguishable from an array. For our experiment we tried to avoid such a bias
by using of our own memory allocator, which chooses the next allocated address
at random.

6.2 An Example

Figure 1 depicts two decision trees which were created by the C4.5 classifier with
the binary feature evaluation and the single-pass clustering algorithm.

Fig. 1(a) depicts the decision tree that distinguishes between deterministic
skip lists and AVL trees. Multiple searches to an AVL tree cause the root to
have high in-degree. In deterministic skip lists both the root and the +∞ node
have high in-degree. Word a.2 describes accesses to two distinct nodes with large
in-degrees. This can occur only for deterministic skip lists.

Fig. 1(b) depicts the decision tree that distinguishes between doubly linked
lists and AVL trees. Nodes (or clusters of resolution 1) with (in-degree, out-
degree) = (1, 2) are typical of AVL trees but not of doubly linked lists. If no
such a sequence exists (word b.1) we obviously have a doubly linked list.

6.3 Performance

In Figure 2 we compared the accuracy of classifiers in conjunction with different
clustering approaches. These clustering approaches included the three clustering
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Fig. 1: Decision trees for distinguishing between (a) deterministic skip lists and AVL
trees (b) Doubly linked list and AVL tree

algorithms of Section 4 for the address trace and the symbolic trace approaches.
Moreover, for the same clustering algorithm we looked at two different subsets
of clustering levels. One subset (clusters 0 to 3) contained the highest resolution
(zero resolution) which spreads each address per cluster while the second (cluster
1to 3) did not contain it. The remaining resolutions appeared in both subsets.

Note the relatively poor performance of Näıve Bayes approach. The Näıve
Bayes classifier is based on the simplifying assumption that the attribute values
are conditionally independent. In our case, there are short words that appear as
parts of longer words. Hence their attribute values are dependent.

As can be seen, the symbolic approach provides us with the best classification
accuracy for SVM and C4.5 classifiers. There is not much difference in the per-
formance of the remaining clustering algorithms. It is especially interesting that
the accuracy of the paging approach (whose cluster calculation is easy) is in line
with other clustering techniques, which take into account the actual distribution
of memory accesses.

Note that in most of the cases the clusters 0–3 subset of clustering levels
results in a better accuracy than the clusters 1–3 subset. In most of the data
structures that we examined the record size is greater than one and there is a
specific access pattern for primitive fields of the same record. We miss this access
pattern if we do not look at words from the highest resolution level (with a single
address per cluster).

The performance of the binary feature evaluation case is very similar to the
natural one. We have not included the graphs due to lack of space.

In Table 1 we present the accuracy of the SVM classifier tested on a symbolic
trace with the natural feature evaluation. We plot the distribution of actual data
structures at a testing phase vs. predicted ones. It should be noted that most of
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Fig. 2: Natural feature evaluation with different traces (symbolic or address in
conjunction with the different clustering algorithms)

the errors occur between vectors with a random access pattern and vectors with
a sequential access pattern. The difference between definitions of these two data
structures is indeed fuzzy.

6.4 Robustness

In the current research we addressed the case where the program uses a single
data structure. In the real world accesses to a number of different data structures
are interleaved within a single program. It is important to examine the robustness
of our technique to the addition of noise. In Figure 3 we compare the robustness
per classifier and per clustering algorithm. As it can be seen, all (classifier,
clustering algorithm) pairs are very sensitive to noise.

6.5 Statistical Significance of the Results

A statistical analysis of the results shows that with over 95% confidence the
error is under 1%.
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Actual Predicted (a) (b) (c) (d) (e) (f) (g) (h)

(a) AVL tree 297 1 0 0 1 1 0 0
(b) Determinsitc skip list 0 297 0 3 0 0 0 0
(c) Doubly linked list 0 0 291 9 0 0 0 0
(d) Singly linked list 0 0 0 300 0 0 0 0
(e) Chained hashing 0 0 0 7 293 0 0 0
(f) Matrix 0 1 0 0 5 294 0 0
(g) Randomly Accessed 0 0 0 0 3 0 279 18

Vector
(h) Sequentially Accessed 0 0 0 0 0 0 44 256

Vector

Table 1. Accuracy of SVM on a symbolic trace and natural feature evaluation

Fig. 3: The robustness per classifier and per clustering algorithm
using the clusters0to3 subset of clustering levels.

On the left the natural feature evaluation; on the right the binary one.
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7 Concluding Remarks

In this study we have described the machine learning approach to classifying any
subset of data structures. We have considered the case where the program uses
a single data structure, which only supports searches. Scaling this technique to
data structures, which support insertions/deletions, and to the case of multiple
data structures is left for further studies. Our technique is easily extendable to
additional data structures and implementations.

Our statistical measurements show the high quality of classification in the
absence of noise, especially when using the SVM and C4.5 classifiers. On the
other hand, the approach to feature selection described in our solution is very
sensitive to noise. We will have to overcome this lack of robustness in order to
proceed to real world applications with accesses to a number of different data
structures interleaved within a single program.

When we used the C4.5 classifier we got a classification algorithm (decision
tree) for every subset of data structures. The time required to classify the trace
of memory accesses into a data structure is O(t), where t is the total time to
calculate all the features appearing on the appropriate path in the tree. Thus
we considered techniques to reduce the time spent on the calculation of a single
feature without the accuracy degradation, such as:

– The usage of the quick paging clustering model.
– The usage of the binary feature evaluation, instead of the natural one (in

this case we need not to search the entire trace).

Let us conclude with directions for the future research:

(a) At the current stage we examined the case of static data structures, i.e., only
searches are supported (no insertions/deletions). To scale up this technique
to dynamic data structures we need also to consider the type of the memory
access (read or write). We can add this information as an additional entry
to our tuple.

(b) In general, memory accesses may be generated by a number of sources. More-
over, sometimes several data structures are processed simultaneously (e.g.,
matrix multiplication).

i) Sometimes our techniques can still be applied if we change the definition
of the data structure. For example, we may consider a pair of multiplied
matrices as a single data structure.

ii) If several data structures are processed sequentially we may also consider
contributions of both time and code locality.

(c) The robustness of our approach has to be improved in order to proceed
to real world applications that access a number of different data structures
interleaved within a single program.

(d) In addition we should take into account the time required to calculate the
features. Thus we could gain both accuracy and classification time by better
feature reduction.
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