

Preprint:

Tagungsband der

2. Tagung KI und Bildung zusammen mit dem Praxistag KI an Schulen

09. - 10. Oktober 2025, Universität Bamberg

Inhalt

Vorwort9
Organisation13
Keynotes15
Vorträge und Poster
Von der Vermittlung grundlegender KI-Konzepte zu schülerzentrierten Unterrichtsansätzen: Konzeption und Evaluation einer umfassenden Lehrkräftefortbildung
Data Literacy und Künstliche Intelligenz für praktizierende Lehrkräfte: Vorstellung eines niederschwelligen Fortbildungsangebots
Verwendung und Akzeptanz von KI-Systemen in der Bildung: ein Reality Check
klaro!KI: Ein Programm zur niedrigschwelligen Vermittlung von KI- Kompetenzen für nicht-akademische Erwachsene
Themenspezifische Schwierigkeiten von Schüler*innen beim Lernen über KI – Aktionsforschung im verpflichtenden Informatikunterricht der 11. Jahrgangsstufe
1. mir Jerznikel & Innim Mirinen

Grundschullehrkräfteempirisch beleuchtet
_
Sarah Désirée Lange, Erik Marx, Gamze Görel, Anna Plohmer & Nadine Bergner
KI trifft Grundschule – Chancen, Risiken und Perspektiven für die Grundschulforschung41
Sarah Désirée Lange, Sanna Pohlmann-Rother & Thomas Irion
Informatikunterricht zum Thema Künstliche Intelligenz: Einblicke in die praktische Umsetzung in Bayern45
Annabel Lindner
Intelligent Tutoring Systems: Individualized Learning Support for Students and Enriching Perspectives on AI-Tools in Education for Teachers
Alisa Véronique Münsterberg, Luca Steltmann, Eva Jansohn, Adrian Völker, Mai Anh Vu & Ute Schmid
Pionierinnen für die Informatik – Ein Programm zur Inspiration und Orientierung zum Informatikstudium für Schülerinnen 53
Franziska Paukner, Caroline E. Oehlhorn & Ute Schmid
KI (be)greifen – Spielerisches Entdecken grundlegender Konzepte aus dem Bereich Künstliche Intelligenz (KI)57
Eva-Maria Weiss & Ute Schmid
Automatic Feedback Generation for Data Visualization Exercises
Jona Wessendorf, Jesper Dannath & Benjamin Paaßen
KI-gestützte Histopathologie: Handlungsorientierter Unterricht zur Gewebeanalyse
Viktoria Zoeger, J. Redlich, S. Diekemann, B. Hofmann, A.Rörich & S.Tölken

Workshops

Lazy Brain oder lebendiges Denken? – Erleben, wie KI-Nutzung uns verändert
Oliver Kunkel
KI & Kunst – Kreativität im Zeitalter künstlicher Intelligenz71 Matthias Müller
KI in der Grundschule: Mülltrennung mit KI-Systemen und Bilderkennung73
Michaela Müller-Unterweger, Anne-Kathrin Jäger & Marc Berges
Chancenräume für KI-Kompetenz: Grundschule trifft außerschulisches Lernen
Sanna Pohlmann-Rother, Katharina Kindermann, Larissa Ade, Eva-Maria Weiss & Ingrid Stöhr
KI im Mathematikunterricht81
Sebastian Schmidt
Promptathon. Prompting-Workshop für Grundschülerinnen und -schüler
Pia Seiller
Beiträge ohne Abstract
Einsatz von KI im Berufsalltag - Vortrag87
Morteza Djebeli Sinaki
BAIOSPHERE – Entwicklung eines starken KI-Ökosystems in Bayern
Lydia Generotzky

KI im dualen Studium.	87
M	1ichael Stammberger

Panel: Künstliche Intelligenz und Bildung – Perspektiven aus Wissenschaft und Praxis, mit dem Bayerischen Elternverband e.V... 89

Vorwort

Das Thema Künstliche Intelligenz (KI) gewinnt zunehmend an Bedeutung im Bildungsbereich. Zum einen ist die Vermittlung grundlegender Kompetenzen im Bereich KI (AI Literacy) als Erweiterung von Medienund Informatikkompetenzen relevant, um einen sicheren und reflektierten Umgang mit KI-Systemen zu ermöglichen. Zum anderen werden neue, KI-basierte Ansätze zur Unterstützung von Lehr- und Lernprozessen erforscht und entwickelt. Insbesondere Systeme, die auf großen Sprachmodellen basieren, bringen neue Chancen aber auch Risiken. Große Sprachmodelle ermöglichen, insbesondere in Kombination mit klassischen Methoden der Intelligenten Tutorsysteme, die individualisierte Förderung von Lernprozessen und eine Interaktion in natürlicher Sprache. Allerdings birgt eine Überdelegation an Aufgaben an solche Systeme auch die Gefahr, dass wesentliche Kompetenzen nicht erworben werden oder verloren gehen. Die Vermittlung von KI-Kompetenzen kann hier die Grundlage schaffen, dass unzulässige Zuschreibung menschlicher Eigenschaften vermieden werden und verstanden wird, dass KI-Systeme zwar in vielen Bereichen sehr leistungsfähig aber im Allgemeinen nicht fehlerfrei arbeiten. Fachliche Kompetenzen und Bewertungskompetenzen sind eine Voraussetzung dafür, dass KI-Systeme komplexe Entscheidungs- und Problemlöse-Prozesse sinnvoll unterstützen können. Die Gestaltung von Bildungsprozessen in Schule, Hochschule, Ausbildung und im außerschulischen Bereich kann nur gelingen, wenn Wissenschaft und Anwendung zusammenarbeiten, um relevante fachliche Kompetenzen im Kontext der zunehmenden Verfügbarkeit von KI-Werkzeugen zu identifizieren und daraus Anforderungen an KI-Systeme im Bildungsbereich abzuleiten.

Genau dies ist das Anliegen der Tagung "Künstliche Intelligenz in der Bildung zusammen mit dem Praxistag KI an Schulen" (KIBIS 2025), die am 9. und 10.Oktober 2025 zum zweiten Mal an der Universität Bamberg stattgefunden hat. Auf der Tagung präsentierten Forschende aus den Bereichen KI, Informatikdidaktik, Fachdidaktiken und Pädagogik aktuelle wissenschaftliche Perspektiven zum Lernen und Lehren mit KI. Lehrkräfte, Unternehmensvertreter und Anbietende von außerschulischen Bildungsformaten stellten konkrete Anwendungen von KI-Vermittlung

und KI-Werkzeugen vor. Um dem breiten Spektrum von Beitragenden aus Wissenschaft und Praxis gerecht zu werden, sind im Tagungsband Beiträge in deutscher wie englischer Sprache vertreten. Zudem war es für Vorträge aus der Praxis möglich, auf einen Beitrag im Tagungsband zu verzichten. Ein spezieller Programmpunkt der KIBIS 2025 war eine zweistündige Veranstaltung mit dem Bayerischen Elternverband, bei dem Eltern, Schülerinnen und Schüler, Lehrkräfte und Bildungspolitik diskutierten.

Die Tagung wurde durch drei Keynotes bereichert, die das Thema KI in der Bildung aus unterschiedlichen fachlichen Perspektiven beleuchteten: Wir bedanken uns herzlich bei Dr. Steffen Schneider (KI macht Schule und Helmholtz-Zentrum München), Prof. Dr. Tilman Michaeli (Informatikdidaktik, TU München) und Prof. Dr. Uta Hauck-Thum (Grundschulpädagogik, LMU). Desweitern bedanken wir uns bei der Bayerischen Staatsministerin für Unterricht und Kultus, Anna Stolz, und bei der Parlamentarischen Staatssekretärin Dr. Silke Launert vom Bundesministerium für Forschung, Technologie und Raumfahrt für ihre Grußworte zur Tagung. Wir bedanken uns bei Oliver Kunkel und Dr. Sophie Proske vom Bayerischen Elternverband (BEV), bei Antje Radetzki vom Bayerischen Lehrer- und Lehrerinnenverband (BLLV), bei Sebastian Schmidt (Lehrkraft und informationstechnischer Berater für digitale Bildung (iBDB) für Realschulen sowie Entwickler von FlippedMath) und bei Tim Beckmann (Schülersprecher) für ihre wertvollen Impulse beim vom BEV organisierten Panel zu KI in der schulischen Bildung. Bei Dr. Michael Stammberger und Morteza Djebeli Sinaki von der Firma Brose bedanken wir uns für das Einbringen der Perspektive KI in der beruflichen Bildung. Die Tagung wurde zudem unterstützt von der Bayerischen KI-Agentur BAIOSPHERE, von der Stiftung Bildungspakt Bayern (Schulversuche ki@school), von KI macht Schule und vom Arbeitskreis KI in Schulen (KiS) des Fachbereichs KI der Gesellschaft für Informatik. Schließlich waren bei der Organisation und Umsetzung der Tagung auch zahlreiche Akteurinnen und Akteure der Universität Bamberg und der Region Bamberg beteiligt: Der Lehrstuhl für Kognitive Systeme, das Bamberger Zentrum für KI (BaCAI) und die Forschungsstelle Elementarinformatik (FELI) der Universität Bamberg sowie die Bildungsregion des Landkreises Bamberg (BMFTR-Projekt MINTmobil, in Kooperation mit der Universität Bamberg).

Nicht zuletzt bedanken wir uns sehr herzlich bei Natalia Pastukhov für die organisatorische und von Jochen Mehlich für die technische Unterstützung.

Bamberg, Oktober 2025

Ute Schmid Alisa Véronique Münsterberg Eva-Maria Weiss

Organisation

Tagungsleitung

Ute Schmid, Otto-Friedrich-Universität Bamberg Alisa Véronique Münsterberg, Otto-Friedrich-Universität Bamberg Eva-Maria Weiss, Otto-Friedrich-Universität Bamberg

Organisation und Technik

Natalia Pastukhov Jochen Mehlich

Programmkomitee

Anja Gärtig-Daugs (Otto-Friedrich-Universität Bamberg)
Uta Hauck-Thum (Ludwig-Maximilians-Universität München)
Miriam Hess (Otto-Friedrich-Universität Bamberg)
Sarah Désirée Lange (TU Chemnitz)
Tilman Michaeli (Technische Universität München)
Benjamin Paaßen (Universität Bielefeld)
Sanne Pohlmann-Rother (Julius-Maximilians-Universität Würzburg)
Johannes Schleiß (Otto von Guericke Universität Magdeburg)
Ute Schmid (Otto-Friedrich-Universität Bamberg)
Eva-Maria Weiss (Otto-Friedrich-Universität Bamberg)

Keynotes

KI-Kompetenzen in der schulischen Bildung: Herausforderungen und Chancen

Steffen Schneider

KI macht Schule steffen@ki-macht-schule.de

Abstract

In diesem Vortrag werden die aktuellen Entwicklungen im Bereich der KI-Bildung an Schulen beleuchtet. Dr. Schneider diskutiert praktische Ansätze zur Integration von KI-Kompetenzen in den Unterricht und zeigt auf, wie Lehrkräfte und Schüler:innen gleichermaßen von zeitgemäßen Bildungskonzepten profitieren können.

Didaktische Konzepte für KI-Tools im Bildungsbereich

Tilman Michaeli

Technische Universität München tilman.michaeli@tum.de

Abstract

Professor Michaeli präsentiert innovative didaktische Ansätze für den Einsatz von KI-Tools in der Bildung. Dabei werden sowohl die Potenziale als auch die Grenzen verschiedener KI-Anwendungen für den Lehr-Lern-Prozess analysiert und konkrete Umsetzungsstrategien für die Praxis vorgestellt.

Künstliche Intelligenz im Bildungsbereich

Uta Hauck-Thum

Ludwig-Maximilians-Universität München uta.hauck-thum@lmu.de

Abstract

Rasante technologische Weiterentwicklungen stellen Akteur:innen im Bildungsbereich vor allem hinsichtlich des Umgangs mit generativer künstlicher Intelligenz derzeit vor große Herausforderungen. Mit dem Einsatz Künstlicher Intelligenz wird, wie bereits bei der Einführung von Computer und Tablet, entweder die Hoffnung verbunden, tradierter Unterricht würde insgesamt besser und effektiver, oder aber die Warnung, Kinder würden am "echten" Lernen gehindert. Wissenschaftliche Fragestellungen fokussieren im Kontext künstlicher Intelligenz erneut auf die Frage nach dem Mehrwert KI-gestützter Lehr- und Lernszenarien, ohne die Notwendigkeit struktureller Veränderungen ausreichend in den Blick zu nehmen, die eine von technologischen Weiterentwicklungen geprägte Welt erfordert (Eickelmann et al. 2024). Die aktuelle Diskussion spiegelt das Spannungsfeld zwischen technologischem Fortschritt, pädagogischer Verantwortung und gesellschaftlichen Werten wider. Der Vortrag fokussiert auf eine mehrperspektivische Auseinandersetzung mit dem Thema und will damit einen Beitrag zu einer geteilten Vision von Bildung als Basis notwendiger Transformationsprozesse im deutschen Bildungssystem leisten.

Referenzen

Eickelmann, B., Gerick, J., Hauck-Thum, U., Maaz, K. 2024: Navigator Bildung Digitalisierung. Impulse für ein gemeinsames Verständnis digitaler Transformation

Vorträge und Poster

Von der Vermittlung grundlegender KI-Konzepte zu schülerzentrierten Unterrichtsansätzen: Konzeption und Evaluation einer umfassenden Lehrkräftefortbildung

Sven Baumer, Franz Jetzinger & Tilman Michaeli Technische Universität München <firstname.lastname>@tum.de

Künstliche Intelligenz (KI) wird derzeit weltweit als Lerngegenstand in Informatikcurricula integriert. Die curriculare Einführung neuer Inhalte allein gewährleistet jedoch noch nicht deren adäquate Umsetzung im Unterricht. Insbesondere bei vollkommen neuen Themen wie KI fehlt es den Lehrkräften sowohl an fachlichem und fachdidaktischem Wissen als auch an bisherigen Unterrichtserfahrungen. Fortbildungsmaßnahmen zur Vermittlung von KI-Konzepten spielen daher eine zentrale Rolle. Bisher werden sie jedoch kaum aus wissenschaftlicher Perspektive betrachtet [Sp24]. Der vorliegende Beitrag präsentiert daher die Konzeption, Implementierung und Evaluation einer umfassenden Fortbildungsmaßnahme.

Hintergrund der Fortbildungskonzeption ist die Einführung von KI als Lerngegenstand an bayerischen Gymnasien. Seit dem Schuljahr 2023/24 ist das Thema fester Bestandteil des verpflichtenden Informatikunterrichts aller Ausbildungsrichtungen der 11. Jahrgangsstufe. ¹ Zusätzlich ist KI als Lerngegenstand im Wahlpflichtbereich der 13. Jahrgangsstufe verankert. ² Das Bayerische Staatsministerium für Unterricht und Kultus hat den Fortbildungsbedarf zum Thema KI früh erkannt und eine umfassende Fortbildungsinitiative KI initiiert und koordiniert. Im Rahmen dieser Initiative wurden an der TU München zwei aufeinander aufbauende Fortbildungsmodule entwickelt. Das Design der Module basiert auf Prinzipien wirksamer Lehrkräftefortbildungen wie beispielsweise dem Einsatz von praxiserprobtem Material oder der Abwechslung von Input-, Erprobungs- und Reflexionsphasen. Ein weiteres zentrales

¹ https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/11/informatik/ntg

 $^{^2\,}https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/13/informatik/erhoeht$

Gestaltungsprinzip beider Module ist der "didaktische Doppeldecker": Lehrkräfte erproben Unterrichtsmaterialien zunächst aus der Perspektive der Lernenden und reflektieren anschließend deren Einsatzmöglichkeiten im Unterricht.

Das Basismodul fokussiert auf die Vermittlung grundlegender KI-Konzepte für den Unterricht in der 11. Jahrgangsstufe. Bei der Konzeption waren zwei Aspekte entscheidend. Einerseits sollten bis zu 500 Informatiklehrkräfte erreicht werden, andererseits war von einer großen Heterogenität im Vorwissen der Lehrkräfte auszugehen. Um beiden Aspekten gerecht zu werden, wurde ein Blended Learning Format gewählt. Die selbstständige Erarbeitung grundlegender KI-Konzepte anhand eines MOOCs (Massive Open Online Course) wird von zwei Präsenztagen umrahmt. Bisher haben ca. 300 Lehrkräfte das Basismodul absolviert. Die Evaluation erfolgte sowohl aus einer Kurzzeitperspektive mittels eines Progress-Tests vor und nach der Fortbildung als auch aus einer Langzeitperspektive mittels einer Interviewstudie. [JBM24]

Das Aufbaumodul zielt auf die vertieften KI-Inhalte der 13. Jahrgangsstufe ab und besteht aus zwei Präsenztagen. Es integriert wirksame Ansätze aus der aktuellen Forschung zum Lehren über KI, wie das Prinzip "Embedded Ethics" [Wi23] oder projektbasiertes Lernen [KCT24]. Zudem kommen zahlreiche schülerzentrierte Ansätze wie Speed Dating, Gallery Walk, Lernstationen oder Flipped Classroom zum Einsatz. Das Modul wurde bislang vier Mal durchgeführt, knapp 100 Lehrkräfte nahmen daran teil. Da die Inhalte erst ab dem Schuljahr 2025/26 unterrichtet werden, konnte bisher ausschließlich eine Kurzzeitevaluation durchgeführt werden.

Die Kurzzeitevaluation des Basismoduls bestätigte die Heterogenität des Vorwissens der Lehrkräfte vor der Fortbildung und zeigte einen signifikanten Wissenszuwachs nach dem Besuch der Fortbildung. Die Ergebnisse der Langzeituntersuchung zeigen, dass sich die Lehrkräfte auch nach der Umsetzung der Fortbildungsinhalte im Unterricht sowohl aus fachwissenschaftlicher als auch fachdidaktischer Sicht sicher vorbereitet fühlen. Sie schätzen die große Auswahl an praxiserprobten Materialien und heben insbesondere unplugged Aktivitäten als gewinnbringend hervor. Dabei zeigt sich, dass auch bei einem vollkommen neuen Thema wie KI unterschiedliche Vorlieben hinsichtlich der Ausgestaltung des

Materials existieren. Während einige Lehrkräfte einzelne Elemente für ihren Unterricht adaptieren, bevorzugen andere vollständig ausgearbeitete Materialien bis hin zu fertigen Stundenentwürfen.

Die Evaluation des Aufbaumoduls ergibt insgesamt eine hohe Zufriedenheit der Lehrkräfte, insbesondere mit Materialien, die direkt im Unterricht eingesetzt werden können. Gleichwohl begegnen manche Lehrkräfte unbekannten schülerzentrierten Methoden wie beispielsweise Speed Dating mit einer gewissen Skepsis. Auch der Ansatz des projektbasierten Lernens wurde teilweise kritisch betrachtet. Einige Lehrkräfte empfanden die Projektaufgaben als zu offen oder herausfordernd.

Aus den Erfahrungen der hier präsentierten Fortbildungsmaßnahme lassen sich drei zentrale Implikationen ableiten. Erstens sind praxiserprobte und unterrichtsfertige Materialien auch für neue und komplexe Themen wie KI unverzichtbar. Zweitens sollten schülerzentrierte Ansätze unbedingt Bestandteil von Fortbildungen sein, sie bedürfen jedoch einer intensiven Begleitung und differenzierten Ausgestaltung. Drittens stellt die Einbettung ethischer Fragestellungen einen erfolgversprechenden Zugang zum Thema KI dar. Die vorgestellte Fortbildungsmaßnahme leistet nicht nur einen wesentlichen Beitrag zur Qualifizierung von Informatiklehrkräften in Bayern, sondern kann zugleich als Modell für andere (Bundes)länder dienen, in denen KI curricular verankert wird.

Referenzen

[JBM24] Jetzinger, F.; Baumer, S.; Michaeli, T.: Artificial Intelligence in Compulsory K-12 Computer Science Classrooms: A Scalable Professional Development Offer for Computer Science Teachers. In: Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1. SIGCSE 2024, Association for Computing Machinery, Portland, OR, USA, S. 590–596, 2024, url: https://doi.org/10.1145/3626252.3630782.

[KCT24] Kong, S.-C.; Cheung, M.-Y.W.; Tsang, O.: Developing an artificial intelligence literacy framework: Evaluation of a literacy course for senior secondary students using a projectbased learning approach. Computers and Education: Artificial Intelligence 6, S. 100214, 2024.

[Sp24] Sperling, K.; Stenberg, C.-J.; McGrath, C.; Åkerfeldt, A.; Heintz, F.; Stenliden, L.: In search of artificial intelligence (AI) literacy in teacher

education: A scoping review. Computers and Education Open 6, S. 100169, 2024, url: https://www.sciencedirect.com/ science/article/pii/S2666557324000107.

[Wi23] Williams, R.; Ali, S.; Devasia, N.; DiPaola, D.; Hong, J.; Kaputsos, S.P.; Jordan, B.; Breazeal, C.: AI+ ethics curricula for middle school youth: Lessons learned from three project-based curricula. Journal of AI in Education 33(2), S. 325–383, 2023.

Data Literacy und Künstliche Intelligenz für praktizierende Lehrkräfte: Vorstellung eines niederschwelligen Fortbildungsangebots

Luisa Gebhardt & Tilman Michaeli

Technische Universität München <firstname.lastname>@tum.de

Die digitale Transformation verändert unseren Alltag, wie wir miteinander kommunizieren und Technologien einsetzen – aber auch die Wissenschaft, für die sich neue Inhalte, Methoden und Werkzeuge ergeben. So werden Methoden wie Simulation und Datenanalyse (inkl. Verfahren der KI) als drittes und viertes Standbein der Wissenschaft bezeichnet und in allen Wissenschaftsdisziplinen, insbesondere den Naturwissenschaften, zur Erkenntnisgewinnung genutzt (Tolle et al., 2001). Diese Veränderung in den Bezugswissenschaften beeinflusst auch die jeweiligen Fächer an Schulen. So werden beispielsweise Simulationen zur Wettervorhersage erstellt oder Daten eines Experiments zur Erarbeitung des zugrundeliegenden physikalischen Gesetzes ausgewertet. Um diese digitalisierungsbezogenen Veränderungen analysieren, aufgreifen und im Fachunterricht angemessen adressieren zu können (vgl. DPACK-Modell (Döbeli Honegger, 2021)), benötigen Lehrkräfte aller Fächer entsprechende informatische Kompetenzen (Seegerer, Michaeli und Romeike, 2022).

Während es bereits einige erprobte Angebote wie zum Beispiel Digi4All gibt, welche diese informatischen Kompetenzen für Lehramtsstudierende aller Fächer vermitteln, fehlt es bisher an Fortbildungsangeboten für bereits praktizierende Lehrkräfte (Cichalla et al., 2025).

So sollten für praktizierende Lehrkräfte die geringere Zeit für Fortbildungen und vorhandene Unterrichtserfahrung, sowie die unterschiedliche Motivation im Vergleich zu Lehramtsstudierenden bei der Gestaltung der Fortbildungen in Betracht gezogen werden.

Für diese Zielgruppe existieren zwar einige Angebote zur Ausbildung von informatischen Kompetenzen, wie zum Beispiel die Fortbildungen von COMeIN (Brinda, T. et al., 2023), welche den Fokus jedoch auf allgemeine, digitale pädagogische Kompetenz legen und damit die

digitalisierungsbezogenen Veränderungen in den spezifischen Fächern nicht betrachten. Es fehlen also bisher Angebote, die es praktizierenden Lehrkräften erlauben, diese fachspezifischen Veränderungen aufgrund der digitalen Transformation zu analysieren und im Sinne digitaler pädagogischer Inhaltskompetenz im Unterricht aufzugreifen.

In diesem Poster wollen wir daher unser Konzept für ein Fortbildungsangebot für praktizierende Lehrkräfte zur Ausbildung von informatischen Kompetenzen vorstellen, welches die fachspezifischen Veränderungen durch Methoden der Datenanalyse und Verfahren des maschinellen Lernens thematisiert.

Ziel dieser Fortbildung ist es, Lehrkräfte zu befähigen, mit Methoden der Datenanalyse und Verfahren des maschinellen Lernens fachspezifische Fragestellungen beantworten und in ihrem eigenen Unterricht einsetzen zu können.

Dafür lernen sie in einem Fortbildungsmodul den Datenlebenszyklus, sowie verschiedene datenbasierte Verfahren und deren mögliche Probleme, wie Bias und Over- und Underfitting, kennen.

Die Fortbildung ist gezielt auf die Bedürfnisse praktizierender Lehrkräfte zugeschnitten. Um sie möglichst attraktiv zu gestalten, wurde ein 90-minütiges, asynchrones Online-Format gewählt, das den Teilnehmenden erlaubt, die Inhalte selbstständig und in ihrem individuellen Tempo zu bearbeiten. Die Inhalte werden durch fachspezifische Beispiele sowie interaktive Elemente ergänzt, die den Austausch untereinander fördern. Besonderen Wert legt die Fortbildung zudem auf niederschwellige Zugänge und unterstützende Strukturen (Scaffolding), die auch weniger erfahrenen Lehrkräften einen unkomplizierten Einstieg in das Thema ermöglichen.

Zu diesem Zweck greift die Fortbildung auf mehrere erprobte Angebote auf:

Zur Vermittlung des Datenlebenszyklus und Methoden der Datenanalyse adaptiert die Fortbildung entsprechende Inhalte aus Digi4All (Seegerer, Michaeli und Romeike, 2022) speziell für praktizierende Lehrkräfte und knüpft dabei mit der Untersuchung des Cholera-Ausbruchs 1854 an ein fachliches Problem aus der Biologie an.

Als exemplarisches Verfahren des maschinellen Lernens werden die Unterlagen des IT2School Moduls "Von Daten und Bäumen" (Wissensfabrik e.V.) für Lehrkräfte angepasst. Durch die Nutzung von digitalen Werkzeugen, wie CODAP und Teachable Machine, sowie dem Aufgreifen weiterer fachbezogener Beispiele ermöglicht die Fortbildung die Auseinandersetzung mit den digitalisierungsbezogenen Veränderungen des eigenen Faches und liefert Impulse zur praktischen Umsetzung im eigenen Unterricht.

Die vorgestellte Fortbildung wird im Zusammenhang mit zwei weiteren Fortbildungen (zu Grundlagen der Digitalisierung und Automation sowie zu Simulation) evaluiert. Langfristig soll das vorgestellte Fortbildungskonzept deutschlandweit implementiert werden und kann so einen Beitrag zur Stärkung von informatischen Kompetenzen leisten, die es Lehrkräften ermöglichen, die Veränderungen aufgrund der digitalen Transformation zu analysieren und im eigenen Unterricht zu adressieren.

Referenzen

- 1. Tolle, K. M., Tansley, D. S. W., & Hey, A. J. (2011). The fourth paradigm: data-intensive scientific discovery. Proceedings of the IEEE, 99(8), 1334–1337.
- 2. Seegerer, S., Michaeli, T., & Romeike, R. (2022). Foundations of computer science in general teacher education findings and experiences from a blended-learning course. In Proceedings of world conference on computers in education, wcce 2022
- 3. Döbeli Honegger, B. (2021). Covid-19 und die digitale Transformation in der Schweizer Lehrerinnen- und Lehrerbildung. Beiträge zur Lehrerinnen- und Lehrerbildung , 39(3), 411-422
- Cichalla, A., Gebhardt, L., Michaeli, T., Romeike, R. (2025).
 Computer Science for All: Teacher Training for In-Service Teachers. Digitally Transformed Education: Are We There Yet?, Springer Nature Switzerland, 2025
- 5. Brinda, T., Humbert, L., Kramer, M., Schmitz, D. (2023). Developing Informatics Modules for Teachers of All Subjects Based

- on Professional Activities. In: Keane, T., Lewin, C., Brinda, T., Bottino, R. (eds) Towards a Collaborative Society Through Creative Learning. WCCE 2022.
- 6. Wissensfabrik e.V.. IT2School Gemeinsam IT entdecken. Website-Artikel, https://www.wissensfabrik.de/it2school/ (Abgerufen am 28.08.2025)

Verwendung und Akzeptanz von KI-Systemen in der Bildung: ein Reality Check

Felix Grelka, Marc Berges & Jonas Vollhardt Friedrich-Alexander-Universität Erlangen-Nürnberg <firstname.lastname>@fau.de

Die zunehmende Integration von KI-Systemen in der Bildung ist von hohen Erwartungen geprägt, die jedoch oft mit den komplexen Realitäten ihrer Implementierung kollidieren. Insbesondere seit der Verbreitung von Large Language Models (LLMs) ist das Thema in alle Facetten des Bildungswesens vorgedrungen, was Verwaltungen, Lehrende und Lernende vor neue Herausforderungen stellt. Der Einsatz von KI-Werkzeugen und diesbezügliche Führungsentscheidungen basieren häufig auf unzureichendem Grundlagenwissen zu Künstlicher Intelligenz, was suboptimale Anwendungsfälle begünstigt. Zusätzlich erfordert das Aufkommen von KI-Lernplattformen fachdidaktische Expertise, um derartige Technologien nicht als konkurrierende, sondern als ergänzende Systeme einzubinden. Dieser Beitrag untersucht die Integration von KI im Bildungskontext exemplarisch in zwei Bereichen: dem Schulmanagement und der Hochschullehre. Es wird argumentiert, dass die Forschung zur Mensch-Maschine-Interaktion (MMI) einen entscheidenden Rahmen bietet, um das beobachtete Anwendungsverhalten und die tatsächliche Nutzererfahrung zu erklären und eine erfolgreiche, nutzerzentrierte Integration von KI zu gestalten.

Hierfür werden Erhebungen aus zwei Forschungsprojekten näher betrachtet: Einerseits einer bundesweiten mixed-methods Online-Umfrage (2024-2025), die sich an Personen im Schulmanagement richtet. Diese Erhebung erfasst deren Vorerfahrungen, Einstellungen und Grundkenntnisse zu KI (sog. AI-Literacy) mit Skalen wie der GAAIS (General Attitudes towards Artificial Intelligence Scale) und SNAIL (Scale for the assessment of non-experts' AI literacy), sowie Erwartungen an schulmanagementfokussierte Fortbildungsangebote zu KI. Somit ergibt sich erstmalig ein deutschlandweiter Einblick zu KI-bezogenen Fragestellungen im Schulmanagementbereich.

Andererseits wird eine Sekundäranalyse der Evaluation des adaptiven Lernassistenten *ALeA* herangezogen, welcher im Wintersemester 2023/2024 in einer universitären Einführungsveranstaltung zu KI studienbegleitend eingesetzt wurde. *ALeA* ist ein regelbasiertes System, das personalisierte Lernressourcen bereitstellt und auf Transparenz und Nachvollziehbarkeit ausgelegt ist (grelkaALeAAdvancingPersonalized2025). Die Evaluation nutzte standardisierte MMI-Skalen wie SUS (System Usability Scale), NASA-TLX (RAW NASA-Task Load Index) und PCTS (Perceived Creepiness in Technology Scale) sowie qualitative Fragestellungen (grelkaFrameworkEvaluatingAI2025). Die quantitativen Daten beider Studien wurden in R mittels Korrelations- und stochastischer Analysen untersucht, während die qualitativen Daten kategorisiert wurden.

Die vorläufigen Ergebnisse der Umfrage unter Schulverwaltungen zeigen eine ambivalente Haltung gegenüber KI. Die Befragten äußern basierend auf der GAAIS zwar eine im Vergleich zum deutschen Durchschnitt weniger von Bedenken geprägte Einstellung, jedoch offenbart die Analyse der SNAIL signifikante Lücken: Während die Befragten eine gute kritische Auseinandersetzung mit den Einschränkungen und Risiken von KI angeben, ist ihr technisches Verständnis der Systeme als eher gering einzuschätzen. Auffällig ist zudem, dass KI-Systeme beruflich häufig und gleichzeitig häufiger als privat genutzt werden, wobei der Einsatz fast ausschließlich auf generative Systeme und Large Language Models (LLMs) fokussiert ist.

Die Evaluation von kontrastiert die Eindrücke der Schulmanagementebene. Mit einem mäßigen SUS-Wert und einem hohen NASA-TLX zeigte sich, dass die Studierenden die Interaktion mit dem System als nicht ideal empfanden und eine erhöhte kognitive Belastung wahrnahmen. Qualitative Rückmeldungen führten diese Mängel auf eine suboptimale Benutzeroberfläche zurück, die zu Frustration führte. Ähnlich traditioneller Lerntools stehen KI-Systeme vor Usability-Herausforderungen, weshalb nutzerzentriertes Design benötigt wird, um den Overhead zu reduzieren. Gleichzeitig wurde das System mit einem niedrigen PCTS-Wert als nicht unheimlich wahrgenommen, was die Bedeutung von Transparenz und Nachvollziehbarkeit unterstreicht. Während bestimmte Funktionen von die Klausurpunktzahlen verbesserten, verschlechterten andere sie. Dies betont die Notwendigkeit weiterer

Forschung zu lernunterstützendem oder -hinderlichem Einfluss KI-adaptiver Lernsysteme. Die Einordnung der Nützlichkeit von KI-Systemen ist somit entkoppelt von der weit verbreiteten Nutzung von LLMs im Schulmanagement. Diese Entkopplung birgt das Risiko, dass Fehlinvestitionen in unzureichend verstandene KI-Technologien zu Frustration, Ablehnung und Ineffizienz bei Nutzenden führen. In der Folge scheitern diese Systeme daran, ihren Mehrwert im Bildungsbereich zu entfalten und den realen Anforderungen der Lern- und Lehrpraxis gerecht zu werden.

Mit den Ergebnissen beider Studien führt der Beitrag zusammenfassend aus, dass positive Effekte von KI im Bildungssektor nicht von der technologischen Autonomie abhängen, sondern von ihrer Fähigkeit, menschliche Interaktion sinnvoll zu unterstützen. Anstatt Lehrkräfte und Schulpersonal durch technologische Lösungen zu ersetzen, muss KI als ein **ergänzendes Werkzeug** betrachtet werden, das didaktische und administrative Prozesse im Bildungsbereich optimieren kann. Die gewonnenen Erkenntnisse betonen die Notwendigkeit, bereits in der Konzeptionsund Gestaltungsphase von Fortbildungsangeboten und KI-Tools die Erwartungen der verschiedenen Zielgruppen zu berücksichtigen und gleichzeitig ein realistisches Bild technologischer Möglichkeiten zu vermitteln. Nur durch eine tiefgehende informatische Auseinandersetzung mit den Möglichkeiten und Grenzen der Technologie kann das volle Potenzial von KI in der Bildung **verantwortungsvoll und nachhaltig** erschlossen werden.

Referenzen

[GKB25] Grelka, F.; Kruse-Kurbach, T.; Berges, M.: A Framework for Evaluating AI Powered Learning Platforms in K-12 and University CS Education. In: 2025 IEEE Global Engineering Education Conference (EDUCON). 2025.

[GLB25] Grelka, F.; Lohr, D.; Berges, M.: ALeA: Advancing Personalized Learning with Adaptive Assistance and Semantic Annotation, 2025.

klaro!KI: Ein Programm zur niedrigschwelligen Vermittlung von KI-Kompetenzen für nicht-akademische Erwachsene

Felix Haase¹, Chris Zimmer², Sanne Grabisch¹, Carolin Wienrich² & Ute Schmid¹

Otto-Friedrich-Universität Bamberg
 Julius-Maximilians-Universität Würzburg,
 <firstname.lastname>@uni-bamberg.de
 <firstname.lastname>@uni-wuerzburg.de

AI-Literacy (Schmid, 2025a) ist seit der Veröffentlichung von ChatGPT immer wichtiger geworden und ist auch eine Anforderung der europäischen KI-Verordnung. Erwachsene ohne akademischen Hintergrund, die beruflich keine oder kaum Berührung zu IT- oder und KI-Themen haben, werden allerdings bei Bildungsinitiativen zu KI selten mit berücksichtigt. Zwar könnten sie unter dem Aspekt der Eigenverantwortung selbstständig nach Bildungsmöglichkeiten Ausschau halten und diese wahrnehmen, andererseits ist anzunehmen, dass diese Personengruppe öffentliche Angebote, etwa in Museen oder von Volkshochschulen, weniger intensiv wahrnimmt als etwa Menschen mit akademischem Hintergrund oder beruflichen Bezügen zum Thema (Stürz & von Gehlen, 2022). Gerade diese Zielgruppe kann entsprechend besonders vulnerabel sein, was Desinformationskampagnen oder Fake News durch KI-Systeme oder zum Thema KI betrifft.

Wissenschaftliche Befunde zeigen, dass mediale Darstellungen sehr stark das Bild von KI prägen. Kelley et al. (2019) berichten beispielsweise, dass 58% der Befragten Informationen über KI durch Filme, TV und soziale Medien beziehen. Aus psychologischer Perspektive sind dabei die häufig extremen Narrative zwischen Dystopie und Utopie problematisch und haben starke, teilweise implizite Effekte auf die allgemeine Einstellung zu und Vertrauen in KI-Systeme (Wienrich et al., 2022; Schmid, 2025b).

Vor diesem Hintergrund werden im Projekt klaro!KI niedrigschwellige Informationsmaterialien und erfahrbare Demonstratoren entwickelt. Im Jahr 2025 wurde eine Artikelreihe bestehend aus sechs Artikeln zu folgenden Themengebieten umgesetzt: "Was ist eigentlich KI?", "Wie lernen Computer?", "Wieso denkt ChatGPT nicht wirklich?", "Warum macht KI Fehler?", "Kann man KI vertrauen?" und "Wie könnte sich unsere Gesellschaft mit KI entwickeln?". Die kurzen, illustrierten Beiträge sollen ein Grundverständnis von Konzepten und Methoden der KI vermitteln und Fehlkonzepten, insbesondere der unzulässigen Zuschreibung menschlicher Eigenschaften, entgegenwirken. Die Stärken und Chancen von KI-Methoden sowie deren Grenzen und mögliche Risiken werden anhand von konkreten Anwendungsbeispielen dargestellt. Dadurch soll die Leserschaft zu einer neutraleren und ausgewogeneren Auseinandersetzung mit dem Thema befähigt werden. Die Artikelreihe wurde in der Zeitschrift "Oberfränkischen Wirtschaft" der IHK, sowie in Blogartikeln auf der Webseite klaro-ki.de veröffentlicht. Parallel zu den Beiträgen wurde eine Online-Befragung, bestehend aus verkürzten Varianten von Skalen zur Technikbereitschaft, Einstellung zu KI und AI Literacy durchgeführt. Bisher wurde die Artikelreihe 30 mal mit dem Pre-Fragebogen begonnen. Davon haben 16 Personen den integrierten Aufmerksamkeitstest bestanden. Nur zwei der Personen stammen aus der engeren Zielgruppe, sind also nicht-akademische Erwachsene die beruflich keine oder kaum Berührung zu IT-Themen und KI haben. Die kurzen Nachbefragungen mit je 4 Quiz-Fragen zum Beitrag nach jedem Artikel wurden je 5, 3, 3, 2, 0 und 0 mal komplett ausgefüllt. Die entwickelten XR-Demonstratoren für die explizite Erfahrbarkeit und Interaktion mit KI-Systemen (Wienrich & Latoschik, 2021) wurden bei den öffentlichen Veranstaltungen expo 2025 der Universität Würzburg und dem Stadtfest Würzburg 2025 ausgestellt, um emotionale Zugänge zu KI-Anwendungen zu ermöglichen. Es wurden Demonstratoren zu virtuellen Therapeuten (Acrophobia)³, Nutzer-Authentifizierung⁴ und eine Interaktive Transkribtionsanwendung für Amnestesiegespräche (Cassandra)⁵, die im XR-Hub der Universität Würzburg entwickelt wurden, mit

³Unveröffentlichte Studentische Arbeit

⁴https://xr-hub.hci.uni-wuerzburg.de/papers/2024-10-rack/

⁵https://cassandra-hilft.de

insgesamt 9 Versuchspersonen mit einem Präfragebogen, Systematischer Beobachtung und einem optionalen leitfadengestützten Interview evaluiert. Erste Qualitative Ergebnisse zeigen, dass das Interesse an solchen Angeboten hoch ist, aber auch viel Unsicherheit darüber herrscht, wie die Daten verarbeitet werden und ob man den Demonstratoren vertrauen kann. Im Gesundheitsbereich sind Bedenken hinsichtlich Ethik und Datenschutz geäußert worden.

Aktuell bereiten wir eine größere Online-Umfrage vor, die gezielt über die IHK sowie weitere Interessenverbände beworben werden soll. Hier sollen die kurzen Artikel jeweils direkt gelesen und die Quizzes beantwortet werden – gerahmt von der Vor- und Nachbefragung. Zudem soll die Online-Befragung im Kontext von öffentlichen Vorträgen und Aktivitäten durchgeführt werden. Hier ist unter anderem geplant, die entwickelten XR-Demonstratoren noch bei weiteren öffentlichen Veranstaltungen, etwa Stadtfesten oder Veranstaltungen der Interessenverbände, aufzustellen.

Referenzen

- Schmid, U. (2025a). Grundkompetenzen im Bereich Künstliche Intelligenz (AI Literacy). In: Gerold Brägger & Hans-Günter Rolff (Hrsg.) Handbuch: Lernen mit digitalen Medien, 3. Auflage. Weinheim: Beltz.
- Schmid, U. (2025b). Vertrauenswürdige Künstliche Intelligenz. In Schmiedchen, F. u.a. (Hrsg.): Künstliche Intelligenz und Wir Stand, Nutzung und Herausforderungen der KI. Springer.
- Stürz, R. A., & von Gehlen, D. (2022). Multidimensional Digital Competence Self-Assessment: Results from the bidt-SZ-Digitalbarometer. Carl Hanser Verlag.
- Wienrich, C., Carolus, A., Markus, A., & Augustin, Y. (2022). AI literacy: Kompetenzdimensionen und Einflussfaktoren im Kontext von Arbeit. Denkfabrik-bmas, https://www.denkfabrikbmas.de/fileadmin/Downloads/Publikationen/AI_Literacy_Kompetenzdimensionen_und_Einflussfaktoren_im_Kontext_von_Arbeit.pdf, abgerufen am 25.04.2024

Wienrich, C., & Latoschik, M. E. (2021). extended artificial intelligence: New prospects of human-AI interaction research. Frontiers in Virtual Reality, 2, 686783.

Themenspezifische Schwierigkeiten von Schüler*innen beim Lernen über KI – Aktionsforschung im verpflichtenden Informatikunterricht der 11. Jahrgangsstufe

Franz Jetzinger & Tilman Michaeli Technische Universität München <firstname.lastname>@tum.de

Die Integration von Künstlicher Intelligenz (KI) als Lerngegenstand in den Informatikunterricht gilt als essenziell, um Schüler*innen auf ihrem Weg zur Mündigkeit zu begleiten und zu einem reflektierten und verantwortungsvollen Umgang mit dieser Technologie zu befähigen. Während Lernen über KI in Bayern bereits curricular verankert ist, beginnt die informatikdidaktische Forschung gerade erst mit der Erschließung dieses Themas. Zwar liegen zahlreiche Vorschläge zur inhaltlichen Strukturierung des Themengebiets (z. B. [MRS22]) sowie eine Vielzahl von Lernmaterialien vor, systematische Untersuchungen des Lernens über KI sind bislang jedoch selten [RWS23]. Bisherige Forschungsarbeiten untersuchen häufig motivationale Aspekte oder die Wirksamkeit von Lernangeboten. Zudem identifizieren verschiedene Studien diverse Vorstellungen von Schüler*innen über KI, jedoch selten mit Bezug zum Unterricht und der Frage, ob sich Vorstellungen verändern lassen.

Forschungsansätze, die darauf abzielen, die Praxis zu verändern, beginnen mit der Identifikation von Problemen und Herausforderungen der Lernenden. Der vorliegende Beitrag identifiziert daher themenspezifische Schwierigkeiten von Schüler*innen beim Lernen über KI. Hierfür wurde der Ansatz der partizipativen Aktionsforschung gewählt [Ei02]. Dieser stellt sicher, dass die Ergebnisse unmittelbar zur Verbesserung der Unterrichtspraxis beitragen. Gemeinsam mit Lehrkräften wurden Schwierigkeiten, mögliche Ursachen sowie Implikationen identifiziert und Fragestellungen sowie Hypothesen für zukünftige Forschung aufgeworfen.

Für die Untersuchung der themenspezifischen Schwierigkeiten wurden 10 Informatiklehrkräfte (w=1, m=9) bei der initialen Umsetzung des bayerischen Gymnasiallehrplans der 11. Jahrgangsstufe begleitet. Dieser sieht 12-16 Unterrichtsstunden zu KI als Lerngegenstand vor. Die

Lehrkräfte hatten unabhängig von der Aktionsforschung an umfassenden Fortbildungsangeboten teilgenommen [JBM24]. Ihre Unterrichtsplanung erfolgte jedoch eigenständig und ohne spezifische Schulung im Kontext der Forschung. Zur Evaluation des Unterrichts wurden verschiedene Instrumente entwickelt. Bereits nach jeder Unterrichtsstunde vervollständigten die Lehrkräfte ein Reflexionsprotokoll. Ergänzend dazu wurden leitfadengestützte Interviews nach Abschluss der Unterrichtssequenz durchgeführt. Eine Lernstandserhebung lieferte zusätzliche Einblicke in Schwierigkeiten aus Perspektive der Schüler*innen (N=192) nach dem Unterricht. Die Daten der Reflexionsprotokolle und Interviews wurden nach dem Prinzip der Grounded Theory ausgewertet [SC98]. Zahlreiche in-vivo Kodes wurden zu übergeordneten Kategorien zusammengefasst und auf ihre Zusammenhänge hin untersucht. Dabei wurden auch die quantitativ ausgewerteten Ergebnisse der Lernstandserhebung zum ständigen Vergleich herangezogen. Die Auswertung ergab vier Kernkategorien, die jeweils eine Schwierigkeit repräsentieren. Jede Schwierigkeit wird von möglichen Ursachen, aufgeworfenen Fragen und Hypothesen sowie Implikationen für die Praxis umrahmt (s. Abb. 1). Die Ergebnisse der Auswertung wurden in einem Workshop mit den Lehrkräften evaluiert und weiter ausdifferenziert.

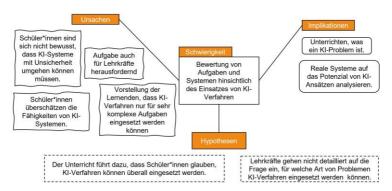


Abbildung. 1: Erste Kernkategorie

Im Zentrum der *ersten Kernkategorie* steht die Schwierigkeit der Lernenden, reale Systeme dahingehend einzuschätzen, ob KI-Verfahren eingesetzt werden. Als mögliche Ursachen hierfür wurden Vorstellungen der Schüler*innen identifiziert, wie die Ansicht, dass KI-Systeme nur für

besonders komplexe Aufgaben eingesetzt werden. Es scheint, dass die Lehrkräfte im Unterricht der Frage, für welche Aufgaben KI-Verfahren gewinnbringend eingesetzt werden können, nicht ausreichend nachgehen. Als mögliche Implikationen für die Praxis ergaben sich die Erarbeitung konkreter Indikatoren für den Einsatz von KI-Systemen (z. B. Umgang mit Unsicherheit) sowie die Analyse zahlreicher Informatiksysteme dahingehend, ob KI-Verfahren eingesetzt werden. Die zweite Kernkategorie repräsentiert Schwierigkeiten bei der Unterscheidung zwischen wissens- und datenbasierten KI-Verfahren. Identifizierte Ursachen hierfür sind beispielsweise, dass Lernende wissensbasierte Ansätze nicht als KI ansehen oder die Vorstellung, dass ein trainiertes datenbasiertes KI-System zu einem wissensbasierten KI-System wird. Die Frage, ob Entscheidungsbäume als Vertreter beider Ansätze diese Schwierigkeit verstärken oder das Potenzial haben, sie auszuräumen, konnte nicht abschließend beantwortet werden. Die dritte Kernkategorie besteht aus der Schwierigkeit der Ergebnisbewertung von KI-Modellen. Insbesondere fällt es den Lernenden schwer, den Einfluss der Trainingsdaten und Hyperparameter auf das Ergebnis zu analysieren. Diese Schwierigkeit steht in engem Zusammenhang mit den eingesetzten Werkzeugen. Insbesondere wurde die Frage aufgeworfen, ob für die Erstellung und Bewertung von KI-Systemen ein passendes "low floors/high ceilings" Werkzeug existiert. Die vierte Kernkategorie beschreibt die Schwierigkeit, gelernte Konzepte auf reale Systeme anzuwenden. Diese Problematik kann auch bei anderen Themen des Informatikunterrichts sowie in anderen Fächern beobachtet werden. Es erscheint jedoch gerechtfertigt, der Frage nachzugehen, ob das Thema KI hierbei eine besondere Stellung einnimmt. Reale KI-Systeme sind besonders komplex und häufig nicht vollständig transparent. Dadurch ergibt sich eine besonders große Lücke zwischen Realität und reduzierten Unterrichtsbeispielen.

Zusammenfassend lässt sich festhalten, dass die identifizierten Schwierigkeiten nicht nur der unmittelbaren Verbesserung des Unterrichts dienen. Sie sind gleichermaßen von wissenschaftlicher wie praktischer Relevanz: Einerseits weisen sie auf zukünftigen Forschungsbedarf hin und bieten Potenzial für diagnostische Zwecke. Andererseits können sie Praktiker*innen und praxisnahen Forscher*innen bei der Weiter- und Neuentwicklung von Lernmaterialien unterstützen.

Referenzen

[Ei02] Eilks, I.: Participatory Action Research within chemical education: A research method and experiences with its application. In: Proceedings of the 2nd International Conference on Science Education, Nicosia (Cyprus). S. 11–13, 2002.

[JBM24] Jetzinger, F.; Baumer, S.; Michaeli, T.: Artificial Intelligence in Compulsory K-12 Computer Science Classrooms: A Scalable Professional Development Offer for Computer Science Teachers. In: Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1. SIGCSE 2024, Association for Computing Machinery, Portland, OR, USA, S. 590–596, 2024, url: https://doi.org/10.1145/3626252.3630782.

[MRS22] Michaeli, T.; Romeike, R.; Seegerer, S.: What students can learn about artificial intelligence–recommendations for K-12 computing education. In: IFIP World Conference on Computers in Education. Springer, S. 196–208, 2022.

[RWS23] Rizvi, S.; Waite, J.; Sentance, S.: Artificial Intelligence teaching and learning in K-12 from 2019 to 2022: A systematic literature review. Computers and Education: Artificial Intelligence 4, S. 100145, 2023.

[SC98] Strauss, A.; Corbin, J.: Basics of qualitative research techniques. Sage Publications, Inc., 1998.

Fit für KI? AI Literacy angehender Grundschullehrkräfteempirisch beleuchtet

Sarah Désirée Lange¹, Erik Marx², Gamze Görel¹, Anna Plohmer¹ & Nadine Bergner³

¹Technische Universität Chemnitz

²Technische Universität Dresden

³RWTH Aachen

<firstname.lastname>@zlb.tu-chemnitz.de

erik.marx@tu-dresden

bergner@informatik.rwth-aachen.de

Problemaufriss:

Im Hinblick auf die Entwicklungen im Bereich Künstlicher Intelligenz stellt sich die Frage, wie ein grundlegendes Konzept der Digitalen Grundbildung für die digital-medial geprägte und gestaltbare Welt, um primarstufenspezifische AI-Literacy zu erweitern ist (Irion, 2020). Welche Kompetenzen sind bezogen auf Grundschullehrkräfte im Spezifischen bedeutsam?

Theoretische Verortung:

AI Literacy beschreibt in dieser noch recht jungen Forschungslandschaft die grundlegenden Kompetenzen, die benötigt werden, um Künstliche Intelligenz (KI) zu verstehen und um kritisch-informiert mit KI umzugehen. Neben den technischen Aspekten werden auch ethische Herausforderungen und gesellschaftliche Konsequenzen von KI thematisiert. Es existieren verschiedene Frameworks zur Vermittlung von AI Literacy, allerdings ist die Bestimmung von Inhalten und deren Tiefe nach wie vor eine Herausforderung (Casal-Otero et al., 2023). Besonders komplex gestaltet sich dies bei KI-Anwendungen, die auf maschinellem Lernen basieren, da diese einen grundlegenden Paradigmenwechsel gegenüber der klassischen Informatik darstellen. Aktuelle Studien zeigen, dass die kognitiven Modelle von Lernenden zur Funktionsweise verschiedener KI-Anwendungen, wie beispielsweise Gesichtserkennung und Textgenerierung, signifikant voneinander abweichen (Marx et al., 2025/i.D.).

Methodischer Zugang:

Um das konzeptuelle Verständnis von Lernenden bezüglich maschinellen Lernens quantitativ zu erfassen, wurde das Concept Inventory zum maschinellen Lernen (CIML: Marx et al., 2025/i.D.) entwickelt. Das Instrument basiert auf typischen Vorstellungen von Lernenden und erfasst zentrale Konzepte des maschinellen Lernens (Modellbildung; Datenauswahl; Statistische Modelle; Programmierung; Evaluation; Datengüte; Phasentrennung) im Kontext der Phänomene Gesichtserkennung und Textgenerierung. Das Instrument wird adaptiert seit dem Sommersemester 2025 eingesetzt, um die KI-Kompetenzen von angehenden Grundschullehrkräften zu erfassen. Zudem wurden Statements im online-Fragebogen genutzt, zu denen die Studierenden in einem offenen Aufgabenformat ergänzen konnten, welche Kompetenzen aus ihrer Sicht für Grundschullehrkräfte bedeutsam sind (adaptiert nach Nenner, 2025) (u.a. "Grundschullehrkräfte sollten meiner Meinung nach bezogen auf Informatik lernen..."). Die Daten werden inhaltsanalytisch ausgewertet. Die laufende Datenerhebung umfasst bislang Antworten von N = 80 Studierenden (N = 60 weiblich; N = 14 männlich; N = 1 divers; N = 5 k.A.). Die Studierenden befinden sich mehrheitlich im 2. Semester (N = 33) sowie im 4. Semester (N = 40).

Empirische Ergebnisse:

Im Durchschnitt erreichten die Studierenden 25,5 von 51 möglichen Punkten (SD = 4,09). Im Vergleich der sieben Konzepte wurden die Konzepte ,Evaluation' (durchschnittlich 61 % der Punkte) und ,Datenqualität' (durchschnittlich 60 % der Punkte) kontextübergreifend am besten beantwortet. Das Konzept 'Statistische Modelle' zeigte die deutlichsten Unterschiede zwischen den Kontexten: Bei der Gesichtserkennung beantworteten nur 30 % der Studierenden die zugehörige Frage korrekt, während es bei der Textgenerierung 54 % waren. Bei der Gesamtleistung wurde mittels t-test kein signifikanter Unterschied zwischen 2. und 4. Semester festgestellt (t(70) = -1.13; p = 0.26). Die ersten Ergebnisse der inhaltsanalytischen Auswertung zeigen, dass KI eng im Zusammenhang mit Informatik von den Studierenden beschrieben wird. Die bisherigen Antworten können zu den folgenden vier zentralen Kompetenzen zusammengefasst werden, die aus Sicht der Studierenden bedeutsam sind: (1) Informatischtechnische Grundkompetenzen als Voraussetzung für KI im Grundschulunterricht; (2) Kritisch-reflexiver Umgang mit KI ("Wie man sie kindgerecht vermittelt, welche Potentiale und Hürden es gibt, wie man sie zielgerichtet einsetzen kann", S25_34); (3) Didaktisch, lernförderlicher Einsatz von KI im Grundschulunterricht ("Wie man sie kindgerecht vermittelt, welche Potentiale und Hürden es gibt, wie man sie zielgerichtet einsetzen kann", S25_24); (4) Lebenslanges Lernen und Kompetenzentwicklung der Grundschullehrkräfte ("Sich selbst weiterzubilden, zu reflektieren, up to date zu bleiben und Medienkompetenz zu vermitteln", S25_12).

Diskussion und Ausblick:

Lehrkräfte an Grundschulen stehen hinsichtlich der Professionalisierung im Kontext von KI vor einer dreifachen Herausforderung: In Bezug auf die Lernenden ist es ihre Aufgabe, den Aufbau von AI-Literacy der Kinder zu begleiten. Dabei sind geschützte Erfahrungsräume für Kinder zu schaffen, die, orientiert an der außerschulischen Lebenswelt der Kinder, auch datenrechtlich sichere Verfahren zum Erwerb dieser Kompetenzen (OECD, 2025) ermöglichen. Darüber hinaus stehen sie vor der Herausforderung, ihre eigene AI-Literacy weiterzuentwickeln, darauf bezogene Lerngelegenheiten und Fortbildungsangebote zu nutzen sowie ihre eigene Rolle als Lehrkraft in Bezug auf Fragen der Digitalität zu reflektieren. Die bisherigen Ergebnisse unterstreichen die Notwendigkeit der Professionalisierung von (angehenden) Lehrkräften in Bezug auf ein grundlegendes Verständnis von KI, als zentrale Voraussetzung für die Vermittlung informatischer Bildung im Unterricht.

Referenzen

Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: A systematic literature review. International Journal of STEM Education, 10(1), 29. https://doi.org/10.1186/s40594-023-00418-7

Irion, T. (2020). Digitale Grundbildung in der Grundschule: Grundlegende Bildung in der digital geprägten und gestaltbaren, mediatisierten Welt. In M. Thumel, R. Kammerl & T. Irion (Hrsg.), Digitale Bildung im Grundschulalter. Grundsatzfragen zum Primat des Pädagogischen (S. 49–81). München: kopaed.

Marx, E., Leonhardt, T., & Bergner, N. (2025/i.D.). Concept Inventory zum Thema Maschinelles Lernen (CIML). Konzeption, Entwicklung und Evaluation. INFOS 2025 - Grenzen überwinden - voneinander lernen. INFOS 2025.

Nenner, C. (2025). Aufbau fachwissenschaftlicher und fachdidaktischer Informatikkompetenzen bei Grundschullehramtstudierenden. Technische Universität Chemnitz. https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-954622

Organisation für wirtschaftliche Zusammenarbeit und Entwicklung [OECD] (2025). Empowering learners for the age of AI: An AI literacy framework for primary and secondary education (Review draft). Verfügbar unter https://ailiteracyframework.org/wp-content/uploads/2025/05/AILitFramework_ReviewDraft.pdf [Zugriff am 28.08.2025].

KI trifft Grundschule – Chancen, Risiken und Perspektiven für die Grundschulforschung

Sarah Désirée Lange¹, Sanna Pohlmann-Rother² & Thomas Irion³

¹ Technische Universität Chemnitz
 ² Julius-Maximilians-Universität Würzburg
 ³ Pädagogische Hochschule Schwäbisch-Gmünd sarah.lange@zlb.tu-chemnitz.de sanna.pohlmann-rother@uni-wuerzburg.de thomas.irion@ph-gmuend.de

Die Grundschule nimmt als erste institutionelle Bildungsinstanz eine Schlüsselrolle in der Auseinandersetzung mit KI ein. Künstliche Intelligenz (KI) ist längst nicht mehr nur ein technologisches Phänomen, sondern ein gesellschaftlicher Transformationsfaktor, der zunehmend auch den Bildungsbereich und auch die Lebenswelt von Grundschulkindern prägt. Kinder wachsen heute in einer Umwelt auf, in der KI in Form von algorithmischen Empfehlungssystemen, Sprachassistenztechnologien, Lern-Apps oder Spielzeugen allgegenwärtig ist (Irion & Kuzu, 2025). Damit erleben sie erstmals, dass Maschinen in kognitiv-kreativen Bereichen menschliche Leistungen übertreffen können – eine Erfahrung, die tiefgreifende Implikationen für Lernprozesse, Motivation, Identitätsentwicklung und soziale Beziehungen mit sich bringt (Hoffman et al., 2021). Angesichts dieser Dynamiken gewinnt die Frage nach einer frühzeitigen und systematischen Integration von KI-Bildung in der Primarstufe besondere Relevanz.

Ausgangspunkt des Vortrags ist das Positionspapier "Künstliche Intelligenz in der Grundschule", das die Autor:innen im Auftrag der DGfE-Kommission Grundschulforschung und Pädagogik der Primarstufe im Sommer 2025 verfasst haben und das auf der Kommissiontagung im September verabschiedet und dann veröffentlicht werden soll. Im Zentrum der Argumentation steht die These, dass die Gestaltung von KI-bezogenen Lehr- und Lernprozessen in der Primarstufe eine Kernaufgabe schulischer Grundbildung ist. Eine grundlegende digitale und KI-bezogene Bildung ist Voraussetzung für die Entwicklung von informationsethischer Urteilsfähigkeit, algorithmischer Literalität und

inklusionsorientierter Partizipationskompetenz. Diese Fähigkeiten werden dabei als unabdingbar für eine selbstbestimmte gesellschaftliche Teilhabe in einer zunehmend KI-dominierten Lebenswelt angesehen. Mit der Stellungnahme geht es darum, einen Beitrag zur Versachlichung der Debatte um KI in der Grundschule und zur Verortung des Themas in einem bildungspolitisch, pädagogisch und wissenschaftlich fundierten Rahmen zu leisten.

Vor diesem Hintergrund werden fünf zentrale Fokusbereiche vorgestellt, die als Impulse für die Grundschulbildung und die Grundschulforschung liefern können: (1) Erweiterung der Digitalen Grundbildung um AI-Literacy; (2) Lehren und Lernen in einer KI-geprägten Welt; (3) Inklusion und Verringerung von sozialen Ungleichheiten durch Künstliche Intelligenz; (4) Professionalisierung im Kontext von Künstlicher Intelligenz; (5) Grundschulbezogene Forschung zu Künstlicher Intelligenz.

- (1) Erweiterung der Digitalen Grundbildung um AI-Literacy: Grundschulkinder benötigen nicht nur ein funktionales, sondern auch ein kritisches Verständnis von KI. Dies umfasst sowohl technisches Basiswissen über Funktionsweisen algorithmischer Systeme als auch die Fähigkeit, gesellschaftliche, ethische und kulturelle Implikationen kritisch zu reflektieren (OECD, 2025).
- (2) Lehren und Lernen in einer KI-geprägten Welt: KI verändert nicht nur die Inhalte, sondern auch die Formen schulischen Lernens. Digitale Assistenzsysteme können Lernprozesse individuell begleiten (Schulz & Schmid-Meier, 2024), zugleich stellen sie Fragen nach pädagogischer Steuerung, Verantwortung und dem Verhältnis von menschlicher und maschineller Unterstützung im Unterricht.
- (3) Inklusion und Verringerung sozialer Ungleichheiten durch Künstliche Intelligenz: KI-Systeme bergen Potenziale zur Förderung von Teilhabe und Chancengerechtigkeit, beispielsweise durch adaptive Lernumgebungen oder barrierefreie Zugänge (Beudt et al., 2024). Gleichzeitig besteht die Gefahr der Reproduktion und Verstärkung sozialer Ungleichheiten, wenn algorithmische Verzerrungen und ungleiche Zugänge nicht adressiert werden.
- (4) Professionalisierung im Kontext von Künstlicher Intelligenz: Lehrkräfte benötigen Kompetenzen, um KI im Unterricht reflektiert einsetzen,

Potenziale einschätzen und Risiken erkennen zu können. Dies erfordert eine Erweiterung der Lehrkräftebildung und Fortbildungsangebote um KI-bezogene Inhalte sowie eine vertiefte Auseinandersetzung mit didaktischen, ethischen und gesellschaftlichen Dimensionen.

(5) Grundschulbezogene Forschung zu Künstlicher Intelligenz: Angesichts der Neuartigkeit und Dynamik von KI-Einflüssen ist eine intensivere empirische Forschung erforderlich, die Perspektiven von Kindern, Lehrkräften und Eltern einbezieht. Forschungsdesiderata betreffen u. a. Fragen der Identitätsentwicklung, Lernmotivation, Beziehungsgestaltung sowie die langfristigen Auswirkungen von KI-Interaktionen auf die Persönlichkeitsentwicklung von Kindern.

Bezogen auf alle zuvor ausgeführten Fokusbereiche steht die Grundschulforschung vor der Aufgabe, in den spezifisch grundschulpädagogischen und -didaktischen Fragen zügig zu fundierter empirischer Evidenzbasierung zu kommen. Im Vortrag werden die fünf Fokusbereiche illustriert durch aktuelle und geplante grundschulpädagogische Forschungsprojekte.

Referenzen

Beudt, S., Feichtenbeiner, R., Blanc, B. & Pinkwart, N. (2024). Inklusion durch künstliche Intelligenz? Zur Rolle und Bedeutung KI-gestützter Assistenztechnologien für Menschen mit Behinderungen. In K. Gondlach, B. Brinkmann, M. Brinkmann & J. Plath (Hrsg.), Regenerative Zukünfte und künstliche Intelligenz. Band 2: PEOPLE (S. 143–161). Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-44852-3_12

Hoffman, A., Owen, D. & Calvert, S. L. (2021). Parent Reports of Children's Parasocial Relationships with Conversational Agents: Trusted Voices in Children's Lives. Human Behavior and Emerging Technologies, 3(4), 606–617. https://doi.org/10.1002/hbe2.271

Irion, T. & Kuzu, T. E. (2025). Künstliche Intelligenz in der Primarstufe – Chancen, Herausforderungen, Perspektiven. Grundschule aktuell, 170, 3–6. https://doi.org/10.25656/01:33137

Organisation für wirtschaftliche Zusammenarbeit und Entwicklung [OECD] (2025). Empowering learners for the age of AI: An AI literacy framework for primary and secondary education (Review draft).

Verfügbar unter https://ailiteracyframework.org/wp-content/uplo-ads/2025/05/AILitFramework_ReviewDraft.pdf [Zugriff am 28.08.2025].

Schulz, L. & Schmid-Meier, C. (2024). Assistive Technologien und Künstliche Intelligenz: Ein KI-Kompetenzmodell zum Einsatz im Klassenzimmer. #schuleverantworten, 1, 35-43. https://doi.org/10.53349/schuleverantworten.2024.i1.a397

Informatikunterricht zum Thema Künstliche Intelligenz: Einblicke in die praktische Umsetzung in Bayern

Annabel Lindner

Friedrich-Alexander-Universität Erlangen-Nürnberg annabel.lindner@fau.de

Seit dem Schuljahr 2023/24 ist das Thema "Künstliche Intelligenz" Bestandteil des Informatiklehrplans der 11. Jahrgangsstufe an bayerischen Gymnasien (Kompetenzerwartungen vgl. ISB, 2025). Hierbei ist das Thema für viele Lehrkräfte "Neuland", da es bisher keinen Bestandteil der bayerischen Informatiklehrkräfteausbildung darstellte. Vor diesem Hintergrund und angesichts der Natur von Künstlicher Intelligenz als gesellschaftlich transformatives Thema mit großer inhaltlicher Breite und fachlicher Komplexität stellt die Vorbereitung auf dieses Unterrichtsthema für die Lehrkräfte eine besondere Herausforderung dar. Während sich in der fachlichen Vorbereitung zu KI die Bedeutung von tiefgehenden, informatischen Fort- und Weiterbildungsangeboten zeigt (Lindner, 2025), liegen zur praktischen Umsetzung im Informatikunterricht bisher wenige Einblicke vor.

Um die ersten Erfahrungen der Lehrkräfte mit dem Unterrichten des Themas Künstliche Intelligenz zu erheben, wurde ein Online-Fragebogen mit offenen und geschlossenen Elementen (Single Choice und Likert-Skala) konzipiert. Der Fokus lag hierbei bei den ersten Unterrichtsversuchen eingesetzten Materialien und den als besonders herausfordernd wahrgenommenen Themenaspekten. Zudem wurden Selbstwirksamkeitsaspekte sowie Fortbildungsverhalten und -bewertungen evaluiert, diese werden jedoch in der vorliegenden Auswertung nicht einbezogen. Der Fragebogen wurde von 38 freiwilligen Lehrkräften (2024:25, 2025:13) Ende des Schuljahrs eigeninitiativ ausgefüllt (vollständige Fragebögen: 29) und mittels zusammenfassender, qualitativer Inhaltsanalyse mit induktiver Kategorienbildung (Mayring, 2015) und quantitativen Ergänzungen ausgewertet.

Die Befragung identifiziert fünf zentrale Quellen für Materialien zur Gestaltung des KI-Unterrichts der 11. Jahrgangsstufe: Schulbücher, Fortbildungsmaterialien, ISB-Handreichung zum Thema KI (ISB, 2023),

Tools & Webseiten sowie Unplugged-Unterrichtsmaterialien (Bell & Vahrenhold, 2018). Ein Großteil der genannten Tools & Webseiten sowie des Unplugged-Materials wurden dabei in Fortbildungsveranstaltungen vorgestellt und empfohlen. Dies zeigt die zentrale Rolle von Fortbildungsveranstaltungen für die Vorbereitung neuer Unterrichtsthemen: Sie dienen als Quelle für Unterrichtsmaterial und allgemeine Orientierung für die Unterrichtsgestaltung und haben so maßgeblichen Einfluss auf das didaktische Vorgehen der Lehrkräfte.

Die Materialauswahl beruht überwiegend auf folgenden Gründen: Unterrichtseignung und gute didaktische Aufbereitung, intuitive "Bedienbarkeit", Schüleraktivierung, Spaß und Erfolgserlebnisse, hohe Anschaulichkeit, Anwendungs- & Lebensweltbezug, Verständlich- & Nachvollziehbarkeit, adäquate Visualisierungen sowie auf der pragmatischen Begründung, dass es sich um (aus Fortbildungen) bekannte, leicht verfügbare Materialien handelt. Insgesamt schildern die Lehrkräfte Zufriedenheit mit den genutzten Materialien und streben deren Wiederverwendung an, obwohl in einem Drittel der Fälle Materialanpassungen erwägt werden. Die meistgenannte geplante Veränderung repräsentiert die Ergänzung, Erweiterung oder Aktualisierung des Materials. Überwiegend werden die Materialien als gut bis sehr gut förderlich für den Kompetenzerwerb der Schülerinnen und Schüler und als (sehr) ansprechend beurteilt.

In Bezug auf die Herausforderungen des KI-Lehrplans bewerteten die Lehrkräfte die sechs im Curriculum definierten Kompetenzerwartungen hinsichtlich ihres unterrichtlichen/didaktischen Schwierigkeitsgrades. Dabei erstellten sie eine Rangliste der Aspekte vor und nach dem Unterrichten und begründeten ihre Einschätzungen zum aus ihrer Sicht schwierigsten Thema. 9 von 31 Lehrkräften betrachten die Analyse von Trainingsdaten und Parametern anhand eines Werkzeugs vor dem Unterricht als besonders herausfordernd, gefolgt von der Implementierung bzw. Simulation des Neurons (8-mal). Obwohl bei etwa der Hälfte der Teilnehmenden nach der Unterrichtserfahrung ein anderes Thema Rang 1 belegt als vorher, werden diese Themenaspekte auch nach dem Unterrichten als besonders anspruchsvoll eingeschätzt (10- bzw. 9-mal Rang 1 bei 30 Teilnehmenden). Die Begründungen der Lehrkräfte für ihre Schwierigkeitseinschätzungen sind vielfältig. Für die Analyse von Trainingsdaten und Parametern anhand eines Werkzeugs ist zentral, dass dieser Inhaltsaspekt fachlich komplex und das Verständnis desselben für die Schülerinnen und Schüler herausfordernd ist. Nach dem Unterricht kommt der Umstand, dass geeignete Werkzeuge sowie praktische Umsetzungsmöglichkeiten fehlen oder nicht ausreichend sind, als wichtige Begründung hinzu. Bei der Implementierung bzw. Simulation des Neurons stellen vor und nach dem Unterricht die geringen Programmierkenntnisse der Schülerinnen und Schüler den zentralen Bewertungsgrund dar.

Diese Ergebnisse zeigen die Bedeutung von KI-Fortbildungen nicht nur für die fachliche und didaktische Qualifikation von Informatiklehrkräften, sondern auch bei der Bereitstellung von Unterrichtsmaterialien. Fortbildungen müssen qualitativ hochwertige, praktisch getestete, auf die Lehrplanvoraussetzungen abgestimmte und einfach im Unterricht einsetzbare Materialien und Tools, bereitstellen und diese insbesondere auch didaktisch reflektieren. Zudem wird deutlich, dass im Kontext der ersten Unterrichtsversuche, trotz umfassender Vorbereitung, Herausforderungen didaktischer Natur, ebenso wie bezogen auf das Wissen der Schülerinnen und Schüler und die Materialgestaltung bestehen bleiben, bei deren Bewältigung die Lehrkräfte Unterstützung benötigen. Hier können Fortbildungsanbieter ansetzen, indem Lehrkräfte beispielsweise bei ersten Unterrichtsversuchen begleitet werden und didaktische Aspekte in einer Community of Practice aufgearbeitet werden. Im Sinne der Schulentwicklung machen transformative Themen wie KI für eine erfolgreiche Unterrichtsgestaltung die enge Zusammenarbeit von Fortbildungsinstitutionen und Lehrkräften unbedingt erforderlich.

Referenzen

Bell, T., & Vahrenhold, J. (2018). *CS Unplugged—How Is It Used, and Does It Work?* In H.-J.Böckenhauer, D. Komm & W. Unger (Hrsg.), Adventures Between Lower Bounds and Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday (S. 497–521). Springer International Publishing, doi: 10.1007/978-3-319-98355-4_29.

Lindner, A. (2025). Transformative Topics in K–12 CS Education: Characteristics, Facets, Challenges and Implications – An Exemplary Analysis of the Topic of Artificial Intelligence [Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)], doi: 10.25593/OPEN-FAU-2150.

Mayring, P. (2015). Qualitative Inhaltsanalyse. Grundlagen und Techniken, 12. Aufl., Weinheim: Beltz.

Staatsinstitut für Schulqualität und Bildungsforschung (ISB) (2023). Handreichung zum Lernbereich "Künstliche Intelligenz" in der Jahrgangsstufe 11, https://www.isb.bayern.de/schularten/gymnasium/faecher/informatik/handreichung-kuenstliche-intelligenz/.

Staatsinstitut für Schulqualität und Bildungsforschung (ISB) (2025). *LehrplanPLUS Bayern*, https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/11/informatik/mug_swg_sg bzw. https://www.lehrplanplus.bayern.de/fachlehrplan/gymnasium/11/informatik/ntg.

Intelligent Tutoring Systems: Individualized Learning Support for Students and Enriching Perspectives on Al-Tools in Education for Teachers

Alisa Véronique Münsterberg, Luca Steltmann, Eva Jansohn, Adrian Völker, Mai Anh Vu & Ute Schmid Otto-Friedrich-University Bamberg <firstname.lastname>@uni-bamberg.de

Intelligent tutoring systems (ITS) have been researched and developed since the 1980ies to support individualized learning in specific domains (e.g., Graesser, Conley, & Olney, 2012). A typical ITS architecture is based on four modules: (1) Declarative as well as procedural knowledge of the learning domain is represented in an expert or domain module. This module is mostly realized as an expert system, that is, all learning tasks of interest can be solved in an automated way by this module. Often, this model is based on knowledge-based AI methods and therefore, the knowledge used and the problem solving steps taken by the model to solve a specific task are explicitly represented. (2) Information about the learning history as well as the current knowledge state of individual learners are represented in a student module. The students answer or problem solving trace for the current tasks are diagnosed based on the solution trace of the expert module. For declarative knowledge, student answers can be diagnosed based on an overlay of knowledge elements of the expert solution and the student solution. For procedural knowledge, expert rules are complemented with erroneous rules of an error library (Pavlik et al., 2013). Based on the diagnosis of missing knowledge elements or erroneous procedures, (3) tailored feedback is determined by the tutoring module. Feedback can be in form of simple hints as well as on worked-out examples (Zeller & Schmid, 2016) or Socratic dialogue (Favero et al., 2024). Furthermore, individualized learning paths as well as repetition strategies are determined within the tutoring module. (4) Finally, a user interface presents learning tasks as well as feedback to the learners. In contrast to simple edu-tech solutions which rely on databases for tasks, solutions and recordings of student performance, ITS often incorporate

different AI methods, especially knowledge-based methods for the domain module and machine learning for student modeling and determination of helpful learning paths. More recent research addressed who large language model (LLM) technologies can be incorporated in ITSs – from Chatbot functionalities for the user interface and for Socratic dialogue (Favero et al., 2024) over generation of word problems (Arnau-Blasco et al., 2024) to the evaluation of text (Seßler et al., 2024) or program code (Völker et al., 2025) generated by learners.

That is, ITS are powerful AI tools to support individualized learning for different educational levels from primary school to university and for a broad variety of domains from history (Carbonell, 2007) to programming. We propose that ITS are also suitable for AI literacy education of teacher training students and teachers. In our poster presentation we introduce a collection of ITS for teaching primary school mathematics (Arithmetic Zoo, `Rechenzoo´, see) as well as an ITS for teaching SQL programming (see https://cogsys.uni-bamberg.de/ITS/ for all ITSs). The Arithmetic Zoo ITSs allow learning algorithms for writing addition, subtraction, multiplication and division. Student misconceptions are identified based on an error library and feedback is given with structural analogous workedout examples (Münsterberg at al. 2025). LLM technologies based on template-based instructions are used to generate word problems for different domains with and without distractor values. The SQL-ITS (redSQirreL, Voelker et al. 2025) uses LLM technologies for evaluation of and feedback for student SQL code. All ITS are designed in such a way that math or computing competences are acquired in the context of specific problem solving settings, feedback is designed in such a way that students can experience self-efficacy and that acquisition of transferable knowledge is supported.

The Arithmetic Zoo has been introduced in an AI literacy course for primary school teacher training students in summer term 2025 at University of Bamberg. Basic concepts and methods of AI have been illustrated with the ITSs. The effect of our intervention has been evaluated with questionnaires (11-point Likert scales) at the beginning of the course, after our intervention, and at the end of the course (about two weeks later). The use of ChatGPT in class was rated as comparable across the three measurement points (M1=7.07, SD1=2.219; M2=7.69, SD2=2.414; M3=6.63,

SD3=2.156; rmANOVA not significant). ITS use was initially rated as equally useful as ChatGPT, but the intervention led to a higher rating (M1=7.00, SD1=2.138; M2=8.13, SD1=1.821; M3=8.19, SD1=1.905; not significant). Qualitative feedback from the participating students has been consistently positive and provided helpful suggestions for the design of our Arithmetic Zoo ITSs.

References

- Arnau-Blasco, J., Arevalillo-Herráez, M., Solera-Monforte, S., & Wu, Y. (2024,). Using large language models to support teaching and learning of word problem solving in tutoring systems. In *International Conference on Intelligent Tutoring Systems* (pp. 3-13). Cham: Springer Nature Switzerland.
- Carbonell, J. R. (2007). AI in CAI: An artificial-intelligence approach to computer-assisted instruction. *IEEE transactions on man-machine systems*, 11(4), 190-202.
- Crow, T., Luxton-Reilly, A., & Wuensche, B. (2018). Intelligent tutoring systems for programming education: a systematic review. In *Proceedings of the 20th Australasian computing education conference* (pp. 53-62).
- Favero, L., Pérez-Ortiz, J. A., Käser, T., & Oliver, N. (2024). Enhancing critical thinking in education by means of a Socratic chatbot. In *International Workshop on AI in Education and Educational Research* (pp. 17-32). Cham: Springer Nature Switzerland.
- Graesser, A. C., Conley, M. W., and Olney, A. (2012). Intelligent tutoring systems. In Harris, K. R., Graham, S., Urdan, T., Bus, A. G., Major, S., and Swanson, H. L., editors, *APA Educational Psychology Handbook*, volume 3, page 451–473. American Psychological Association.
- Münsterberg, A., Jansohn, E., Völker, A. & Schmid, U. (2025). KI in der Grundschule: Sensibilisierung von Lehramtstudierenden für Chancen und Risiken von KI-Tools. Tagung "Digitale Transformation für Schule und Lehrkräftebildung gestalten" 2025, Potsdam, Germany.
- Pavlik, P. I., Brawner, K., Olney, A., & Mitrovic, A. (2013). A review of student models used in intelligent tutoring systems. *Design recommendations for intelligent tutoring systems*, 1, 39-68.
- Seßler, K., Fürstenberg, M., Bühler, B., & Kasneci, E. (2025). Can AI grade your essays? A comparative analysis of large language models and

- teacher ratings in multidimensional essay scoring. In *Proceedings of the 15th International Learning Analytics and Knowledge Conference* (pp. 462-472).
- Völker, A., Thaler, A. M., Summerer, M. T., & Schmid, U. M. (2025). Large Language Models as Domain-independent Dialogue Component for Intelligent Tutoring Systems—Teaching Concepts of SQL. *Proceedings of the Second Work shop on Artificial Intelligence for Artificial Intelligence Education (AI4AI Learning 2024)*.
- Zeller, C. and Schmid, U. (2016). Automatic generation of analogous problems to help resolving misconceptions in an intelligent tutor system for written subtraction. In Coman, A. and Kapetanakis, S., editors, Workshops *Proceedings for the Twenty-fourth International Conference on Case-Based Reasoning* (ICCBR 2016), volume 1815 of CEUR Workshop Proceedings, pages 108–117. CEUR-WS.org.

Pionierinnen für die Informatik – Ein Programm zur Inspiration und Orientierung zum Informatikstudium für Schülerinnen

Franziska Paukner, Caroline E. Oehlhorn & Ute Schmid Otto-Friedrich-Universität Bamberg <firstname.lastname>@uni-bamberg.de

Der Themenbereich Künstliche Intelligenz gewinnt mit alltagsnahen Anwendungen rasant an Aufmerksamkeit in der öffentlichen Wahrnehmung. Neben wirtschaftlichen Einrichtungen profitieren auch Privatpersonen von dieser Entwicklung. Besonders bei Jugendlichen lässt sich ein Interessensanstieg beobachten: in einer deutschen Umfrage zeigt sich bei Jugendlichen im Alter von 12 bis 19 Jahren ein deutlich gestiegenes Interesse an neuen Technologien aus diesem Bereich. 83% der Befragten gaben an, die Anwendung Chat GPT zu kennen und auch deren Bedeutung zu kennen, unter den befragten Mädchen gaben dies 79% an und 51% von ihnen hatten Chat GPT bereits mindestens einmal genutzt. Darüber hinaus gaben 25% aller Befragten an, neben Chat GPT auch andere KI-Anwendungen zu nutzen [6]. Um dieser stark wachsenden Nachfrage gerecht zu werden und die (Weiter-) Entwicklung in der KI Landschaft zu sichern, braucht es mehr Fachkräfte mit einer fundierten Ausbildung in Informatik die in Zukunft gute Modelle konzipieren und trainieren.

Im Gegensatz dazu steht die nur mäßig steigende Anzahl an Informatikstudierenden, ganz besonders der stagnierende Anteil an Frauen im Studiengang Informatik der europaweit zwischen 10% und 20% liegt [3]. Mit Blick auf die Entwicklung von vorurteilsfreien und fairen Modellen und das Training mit qualitativen Daten, werden Frauen mehr denn je im Informatik-Bereich gebraucht [5].

Um dieser Herausforderung zu begegnen sollte das steigende Interesse von Schülerinnen an KI-Themen genutzt werden und in ein Interesse an einem Informatikstudium transferiert werden. Um dies zu erreichen konzipieren wir im Rahmen des vom BMFTR geförderten Projekts PIONIERIN, Hands-On Workshops für Schülerinnen ab 17 Jahren, die das Thema KI in den Fokus setzen und tiefgehende Lerninhalte, wie sie auch Bestandteil von späteren Universitätskursen sind, zu vermitteln.

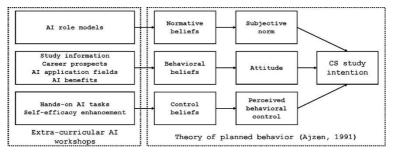


Abbildung 1: Das dem Workshop Design zugrundeliegende Modell, basierend auf der Theory of Planned Behaviour (TPB) [1]

Unser Forschungsmodel (Abb. 1) baut dabei auf der Theory of Planned Behavior (TPB) nach Ajzen auf [1]. Darin wird beschrieben wie die Intentionen einer durch die eigene subjektive Norm, Einstellung und wahrgenommene Verhaltenskontrolle gefördert werden kann und damit die Absicht, Informatik zu studieren, bestärkt werden kann. Basierend auf dem TPB-Modell entwickeln wir außerschulische Workshops, die gezielt diese drei Aspekte adressieren: durch den Einsatz geeigneter Role Models [4] [7], der Vorstellung von Studiengangs- und Berufsinformationen auch im Bezug auf KI-Anwendungsgebiete für das Gemeinwohl [2], wie z.B. im medizinischen Bereich, und KI-Wissensvermittlung hin zu einem tiefgehenden Verständnis der darunterliegenden Konzepte.

Die entwickelten Workshops werden über einen Zeitraum von zwei Jahren, beginnend im Sommer 2025 für jeweils bis zu 15 Schülerinnen angeboten. Durch den Einsatz von Vorher-Nachher-Fragebögen werden die erwarteten positiven Auswirkungen auf die Überzeugungen der Teilnehmerinnen gemäß der TPB gemessen.

Referenzen

- [1] Icek Ajzen. 1991. The theory of planned behavior. Organizational Behavior and Human Decision Processes 50, 2 (1991), 179–211. doi:10.1016/0749-5978(91)90020-T
- [2] Bettina Berendt. 2019. AI for the Common Good?! Pitfalls, challenges, and ethics pen-testing. Paladyn, Journal of Behavioral Robotics 10, 1 (2019), 44–65.

- [3] Tiziana Catarci, Barbara Polidori, Daniel Raffini, and Paola Velardi. 2023. A Greed(y) Training Strategy to Attract High School Girls to Undertake Studies in ICT. In Universal Access in Human-Computer Interaction, Margherita Antona and Constantine Stephanidis (Eds.). Springer Nature Switzerland, Cham, 223–233.
- [4] Nilanjana Dasgupta. 2015. Role Models and Peers as Social Vaccine to Enhance Women's Self Cocept in STEM. ASCB Nesletter August 8, 7 (Aug. 2015), 8–12. https://www.ascb.org/wp-content/up-loads/2015/12/August-NL-2015.pdf
- [5] Eduard Fosch-Villaronga and Adam Poulsen. 2022. Diversity and inclusion in artificial intelligence. Law and artificial intelligence: Regulating AI and applying AI in legal practice (2022), 109–134.
- [6] Medienpädagogischer Forschungsverband Südwest mpfs. 2024. JIM-Studie 2024, Jugend, Information, Medien. https://mpfs.de/studie/jim-studie-2024/. abgerufen am 16.05.2025. [7] Finzel, B., Deininger, H., & Schmid, U. (2018). From beliefs to intention: Mentoring as an approach to motivate female high school students to enrol in computer science studies. In Proceedings of the 4th Conference on Gender & IT (pp. 251-260)

Anmerkung der Autor*innen:

Die im Poster präsentierten Inhalte basieren auf einem akzeptierten Beitrag der Autor*innen bei der diesjährigen Konferenz womENcourage der Association for Computing Machinery (ACM). Die Forschung findet im Kontext des BMBF-Verbundprojekts PIONIERIN (*Programm zur Inspiration und Orientierung zum Informatikstudium für Schülerinnen, https://www.uni-bamberg.de/kogsys/forschung/projects/bmftr-projekt-pionierin/*) statt.

KI (be)greifen – Spielerisches Entdecken grundlegender Konzepte aus dem Bereich Künstliche Intelligenz (KI)

Eva-Maria Weiss & Ute Schmid

Otto-Friedrich-Universität Bamberg <firstname.lastname>@uni-bamberg.de

In einer zunehmend digitalisierten Welt kommen bereits Kinder im Grundschulalter mit Anwendungen in Kontakt, die Künstliche Intelligenz (KI) integrieren. Damit sie die Potenziale dieser Technologien nutzen und ihre Risiken reflektieren können, benötigen sie ein grundlegendes Verständnis ihrer Funktionsweisen. Das Bildungssystem steht dabei vor der Herausforderung, junge Lernende frühzeitig auf einen souveränen und verantwortungsbewussten Umgang mit KI vorzubereiten. Außerschulische Bildungsangebote können hierbei eine zentrale Rolle spielen, indem sie schulisches Lernen ergänzen, praktische Erfahrungen ermöglichen und Bildungsungleichheiten abbauen.

Im Rahmen eines BMFTR geförderten Forschungsprojekts der Universität Bamberg wird ein innovatives außerschulisches Lernangebot für Kinder zwischen sechs und zwölf Jahren entwickelt. Ziel ist es, durch spielerisch gestaltete Lernmodule zentrale KI-Kompetenzen zu vermitteln und ein grundlegendes Verständnis für die Funktionsweisen von KI-Methoden aufzubauen. Abstrakte Konzepte werden mithilfe greifbarer analoger Materialien erfahrbar gemacht und mit digitalen Anwendungen verknüpft. Die Module führen schrittweise in zentrale informatische Prinzipien ein – darunter das EVA-Modell, digitale Repräsentation, Algorithmen, sowie Datenkompetenz. Darauf aufbauend werden grundlegende Verfahren aus dem maschinellen Lernen wie Entscheidungsbäume, Perzeptron und neuronale Netze behandelt. Anhand eines Moduls zur Bilderkennung mit Faltungsnetzen werden zentrale Verfahren wie Faltung und Pooling spielerisch und anschaulich vermittelt. Generative KI wird insbesondere über direkte Anwendung erfahrbar gemacht und bietet Anlass zur Reflexion und kritischen Auseinandersetzung.

Besonderer Wert wird auf die Förderung kritischen Denkens gelegt – etwa im Umgang mit KI-generierten Inhalten, bei der Bewertung von Datenqualität sowie bei der Reflexion von Generalisierungsfehlern und algorithmischer Unfairness. Durch die Verbindung anschaulicher Lernmaterialien, interaktiver Spiele und praxisnaher Anwendungen entsteht ein niedrigschwelliges Bildungsangebot, das Kindern ein reflektiertes Verständnis von Künstlicher Intelligenz vermittelt und ihnen ermöglicht, zentrale Grundlagen digitaler Mündigkeit zu erwerben. Die KI-Lernmodule sind dabei kindgerecht und didaktisch reduziert gestaltet, ohne fachliche Präzision einzubüßen, und legen großen Wert darauf, die Entstehung von Fehlkonzepten zu vermeiden.

Referenzen

- 1. Losch, D., Jaschke, S., Michaeli, T., Opel, S., Schmid, U., Seegerer, S., Stechert, P. (2025). Was alle über Künstliche Intelligenz wissen sollen und wie KI-bezogene Kompetenzen in der Schule entwickelt werden können. Informatik Spektrum.
- Schmid, U., Gärtig-Daugs, A., Müller, L., Werner, A. (2021). Grundkonzepte des Maschinellen Lernens für die Grundschule - Algorithmen, Biases, Generalisierungsfehler.GI-Jahrestagung2021: 1611-1623.
- Ute Schmid (2025). Grundkompetenzen im Bereich Künstliche Intelligenz (AI Literacy). In: Gerold Brägger & Hans-Günter Rolff (Hrsg.) Handbuch: Lernen mit digitalen Medien, 3. Auflage. Beltz.

Automatic Feedback Generation for Data Visualization Exercises

Jona Wessendorf, Jesper Dannath & Benjamin Paaßen

Faculty of Technology, Bielefeld University
jona.wessendorf1@uni-bielefeld.de

{jdannath,bpaassen}@techfak.uni-bielefeld.de

Motivation

Feedback plays a crucial role in learning programming, as programming is a practical skill that must be actively developed (McBroom, Koprinska, and Yacef 2021) In the context of data science and machine learning, visualization tasks such as creating plots of datasets and models are particularly important. Although extensive research exists on automating hints and feedback in programming in general (McBroom, Koprinska, and Yacef 2021), little attention has been given to automated feedback in visualization tasks.

Recent studies highlight large language models (LLMs) as promising feedback generators. However, LLMs may produce inaccurate or overly verbose explanations and sometimes reveal full solutions. Accordingly, alternative approaches that are better aligned with pedagogical goals and domain knowledge may be more suitable.

Contribution

We present **RAVEN**, a framework that allows instructors to write highlevel, testable rules for Matplotlib tasks, and compare it to a **GPT-40 baseline**. We make two contributions:

- 1. We introduce RAVEN as a rule-based system for precise, test-aligned feedback on visualization exercises.
- We empirically compare RAVEN with GPT-40, highlighting the strengths and limitations of rule-based versus generative approaches.

Approach

RAVEN enables instructors to specify expected properties of student visualizations (e.g., "a scatter plot with labeled axes") using test-like assertions. Instead of directly inspecting graphical output, the framework parses plotting calls into a structured representation and evaluates them against these rules.

For comparison, we used GPT-40 prompted as a coding tutor. The model was asked to judge the correctness of student solutions and provide one concise hint if errors were found. It was provided with the task description and the student code. This represents a realistic, scalable application of LLMs for formative feedback.

Evaluation Design

We collected **80 student solutions** from three visualization tasks taken from a data mining university course:

- Task 1: Two scatter plots with specific axes.
- Task 2: A bar plot with error bars.
- Task 3: A scatter plot without title or label requirements.

Solutions included authentic student submissions, handcrafted examples, and LLM-generated solutions to reflect common mistakes. This ensured diversity across correct and incorrect approaches.

Outputs from RAVEN and GPT-40 were evaluated using four metrics:

- 1. **Precision** and **Recall** for detecting erroneous submissions.
- Correctness, capturing whether feedback accurately identified the mistake. This aligns with the "knowledge about mistakes" (KM) category from Keuning, Jeuring, and Heeren (2018) and task-level feedback "How am I going?" from Hattie and Timperley (2007).
- 3. **Helpfulness**, assessing whether feedback guided the next steps for improvement. This corresponds to the "knowledge of how to proceed" (KH) category from Keuning, Jeuring, and Heeren

(2018) and to process-level feedback "Where to next?" from Hattie and Timperley (2007).

4. **Solution Presence**, indicating whether feedback directly revealed the fix, which can undermine self-regulation (Hattie and Timperley 2007).

Correctness, helpfulness, and solution presence were evaluated only on the student solutions that contained errors and that were correctly identified as such. For each solution, correctness, helpfulness, and solution presence were annotated by hand.

Results and Interpretation

Across all tasks, both systems were able to identify incorrect solutions with high reliability.

Detection accuracy. RAVEN achieved higher precision (0.92) than GPT-40 (0.80) and perfect recall (1.00 vs. 0.97). This indicates that RAVEN almost never misclassified correct submissions and detected all erroneous ones. GPT-40 performed slightly worse, with more false positives.

Feedback quality. RAVEN provided high correctness (0.98 vs. GPT-4o's 0.84). However, GPT-4o's explanations were rated as more helpful (0.84 vs. RAVEN's 0.63). This reflects the trade-off between precise but minimal rule-based feedback and more elaborate, sometimes overly detailed LLM output. By design, RAVEN never revealed explicit solutions, while GPT-4o did so in about 8% of cases. For formative settings where revealing solutions undermines learning, this is a key difference.

Overall, the evaluation shows a complementary pattern: RAVEN exhibits high correctness and no solution presence, while GPT-4o's hints are rated as more helpful but less correct and sometimes reveal the solution.

Limitations

The study is limited by three factors: (i) annotation was performed by a single rater, (ii) only one LLM (GPT-40) was included as a baseline, and (iii) tasks were limited to three Matplotlib exercises. Future work should

expand to larger task sets, include more annotators, and compare multiple LLMs or hybrid approaches.

References

Hattie, John, and Helen Timperley. 2007. "The Power of Feedback." *Review of Educational Research* 77 (1): 81–112. https://doi.org/10.3102/003465430298487.

Keuning, Hieke, Johan Jeuring, and Bastiaan Heeren. 2018. "A Systematic Literature Review of Automated Feedback Generation for Programming Exercises." *ACM Trans. Comput. Educ.* 19 (1). https://doi.org/10.1145/3231711.

McBroom, Jessica, Irena Koprinska, and Kalina Yacef. 2021. "A Survey of Automated Programming Hint Generation: The HINTS Framework." *ACM Comput. Surv.* 54 (8). https://doi.org/10.1145/3469885.

KI-gestützte Histopathologie: Handlungsorientierter Unterricht zur Gewebeanalyse

Viktoria Zoeger, J. Redlich, S. Diekemann, B. Hofmann, A.Rörich & S.Tölken

v.zoeger2@schule.bremen.de

Die Integration von Maschinellem Lernen (Machine Learning) in die medizinische Diagnostik erfordert ein fundiertes Verständnis der zugrundeliegenden Algorithmen, weil nur so sichergestellt werden kann, dass die entwickelten Modelle zuverlässig, transparent und ethisch vertretbar eingesetzt werden. Ohne dieses Verständnis besteht die Gefahr, dass medizinische Entscheidungen auf fehlerhaften oder nicht nachvollziehbaren Ergebnissen basieren, was potenziell schwerwiegende Folgen für Patienten haben kann. In Kooperation mit dem Fraunhofer-Institut für Digitale Medizin MEVIS aus Bremen² und der Oberschule Waller Ring¹ (Gymnasiale Oberstufe), unterstützt durch die International Fraunhofer Talent School Bremen: STEAM Imaging^{5,6} und das BMFTR-geförderte Projekt #MOIN^{4,7} ist das neue Oberstufenprofil "Digitale Medizin"^{3,8} geplant und in einer Pilotphase erprobt worden. Es vermittelt u. a. die Relevanz von Informatik und Mathematik für die Biologie und eröffnet Berufsperspektiven im Gesundheitswesen, die über ein klassisches Medizinstudium hinausgehen. Im Rahmen der Pilotphase ist im Schuljahr 24/25 ein dreiteiliges fächerübergreifendes (Biologie, Informatik und Mathematik) KI-Modul für die Einführungsphase der gymnasialen Oberstufe konzipiert und getestet worden. Durch praktische Anwendung in der Brustkrebsdiagnostik demonstriert dieses Konzept die Übertragung komplexer medizinischer KI-Anwendungen in den fächerübergreifenden Bildungskontext. Die modulare Struktur gewährleistet flexible Anpassungsmöglichkeiten an verschiedene Lerngruppen und technische Ausstattungen.

Struktur und Inhalte:

Das dreiteilige Unterrichtskonzept führt systematisch von der grundlegenden Analyse histologischer Aufnahmen von Brustgewebe bis zur

praktischen Umsetzung in einer KI-basierten Anwendung mithilfe eines Machine-Learning-Modells¹⁰ zur histopathologischen Auswertung von Brustkrebsgewebe.

In der ersten Phase analysieren Lernende nach einer Einführung in die biologischen Grundlagen der Auswertung von Brustgewebeaufnahmen aus einer Biopsie histologische Strukturen von gesundem Brustgewebe (Bindegewebe, Drüsengewebe und Fettgewebe). Die Lernenden versuchen in den Aufnahmen die drei Gewebearten zu markieren und daraus anschließend einen regelbasierten Erkennungsalgorithmus auf Papier zu entwerfen. Diese manuelle Herangehensweise schafft zunächst das notwendige Verständnis für die Komplexität der histologischen Bildanalyse.

Die zweite Phase simuliert den maschinellen Lernprozess durch analoge Trainings- und Testverfahren mit physischen Bildmaterialien. Die Lernenden klassifizieren in Gruppenarbeit normale und maligne Gewebestrukturen, wodurch die Funktionsweise von Trainingsdaten und Modellvalidierung veranschaulicht wird. Die Trainings- und die Testphase eines maschinellen Lernvorgangs können so erschlossen werden. Bei der Simulation des überwachten Lernens werden die ausgedruckten Bilder händisch von normalen und bösartig veränderten Drüsengängen voneinander getrennt. Lernziele: Verständnis für Trainings- und Testphase im ML, Entwicklung von Merkmalserkennung und Klassifikationsstrategien, Erfahrung mit Fehleranalyse und Modellvalidierung.

Teil 1 - Training (Arbeitsauftrag I):

- Lernende sortieren vorklassifizierte Trainingsbilder auf Papier in drei Kategorien: Normal, Tumorvorstufe, Bösartiger Tumor
- Systematische Merkmalserkennung und das Festhalten in einer vorstrukturierten Tabelle
- Identifikation von Gemeinsamkeiten und Unterschieden innerhalb der jeweiligen Gewebearten

Teil 2 - Test (Arbeitsauftrag II):

- Klassifikation von 15 unbekannten Testbildern basierend auf erlernten Merkmalen: die Schülerinnen und Schüler betrachten die Testdaten und ordnen jedes Bild anhand der Merkmale aus der Trainingsphase zu jeweils einer der Bezeichnungen: Normal, Tumorvorstufe, und bösartiger Tumor zu.
- Selbstevaluation durch Abgleich mit Lösungsschlüssel

Abbildung 1: Händisches Klassifizieren der Gewebeaufnahmen

Die abschließende dritte Implementierungsphase nutzt Machine Learning for Kids¹⁰ als frei zugängliche ML-Entwicklungsumgebung. Die Integration in die Entwicklungsumgebung Scratch¹¹ (bereits aus dem Informatikunterricht bekannt) ermöglicht eine anschließende visuelle Programmierung einer Anwendung, die digital vorliegende Bilder aus der zweiten Phase automatisch erkennen soll. Es werden folgende Arten der Histologie-Bilder (aus der öffentlich zugänglichen Datenbank BRACS Dataset⁹) für das ML-Training verwendet: normale Drüsengänge, Tumorvorstufe und bösartiger Tumor.

Die dritte Phase gliedert sich in folgende praktische Arbeitsaufträge:

1. Trainingsphase: Trainieren eines KI-Bildklassifikators.

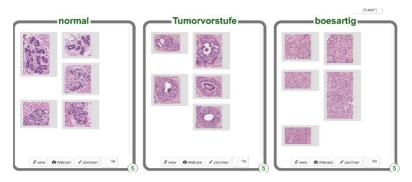


Abbildung 2: Trainingsansicht MLforKids¹⁰

2. Entwicklungsphase: Erzeugung des entsprechenden automatischen Feedbacks zum geladenen Bild in Scratch.

Abbildung 3: Ansicht der Implementierung in Scratch¹¹

3. Testphase: Testen der Anwendung mit den Bildern, die nicht zum Training verwendet wurden. Evaluation der Anwendung und Austausch in der Klasse.

Didaktischer Mehrwert:

- Gruppenbasiertes Lernen
- Hands-on Erfahrung mit ML-Tools
- Design und Implementierung einer medizinischen Anwendung

(fächerübergreifend Biologie, Informatik und Mathematik)
- Praktische Umsetzung des gesamten Machine Learning-Workflows
(Training → Test → Anwendung)

Referenzen

- 1 Oberschule am Waller Ring: https://www.oberschule-walle.de/ 2 Fraunhofer-Institut für Digitale Medizin MEVIS: https://www.me-vis.fraunhofer.de/de.html
- 3 Oberstufenprofil Digitale Medizin: https://www.oberschule-walle.de/gymnasiale-oberstufe/profil-fuer-digitale-medizin/4 #MOIN https://moin-mathe.de/
- 5 International Fraunhofer Talent School Bremen: STEAM Imaging: https://s.fhg.de/W2Kh
- 6 B. Hofmann. Linking Science and Technology with Arts and the Next Generation – The Experimental Artist Residency "STEAM Imaging." MIT Press Journal Leonardo 2021 <u>doi:10.1162/leon_a_01792</u>
- 7 Mathe? Ist doch cool! U Bremen Research Alliance (UBRA) Artikel über #MOIN Campus-Nachbarschaft-Sichtbarkeit: https://s.fhg.de/ys6C 8 Presseinformation: Schule von heute für das Gesundheitswesen von morgen: https://s.fhg.de/FXVj
- 9 Histologie-Bilder aus der öffentlich zugänglichen Datenbank BRACS Dataset von Brancati et al. (ICAR-CNR): https://www.bracs.icar.cnr.it/
 10 Machine Learning for Kids von Dale Lane (IBM), lizenziert unter Apache License 2.0: https://machinelearningforkids.co.uk/
- 11 Scratch von MIT Media Lab, lizenziert unter Creative Commons Attribution-ShareAlike 2.0: https://scratch.mit.edu/

Workshops

Lazy Brain oder lebendiges Denken? – Erleben, wie KI-Nutzung uns verändert

Oliver Kunkel

Bayerischer Elternverband e.V. (BEV) olikunkel@icloud.com

Künstliche Intelligenz kann Schüler:innen entlasten, inspirieren und unterstützen – sie birgt aber wie Social Media und Gaming zugleich die Gefahr des "Lazy Brain": Aufmerksamkeitsspanne, Selbstwirksamkeit und tieferes Verstehen verkümmern, wenn geistige Arbeit zu stark an Maschinen ausgelagert wird. In diesem Workshop erleben Lehrkräfte am eigenen Körper, wie sich Lernprozesse unter KI-Einfluss verändern – und wie sie durch vielkanalige, haptische und kommunikative Aufgaben menschliche Stärken aktivieren können.

In zwei kontrastierenden Arbeitsphasen wird eine komplexe Fragestellung bearbeitet. Die Vorgänge im Gehirn werden vergleichend beleuchtet und Erfahrungen sowie Konsequenzen diskutiert.

Ertrag für die Teilnehmenden:

Sensibilisierung für die Risiken übermäßiger KI-Nutzung bei Schüler:innen. Grundwissen zu den entsprechenden Vorgängen im Gehirn Konkrete Erfahrung, wie tiefes Lernen über Anstrengung, Embodiment und Dialog entsteht. Praktische Impulse, wie Unterricht so gestaltet werden kann, dass KI ergänzt, aber nicht ersetzt.

Motto: "Nur wer selbst denkt, verankert Wissen. KI kann helfen – aber Aktivierung ist der Schlüssel."

KI & Kunst – Kreativität im Zeitalter künstlicher Intelligenz

Matthias Müller KI macht Schule Matthias.mueller@ki-macht-schule.de

Wie verändert Künstliche Intelligenz die Welt der Kunst? In diesem Workshop von KI macht Schule tauchen wir in die Grundlagen von KI ein, erforschen gemeinsam, wie KI eigene Kunstwerke generiert und was das für unser Verständnis von Kreativität bedeutet. Wir diskutieren Fragen des Urheberrechts bei KI-generierten Bildern und schließen mit einer ethischen Auseinandersetzung ab: Welche Vorurteile können Bildgeneratoren transportieren und wie gehen wir im Unterricht verantwortungsvoll damit um? Der Workshop bietet Impulse, praktische Beispiele und Diskussionsanlässe für einen reflektierten Umgang mit KI im Kunstunterricht.

KI in der Grundschule: Mülltrennung mit KI-Systemen und Bilderkennung

Michaela Müller-Unterweger, Anne-Kathrin Jäger & Marc Berges

Friedrich-Alexander-Universität Erlangen-Nürnberg firstname.lastname>@fau.de

Durch die zunehmende Präsenz digitaler Technologien im Alltag, nimmt die Bedeutung der Förderung digitaler Kompetenzen zu. Dabei geht es nicht nur darum, ältere Schülerinnen und Schüler im Umgang mit neuen Technologien zu schulen, zu sensibilisieren und ihnen ein Verständnis von informatischen Konzepten zu ermöglichen, wie es von der Kultusministerkonferenz gefordert wird [KMK24], sondern insbesondere auch darum, jüngere Schülerinnen und Schüler beim Verstehen der digitalen Welt zu unterstützen. Gerade vor dem Hintergrund, dass Kinder immer früher mit digitalen Geräten ihren Erstkontakt in Form von Spielsachen, Sprachassistenzsystemen oder Smartphones/Tablets haben. Die Erfahrungen aus diesen Erstbegegnungen sind dabei für die Sicht auf die neuen Technologien entscheidend, weshalb es umso wichtiger ist, dass sich bereits Kinder mit diesen umfassend auseinandersetzen. Zudem unterstreicht die Durchdringung des Alltags mit Künstlicher Intelligenz noch einmal die Bedeutung, dass bereits Kinder Fähigkeiten im Bereich Computational Thinking [Wi06] aufbauen, um damit Chancen, Einsatzzwecke neuer Technologien, aber auch Risiken für sich, die Gesellschaft und die Umwelt einschätzen können [SGMW21].

Der angebotene **Workshop** stellt ein Unterrichtskonzept für die bayerische Grundschule (3. und 4. Jahrgangsstufe) vor, dass sich mit dem Thema "Maschinelles Lernen und Bilderkennung" am Beispiel von Mülltrennung beschäftigt. Thematisch knüpft es an den bayerischen Lehrplan für Grundschulen für das Fach Heimat- und Sachunterricht an. Konkret wird das Thema Müllvermeidung im Lernbereich "Stoffe und Energie" der 1./2. Jahrgangsstufe mit dem Lernbereich "Leben in einer Medienund Konsumgesellschaft" der 3./4. Jahrgangsstufe verbunden. Insgesamt umfasst das Konzept einen Zeitrahmen von vier Unterrichtsstunden und vereint dabei sowohl theoretische Grundlagen wie auch eine praktische Umsetzung durch die Schülerinnen und Schüler.

Bei der der Heranführung an das Thema wird zuerst das Online-Tool "Quick, Draw!" (https://quickdraw.withgoogle.com/) von Google Labs exploriert und die Bilderkennung analysiert, um zum Stundenthema überzuleiten und die Unterschiede zwischen menschlichem und maschinellem Lernen gemeinsam mit den Lernenden zu erarbeiten. Im Anschluss daran werden mögliche Einsatzgebiete von KI-Systemen, durch die Unplugged-Aktivität "Gesucht, KI" des KI-Labors KIKI6 näher geklärt. Repräsentativ wird der Einsatz von KI-Systemen in der Mülltrennung aufgegriffen und mit Beispielen aus dem Alltag (KI-Systeme in Müllautos, am Flughafen) für die Kinder veranschaulicht.

Für die zweite Phase der Unterrichtsaktivität wird die Lerngruppe in zwei Gruppen geteilt, wobei eine Gruppe zuerst eine Bilderkennung mit den Online-Tool Teachable Machine (https://tm.gen-ai.fi/image/general) trainiert, während sich die zweite Gruppe mit dem informatischen Hintergrund beschäftigt. Nach ca. 45 bis 60 Minuten werden die beiden Aktivitäten getauscht. Für beide Aktivitäten werden verschiedene Müll-Gegenstände benötigt, die am besten vorher von der Lehrkraft oder gemeinsam gesammelt wurden.

Für das Training der Bilderkennung mit dem Online-Tool Teachable Machine, bleibt einemGruppe zuerst im Klassenzimmer. Mit vorbereiteten Müllgegenständen (Papiermüll, Biomüll, ...) trainieren die Kinder das KI-System (vgl. Abb. 1) und testen dieses im Anschluss mit weiteren, bisher noch nicht genutzten Gegenständen. Die für die Erkennung wichtigen Bereiche werden in der Heatmap in unterschiedlichen Farbabstufungen markiert. So können Probleme bei der Bilderkennung (z. B. Hintergründe, ähnliches Aussehen bei unterschiedlichen Materialien) erkannt und thematisiert werden.

Die zweite Gruppe beschäftigt sich mit der kleinsten Einheit eines künstlichen neuronalen Netzes, dem Perzeptron, um den informatischen Hintergrund zu explorieren. Dabei wurde das Wollperzeptron [MLB24; MLLB25] in einer für die Grundschule angepassten unplugged-Aktivität adaptiert, um den Schülerinnen und Schülern das informatische Konzept losgelöst von Computern und in einem aktivierenden Setting näherzubringen. Bei der Aktivität wird mithilfe zweier Teilgruppen die

 $^{^6\} https://www.kiki-labor.fau.de/files/2023/09/Material_GesuchtKI.pdf$

Verarbeitung von Eingangssignalen, der Signalübergang zwischen Sensoren und Aktoren sowie die Auswertung und die Lernphase bei einem Perzeptron simuliert (vgl. Abb. 2). Ziel ist es dabei, den Lernenden den Lernprozess näher zu bringen, aber auch zu verdeutlichen, dass viele Trainingsdaten notwendig sind. Zudem kann thematisiert werden, dass selbst bei ausreichend Trainingsdaten es zu Fehlentscheidungen (z.B. bei unbekannten Gegenständen) kommen kann.

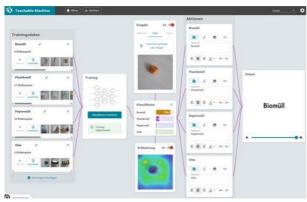


Abbildung 1 Ausschnitt einer trainierten Teachable Machine, https://tm.gen-ai.fi/image/general, eigene Darstellung

Nachdem beide Teilgruppen beide Aktivitäten durchgeführt haben, werden im Klassenplenum die Eindrücke und Ergebnisse gesammelt. Dabei werden Vor- und Nachteile, Probleme und Gefahren thematisiert und erarbeitet.

Im beschriebenen Workshop soll die beschriebene Unterrichtsaktivität vorgestellt und ausprobiert werden und richtet sich insbesondere an Lehrkräfte der Grundschulen, Förderschulen und der Sekundarstufe 1.

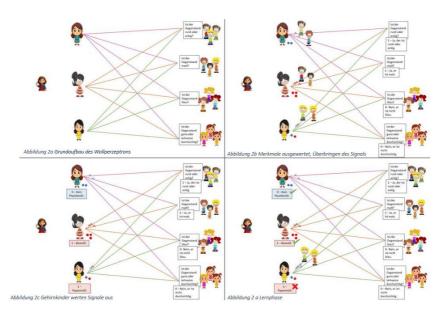


Abbildung 2 Ablauf Wollperzeptron beginnend von links oben nach rechts unten, eigene Darstellung

Referenzen

[ISB25] Lehrplan für die bayerische Grundschule, Heimat- und Sachunterricht 1/2 bzw. 3/4, https://www.lehrplanplus.bayern.de/fachlehrplan/grundschule/2/hsu; https://www.lehrplanplus.bayern.de/fachlehrplan/grundschule/4/hsu

[KMK24] Kultusministerkonferenz: Handlungsempfehlung für die Bildungsverwaltung zu Umgang mit Künstlicher Intelligenz in schulischen Bildungsprozessen, Themenspezifische Handlungsempfehlung (Beschluss der Bildungsministerkonferenz vom 10.10.2024)

[MLB24] Müller-Unterweger, Michaela; Löffler, Patrick; Berges, Marc: Das Wollperzeptron – eine unplugged Aktivität zum künstlichen Neuron. KI und Bildung 2024, Bamberg

[MLLB25] Müller-Unterweger, Michaela; Lindner, Annabel; Löffler, Patrick; Berges, Marc: Das Wollperzeptron – Eine Unplugged Aktivität zum Maschinellen Lernen. Informatische Bildung in Schulen, 5. Ausgabe, September 2025

[SGMW21] Schmid, Ute; Gärtig-Daugs, Anja; Müller, Linda; Werner, Alexander (2021): Grundkonzepte des Maschinellen Lernens für die 76

Grundschule – Algorithmen, Biases, Generalisierungsfehler. INFORMA-TIK 2021. DOI: 10.18420/informatik2021-135. Gesellschaft für Informatik, Bonn. PISSN: 1617-5468. ISBN: 978-3-88579-708-1. pp. 1611-1623. Workshop: Digitale Kompetenz, Digital Literacy, Digital Skills. Berlin. 27. September - 1. Oktober 2021

[Wi06] Wing Jeannette M.: Computational thinking. Commun. ACM 49, 3 (March 2006), 33–35. https://doi.org/10.1145/1118178.1118215

Bildquellen:

- Mädchen rotes Kleid: tanrica, https://pixabay.com/de/vectors/von-ki-er-stellt-m%C3%A4dchen-baby-8670835/
- Mädchen blaugrünem Kleid: tanrica, https://pixabay.com/de/vectors/aigeneriert-m%C3%A4dchen-baby-kind-8670974/
- Junge grünes Shirt: OpenClipart-Vectors, https://pixabay.com/de/vectors/junge-kind-teenager-m%C3%A4nnlich-160014/
- Junge oranges Shirt: OpenClipart-Vectors, https://pixabay.com/de/vectors/junge-schwarz-kind-gl%C3%BCcklich-160017/
- Mädchen oranges Shirt: OpenClipart-Vectors, https://pixabay.com/de/vectors/m%C3%A4dchen-kind-jung-niedlich-160015/
- Mädchen Kringelkleid: OpenClipart-Vectors, https://pixabay.com/de/vectors/m%C3%A4dchen-schule-kind-jung-gl%C3%BCcklich-160016/
- Mädchen Jacke und Kleid: KI generiert mit ChatGPT
- Alle Bilder aus der Teachable Machine wurden selbst aufgenommen

Chancenräume für KI-Kompetenz: Grundschule trifft außerschulisches Lernen

Sanna Pohlmann-Rother¹, Katharina Kindermann¹, Larissa Ade¹, Eva-Maria Weiss² & Ingrid Stöhr³

Julius-Maximilians-Universität Würzburg
 Otto-Friedrich-Universität Bamberg
 Bildungsbüro Bamberg
 firstname.lastname>@uni-wuerzburg.de
 eva-maria.weiss@uni-bamberg.de
 ingrid.Stoehr@lra-ba.bayern.de

A: Impulsvorträge

Begründungslinien für KI in der Grundschule

Prof. Dr. Sanna Pohlmann-Rother und Dr. Larissa Ade

KI-Module: Angebote aus dem außerschulischen Bereich

Dr. Eva-Maria Weiss

KI meets Uni-Klasse

Dr. Katharina Kindermann, Dr. Larissa Ade

Kooperationsmöglichkeiten zwischen Schule und außerschulischem Lernen, am Beispiel MINT-Zentrum und MINT-Mobil

Dr. Ingrid Stöhr

B: Stationenarbeit zu Gelingensbedingungen

Station 1: Integration außerschulischer KI-Materialien in den Regelunterricht an der Grundschule

Station 2: Gestaltung von Materialien, am konkreten Beispiel

Station 3: Professionalisierung und Kompetenzaufbau für den Aufbau von KI-Kompetenzen

Station 4: Nachhaltige Zusammenarbeit mit außerschulischen Partnern

C: Zusammenfassung und Ausblick

KI im Mathematikunterricht

Sebastian Schmidt

FlippedMath sebastianschmidt@flippedmath.de

KI (u.a. ChatGPT) im Fach Mathematik

KI-Tools wie ChatGPT verändern rasant den Unterricht – von der Hausaufgabe bis zur Unterrichtsvorbereitung. Im Vortrag mit Workshop zeige ich Praxisbeispiele und diskutiere Chancen, Grenzen und Konsequenzen für Schule und Unterricht.

Themen sind u. a.:

- KI bei der Hausaufgabe und im Flipped Classroom
- Unterstützung für Lehrkräfte bei der Vorbereitung
- KI als Lern-Tutor im Klassenzimmer

In einer Mitmach-Phase testen Sie die KI an typischen Mathematikaufgaben und erleben, wie sie Lernprozesse dialogisch begleiten kann.

Promptathon. Prompting-Workshop für Grundschülerinnen und -schüler

Pia Seiller

Otto-Friedrich-Universität Bamberg pia.seiller@uni-bamberg.de

KIBIS-Workshop: Konzeption und Lernziele für Teilnehmende (Grundschul-)Lehrkräfte

Im Rahmen des Workshops wird das didaktische Konzept des Promptathons vorgestellt, wie nachfolgend beschrieben. Die Teilnehmenden erhalten Einblicke in bereits durchgeführte Promptathons mit Schülerinnen und Schülern der Martinsschule Bamberg, welche von Grundschullehramtsstudierenden geplant und umgesetzt wurden.

Die Teilnehmenden ...

- verstehen das didaktische Konzept eines Promptathons und dessen Zielsetzung im Kontext schulischer Bildung.
- lernen konkrete Praxisbeispiele und Erfahrungen aus durchgeführten Promptathons kennen.
- sind ermutigt, das Format in einer eigenen, didaktisch angepassten Variante umzusetzen.

Darüber hinaus erhalten die Teilnehmenden praktische Tipps für eine erfolgreiche Durchführung sowie begleitende Handreichungen, um einen eigenen Promptathon mit ihren Schülerinnen und Schülern durchzuführen.

Theoretischer Hintergrund

Der Promptathon ist ein interaktives Lernformat, das (angehenden) Grundschullehrkräften den kompetenten Umgang mit generativer KI vermittelt. Das Format greift auf das Konzept der Universität Hamburg (2023) zurück und wurde für den Einsatz in der Lehrerbildung adaptiert. Ziel ist es, durch strukturierte und praxisnahe Übungen das gezielte Formulieren von Prompts zu erlernen und die Potenziale generativer KI im schulischen Kontext zu erschließen.

Die Teilnehmenden arbeiten sowohl individuell als auch kollaborativ, vergleichen verschiedene Prompting-Strategien, reflektieren Fehler und

verbessern ihre Eingaben iterativ. Das Lernformat beginnt mit einfachen Einstiegsaufgaben und steigert sich schrittweise bis hin zu kreativen Gruppen-Challenges mit (hoch-)schuldidaktischem Bezug. Der Promptathon fördert ein tiefgreifendes Verständnis für KI-gestützte Lernprozesse, macht den Einsatz generativer KI im schulischen Alltag erfahrbar und unterstützt die Entwicklung einer reflektierten Haltung gegenüber KI als Partner im Bildungsprozess. Er bietet damit einen idealen Einstieg für pädagogisches Personal, das generative KI aktiv und reflektiert einsetzen möchte

Didaktische Umsetzung in der Grundschule

Der Promptathon mit Grundschülerinnen und -schülern kann von Lehrkräften flexibel in verschiedenen Unterrichtskontexten umgesetzt werden, etwa im Rahmen eines speziellen KI-Projekttags oder eingebettet in einzelne Unterrichtseinheiten zum Thema Künstliche Intelligenz. Curriculare Grundlage ist der LehrplanPLUS (Bayern), der bereits ab Jahrgangsstufe 2 den reflektierten Einsatz digitaler Werkzeuge fordert. Der Bildungsauftrag des Kultusministeriums betont zudem die Relevanz digitaler Entwicklungen für den Unterricht.

Ziel ist es, den Kindern ein grundlegendes Verständnis für generative KI zu vermitteln, insbesondere im Hinblick auf ihre unterschiedlichen Ausdrucksformen wie Text, Bild, Video und Sprache. Dabei sollen sie sowohl für die Potenziale als auch für die Risiken sensibilisiert werden.

Nach einer altersgerechten Einführung in die Funktionsweise generativer KI liegt der Fokus auf dem Erwerb grundlegender Kompetenzen in der Formulierung von Prompts. Im Vordergrund stehen dabei spielerisches Erkunden und adaptives Lernen. Anhand einfacher Aufgaben, wie etwa der Erstellung eines Rezepts oder kreativer Ideen für eine Geburtstagsparty, lernen die Kinder, wie sie mit KI-Systemen interagieren können und welche Art von Antworten diese liefern.

Nach einer ersten freien Erkundung erlernen die Grundschülerinnen und -schüler konkrete Tipps zur Verbesserung ihrer Eingaben. So erlernen die Kinder, dass durch die Zuweisung konkreter Rollen an die KI die Möglichkeit bietet, ihren Output gezielt zu steuern. Weitere Prompting-Techniken, wie das Fragestellen, werden ebenfalls erprobt. Bestimmte Aufgabenstellungen, etwa das Verfassen einer Vorgangsbeschreibung, können vorgegeben oder frei gewählt werden. Der Promptathon ist als Peer-Learning-Format angelegt, in dem die Kinder gemeinsam an

Problemlösungen arbeiten, sich gegenseitig unterstützen und voneinander lernen. Je nach Lernstand kann auch der Einsatz von Systemprompts erfolgen, um unterrichtsnahe Anwendungsfälle zu erproben, wie etwa die Entwicklung eines eigenen "Mathe-GPT", das bei Übungsaufgaben unterstützt, ohne direkt die Lösung zu liefern.

Während der Arbeitsphasen ist eine kontinuierliche Reflexion zentral: Die Kinder sollen lernen, kritisch mit KI-Inhalten umzugehen und sich der Bedeutung personensensibler Daten wie Namen, Adressen oder Bildern bewusst zu werden. Ziel ist es, Kinder zu eigenständigem Denken und reflektierter Nutzung von KI-Tools zu befähigen.

Neben der didaktischen Planung sind auch technische und organisatorische Voraussetzungen zu berücksichtigen: Für eine individuelle und interaktive Auseinandersetzung mit KI-Tools sollte jedem Kind ein eigenes Tablet zur Verfügung stehen. Ebenso ist der Einsatz datenschutzkonformer Systeme essenziell. Empfehlenswert sind DSGVO-konforme Anwendungen wie HAWKI der Universität Bamberg oder die fobizz-KI, die eine sichere und verantwortungsvolle Lernumgebung gewährleisten.

Referenzen

Universität Hamburg (2023): Einer der weltweit ersten Prompt-a-thons: Sei dabei und erprobe die Potentiale und Grenzen generativer KI wie ChatGPT. https://www.isa.uni-hamburg.de/ddlitlab/news/2023-02-22-prompt-a-thon.html

Beiträge ohne Abstract

Einsatz von KI im Berufsalltag - Vortrag

Morteza Djebeli Sinaki Brose Morteza.DjebeliSinaki@brose.com

BAIOSPHERE – Entwicklung eines starken KI-Ökosystems in Bayern

Lydia Generotzky
BAIOSPHERE
generotzky@baiosphere.org

KI im dualen Studium

Michael Stammberger

Brose

Michael.Stammberger@brose.com

Panel: Künstliche Intelligenz und Bildung – Perspektiven aus Wissenschaft und Praxis, mit dem Bayerischen Elternverband e.V.

Moderation

Anja Gärtig-Daugs (Otto-Friedrich-Universität Bamberg)

Impulse aus Forschung & Unterrichtspraxis

Ute Schmid (Otto-Friedrich-Universität Bamberg) Sebastian Schmidt (FlippedMath) Oliver Kunkel (BEV)

Podiumsdiskussion mit Statements

Tim Beckmann (Schülersprecher) Anne Radetzky (BLLV) Sophie Proske (BEV) Das Thema Künstliche Intelligenz (KI) gewinnt zunehmend an Bedeutung im Bildungsbereich. Zum einen ist die Vermittlung grundlegender Kompetenzen im Bereich KI (AI Literacy) als Erweiterung von Medienund Informatikkompetenzen relevant, um einen sicheren und reflektierten Umgang mit KI-Systemen zu ermöglichen. Zum anderen werden neue, KI-basierte Ansätze zur Unterstützung von Lehr- und Lernprozessen erforscht und entwickelt. Die Gestaltung von Bildungsprozessen in Schule, Hochschule, Ausbildung und im außerschulischen Bereich kann nur gelingen, wenn Wissenschaft und Anwendung zusammenarbeiten, um relevante fachliche Kompetenzen im Kontext der zunehmenden Verfügbarkeit von KI-Werkzeugen zu identifizieren und daraus Anforderungen an KI-Systeme im Bildungsbereich abzuleiten.

Genau dies ist das Anliegen der Tagung "Künstliche Intelligenz in der Bildung zusammen mit dem Praxistag KI an Schulen" (KIBIS 2025), die am 9. und 10.Oktober 2025 zum zweiten Mal an der Universität Bamberg stattgefunden hat. Die Proceedings der KIBIS 2025 umfassen Forschungsbeiträge aus den Bereichen KI, Informatikdidaktik, Fachdidaktiken und Pädagogik zur Vermittlung von KI-Kompetenzen für unterschiedliche Zielgruppen. Vertreterinnen und Vertreter aus der Bildungspraxis in Schule, Hochschule, im betrieblichen und außerschulischen Bereich stellen konkrete Anwendungen der KI-Vermittlung sowie beim Einsatz von KI-Werkzeugen vor.