Otto-Friedrich-Universitat Bamberg
©SYS Cognitive Systems Group

Ausarbeitung

Bachelor Arbeit

Zum Thema:

Example-Driven Programming — A Tool for
Automated Method Induction in Eclipse
Based Environments

Vorgelegt von:

Hieber, Thomas

Betreuer: Prof. Ute Schmid

Bamberg, WiSe 2008/2009

Abstract

The development of software engineering has had a great deal of benefits for the
development of software. Along with it came a whole new paradigm of the way
software is designed and implemented - object orientation. Over the years the tools
for software engineering have gradually been improved on. Today it is a standard
to have UML diagrams be translated into program code wherever possible. Since
this stops most commonly at the point of generating empty methods, the question
arises if the technical development is ready to do the next step. Automated software
engineering as a discipline closely connected to machine learning and Al in general.
This Thesis focuses on the way a functional program induction system can handle
object oriented input and how it could be used to help a programmer automatically
generating method bodies given specific input/output examples. Together with the
analysis of a case study from a student project, a prototype plugin for Eclipse-based
environments is created and tested on the demands that arise from the analysis
taken.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

ERKLARUNG

Ich erkldre hiermit nach geméfl §17 Absatz 2 APO, dass ich die vorstehende Bachelor
Arbeit selbsténdig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe.

Bamberg, 30.03.2009

Thomas Hieber

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 11

Contents

1 Software Engineering and Example Driven Programming 1
2 Object Oriented or Functional? 3
2.1 Object Oriented Programming 3
2.2 Functional Programmingo 4
2.3 Differences 4

3 Igor and Maude 6
3.1 Inductive Functional Programming 6
3.2 Genetic/Evolutionary Programming 6
3.3 Igor ..o 7

4 Case Study: Software Engineering 8
4.1 Assignment Outline L 8

5 Igor and Object Orientation 10
5.1 Representing the Object 10
5.2 Representing the Method 11
5.3 Representing the Method Call 11
5.4 Concerning Variables L oo 14
0.5 Messages 15
5.6 Back Into Perspective 16

6 Plug-in for Eclipse: autoJava 19
6.1 Requirements & Installation 19
6.1.1 Some Notes 19

6.2 autoJavain Theory 19
6.2.1 Antlrworks 22

6.2.2 Easyigor 23

6.2.3 Autojava. 25

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG IIT

6.3 autoJava in Practise 25

6.4 autoJava in Conclusion 29
7 Watch what we did 30
8 Appendix 33
8.1 Maude Codesamples 33
8.2 Grammars o o 46

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG v

List of Figures

1 autoJava Architectureo 20
2 autoJava List View with Context Menu 25
3 Syntax Error 25
4 Syntax OK 25

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG AV

List of Tables

1 Group 1 Statistics

2 Group 2 Statistics

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

VI

Listings

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

Input/Output Examples for Igor 7
Recursive Program for length 7
Object Constructor 11
Method Constructor 11
Identifier Match 12
Constructors and Variables L. 12
Input/Output Examples oo 13
Variable Constructor 14
Message Constructor 15
Identifier Match Sortso 15
Identifier Match Constructors, 15
Identifier Match Input/Output Examples 16
Iterate Collection Input/Output Examples 17
Correct Annotated Specification 22
Automated solution of Last 26
[teration over a collection Lo 27
To-Lower Specification 28
Object o 33
Object Result 34
Identifier-Match Lo 38
Identifier-Match Result oo 39
OO-Call 40
OO-Call Result 40
Iterate-Collection 41
Iterate-Collection Result 41
Foreach-Do 42
Foreach-Do Result, 42

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG VII

28 To-Lower Result 43

29 Maude Template 44
30 Code sample from the implementation of group 2 45
31 Parenthesised Expression o 0L o L 46
32 Igor Annotation 47

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG VIII

1 Software Engineering and Example Driven Pro-
gramming

The concept of End-User Programming formulated by Henry Lieberman ([9]) or Allen
Cypher ([3]) was based on the assumption that the user be ‘at the end of the process
of computer programming’ ([3]). Ever since the arrival of personal computing this has
softened up to the point that nowadays in many cases the end user is a programmer. This
aspect carries a whole new set of opportunities since the way programmers understand
and use computer applications differs from the way a traditional user does. As Lieberman
and Cypher put great effort into making End-User Programming accessible to anyone we
might ask ourselves what would be possible if we wanted to enable a programmer to do
the same thing. For sure we would not have to be as distant from real programming as
we have to be with non-programmers. But what would we gain - and what for?

Lieberman describes the motivation for End-User Programming quite to the point: ‘It is
a truism that computers are good at performing repetitive activities. So why is it that
we are the ones performing all of the repetition, instead of the computer?‘ This is quite
sound and when we think about programming there seem to be many cases in which a
programmer would like the computer do the work for him in order to focus on a set of
problems he must try and solve. Just like it was at the the times when platforms like
Eclipse weren’t around or still very limited and (object oriented) programmers had the
distinct pleasure of writing a great number of getters and setters before they could begin
with the actual program.? Of course, today we are way past this point but now we might
wonder if we could take the next step and use methods of machine learning in order to let
the computer help us with some of the programming. So if there are still tasks which are
repetitive but not as easily automated as the getter/setter solution it would be nice if we
could have the programmer provide a rough idea of what he intends to let the computer
handle the rest. Imagine if you would have to write a large switch-statement with a few
alterations in every case, everyone who has done this will agree that it would be a relief
not to be delayed by endless copy and paste actions with some minor alterations along
the way (which might even contain errors at the end of the day). Or how about a problem
which the programmer knows to be solved recursively but somehow he cannot get it done?

This thesis was at first planned to start off with an actual software project in IBM’s
Rational Software Architect (RSA) . The idea was to give the programmer the possibility
to annotate certain methods even before the actual coding with input/output examples
in the tradition of Ezample-Driven Programming. Since this could happen as early as the
modelling process takes place the programmer would then not only find RSA generate
empty method bodies but some of them implemented already according to his example-
specification.

As the proprietary standard of RSA doesn’t allow access to the UML structure and the
code building process, the task had to be slightly adjusted. Since the underlying frame-
work is Eclipse it seemed plausible to try and find an entry point which would be general
enough to be supplied by RSA without too much hassle. As it is possible in RSA to
make notes on any UML diagram and have the system put them into the documented
comments for each method, we could assume that this was our starting point and take it
from there. So the task is to generate a system which would take a specification consisting

'see http://www-01.ibm.com/software/awdtools/architect/swarchitect/

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 1

http://www-01.ibm.com/software/awdtools/architect/swarchitect/

of input/output examples and generate a working program. The main focus of this thesis
does not lie on the inductive-programming part as such, we will rather try and bring
object oriented and functional programming together, since the system used for program
inference - Igor - produces only functional programs. So there will be a general compari-
son of the two paradigms, an introduction of the way Igor works along with an attempt
to test it for its capability of working object oriented. Further, there will be a description
of the implemented plug-in, autoJava, as well as an attempt to bring it together with a
real software project and an evaluation thereafter.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 2

2 Object Oriented or Functional?

As already pointed out, we will be concerned with the concepts of functional programming
and object oriented programming, especially with their features regarding the translation
of object oriented concepts into the functional world.

Let us therefore now do some basics and describe the two paradigms and the differences
between them. In [2] the family of high level programming languages is split up into the
procedural and non-procedural branch. To distinguish them from each other, the way they
work is described as either a description of how a result is accomplished (procedural) or
‘what is to be accomplished‘. So while the former is more like a recipe to solve a problem,
the second one can be regarded as a more abstract specification of the problem itself.

Now lets have a look at two concepts in procedural and non-procedural programming.

2.1 Object Oriented Programming

In its core, object oriented programming is procedural, just like the programming language
C. When you look at the main method in modern object oriented languages like Java,
C++ or C# you will always find a list of procedures which are carried out one after another
(forgetting about concurrency for one second). The innovation object orientation has
brought to procedural programming is the encapsulation of program code within objects,
taking modules to the next level. Running an object oriented program is in essence a
number of objects interacting with each other. One key concept in this interactive process
is inheritance. Objects can be related to each other with parent-child relationships thus
saving time and lines of code since inheritance ensures that all the features from a parent
object are available in the child. The major notion for the specification of objects is class.
At runtime, classes are instantiated and then become objects. The most common language
constructs used are iterations and conditionals like the well known while-loop or if-then-
else statements. Encapsulation, information hiding ensure a new level of abstraction. For
matters of software engineering this becomes all the more valuable since business processes
and entities can now be directly converted into code, as well as their states and behaviours.
Concepts like design classes or business objects ([1]) are state-of-the-art when it comes to
software engineering which is closely connected to object orientation in every aspect from
the modelling (UML) right down to the implementation (object oriented programming).
So for the famous three (C++, Java, C#) out of this genus it is well justified to use the
term ‘productive language‘ as defined by Cezzar ([2]).

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 3

2.2 Functional Programming

The name of this paradigm gives us the centre piece and the all important component - the
function. While the notion of a 'function’ occurs in many other programming languages,
which are not necessarily functional, it is important to understand that they are very
different from each other. While a function in a procedural program can have more than
just one output, it cannot in a functional one. Since the functions here are strictly bound
to the mathematical definition of a function, you will understand that there can be no
such thing as:

f(x)=a, f(z) =biaFb

This means that there cannot be a global state within a functional program since the value
of an expression must always remain the same, even though its evaluation may change
the form of expression. This feature is called referential transparency ([4]). Functions
can be composed in order to build more complex functions, treating inner functions as
black boxes, the technical term for this is functional decomposition. One of the most basic
procedures in functional programming is reduction. This is very intuitive and directly
follows mathematical concepts dealing with equations. Everything can be reduced to its
normal form like this:

(1+2)?2?=(1+2)*x(1+2)=3%3=9

One last and very powerful tool in the functional paradigm are high order functions. This
means that any function can have another function as argument or as result output which
provides a crucial mechanism for the programmer to use. The map function is a prominent
example for high order functions. More features like pattern matching, type inference or
lazy evaluations are illustrated in [8]. Of course, everything in functional programming
revolves around recursion. The different variations like tail recursion and the like are most
important in order to create a functional program which is effective and ‘to the point‘.

2.3 Differences

The list of differences between such vastly distinguished paradigms is of course endless. For
our purpose it is enough to keep two things in mind. While one allows for global program
states (object oriented programming), the other (functional programming) doesn’t. Even
more important is the second aspect - the use of recursion. While recursion is generally
possible in object orientation it is not always necessary. Most of the time programmers
use simple iterations and get along just fine. This is not the case in the functional world.
Many problems cannot be solved without the use of recursion, it is deep-seated within the
concept in many ways. The definition of lists, for example, or the structured definition of
the natural numbers using the successor operator can be taken as evidence. This will be
a very important point when we get to our case study later on (chapter 4) and we will see
that in the most unfortunate cases there is no need for recursion in the object oriented
world at all.

Talking about software engineering, it has been mentioned that object orientation fits very
elegantly into state-of-the-art technologies because it supports encapsulation, inheritance

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 4

and information hiding. Purists may now claim that functional programming supports
the very same concepts like enrichment or abstraction and any specification can very well
be written down functionally. Even though this is the truth it is still not as intuitive to
write productive software in a functional background - just remember the fact that it is
not possible to have global states and such.

Before we consider our case study let us first have a look at the way recursive functional
programs can be induced from input/output pairs. This is - as you will remember - our
task in autoJava (chapter 6) and has to be properly introduced before we move on.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 5

3 Igor and Maude

As already pointed out, we will later on be concerned with the automated induction of
programs. For this it is important to understand the way program induction works and
which techniques it is based on.

3.1 Inductive Functional Programming

The extraction of programs from input/output examples has been around since the
seventies, this sub-branch Inductive Logic Programming (ILP) has been greatly influ-
enced by Summers’ ([12]) paper on the induction of LISP programs. There have been
other approaches like Inductive Logical Programming (ILP) with systems like FOIL ? or
GOLEM 3, systems which make use of Prolog and predicate logic. All in all you can
subsume the concern of Inductive Programming as the search for algorithms which use as
little information as possible to generate correct computer programs from a given minimal
specification.

3.2 Genetic/Evolutionary Programming

In the last years there has been a new fish in the pond which is referred to as genetic or
evolutionary approach. This method resembles the way of nature on the development of
inferred program fragments. Other than the IP approaches the hypotheses are not really
generated by strategy, but randomly if you will. Like biological evolution, programs are
mutated and evaluated until the ‘fittest‘ from one population are chosen and then mutated
further.

You can see that even though this method can guarantee an exhaustive search in the hy-
pothesis space and might even come up with unexpected and novel results to any solution.
But you might also have noticed the huge drawback - it all might take quite some time.
The most popular systems using this approach is ADATE *. It is a very exciting and pow-
erful representative of evolutionary programming and has had some amazing success in the
modification and improvement of algorithms like image segmentation. But as we are trying
to fit machine learning and software engineering together on an everyday-application-base
it seems inadvisable to use an approach which might force the programmer to wait infinite
time for a solution to his problem. The point is that ADATE is never really finished -
you never know if there will be an improved solution next to the current best.

There has been an approach to combine functional and evolutionary techniques ([10]) in
order to tackle this problem - but for now we must conclude that it is of no relevance
to us for the current project and we will go with Inductive Functional Programming and
Igor.

2see http://www.rulequest.com/Personal/
3see http://www.doc.ic.ac.uk/"shm/
4see http://www-ia.hiof .no/"rolando/

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 6

http://www.rulequest.com/Personal/
http://www.doc.ic.ac.uk/~shm/
http://www-ia.hiof.no/~rolando/

w

3.3 Igor

Summers’ theories have been taken up again in [11], where the Igor system was put into
existence. The basic idea is to generate a set of (recursive) equations from a specification
consisting of input/output examples. Its first system was written in LISP and it was
closely connected to Summers’ suggestions. A few years later a newer version of Igor
was created and it extended the prior version by a number of improvements. In [7] you
find a more detailed description of Igor2 as a system which now employed mechanics
such as anti-unification of the initial input/output examples and a best-first search over
succeeding sets of equations which are to be formed by term-rewriting. Since this shift
in the way programs were now processed did not play to the strengths of LISP like the
former version,lgor2 was written in the reflective term-rewriting language Maude. °

In order to understand how the system works before we go ahead and use it, let us consider
the following example of the list-operator length.

Listing 1: Input/Output Examples for Igor

length ([]) = 0
length ([y]) = 1
length ([y,x]) = 2
length ([y,x,z]) = 3

Given those examples, Igor correctly identifies the following recursive program:

Listing 2: Recursive Program for length

subl(cons(x0,x1)) = length(sub2(cons(x0,x1)))
sub2(cons(x0,x1)) = x1
length[] =0

length (cons(x0,x1)) = succ(subl(cons(x0,x1)))

Essentially, this is what we will be concerned with later on as we are going to identify
some possible applications of this within an object-oriented software engineering project.
Special caution has to be taken since this system is very obviously purely functional so
we are going to be concerned with finding out how to bring the two concepts together in
order to gain something productive and maybe even something useful in the course.

For this, the next step is to prepare some insight into the case study along with a short
analysis of the outcoming implementations in regard to usefulness for our purposes to help
a programmer along the way by having Igor eliminate a couple of tasks from his/her to
do list.

Ssee http://maude.cs.uiuc.edu/

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 7

http://maude.cs.uiuc.edu/

4 Case Study: Software Engineering

The case study we picked for our attempt to find ways to automate parts of a software en-
gineering process with the help of IP, were the assignments from the software engineering
course held at Bamberg University in 2008 ©.

4.1 Assignment Outline

A set of project groups were given the task to design and implement a ‘Thesis Store’,
an administrative tutoring system for the departments staff. Mandatory components
were administration of potential thesis topics together with a functionality to assign a
concrete topic to a student and a tutor along with a scheduling module, which would help
student and tutor keeping track of the thesis’ milestones and deadlines. Data was to be
persisted with the help of a database and the preferred programming language was Java.
The project itself had to be engineered along the Presentation-Control-Mediator-Entity-
Foundation (PCMEF') architecture as laid out in [1].

Since only two groups came up with a solution which was comprehensive and correct
enough to make use of it for our purpose we will only be concerned with their results.
As those projects still suffered as much from the limitations of capacities as those of the
other groups they are still not complete in the sense of a proper software engineering
project. However, they provide a good enough insight in the outline and the fundamental
structure of what bigger-scale productive projects might look like. As the functionality of
the system is understandably easy we hope to find some useful parts to instrumentalise
for our purposes.

But before we dig deeper, let us first have a look at a rough overview over the implemen-
tation details of both groups.

METHODS VOID OUT SIMPLE OUT COMPLEX OUT VOID IN SIMPLE IN COMPLEX IN RECURSION
TOTAL 634 260 161 210 292 184 160 88
% 41.01 25.39 33.12 46.06 29.02 25.24 13.88

Table 1: Group 1 Statistics

METHODS VOID OUT SIMPLE OUT COMPLEX OUT VOID IN SIMPLE IN COMPLEX IN RECURSION
TOTAL 1253 659 222 370 623 188 441 101
% 52.59 17.72 29.53 49.72 15 35.2 8.06

Table 2: Group 2 Statistics
In order to understand the single column data the concepts have to be defined like this:
e void: empty construct

e simple: simple datatype like string or int

e complez: anything else than void or simple (-> objects)

5Dept. of Practical Computer Science at the University of Bamberg http://www.uni-bamberg.de/
pi/

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 8

http://www.uni-bamberg.de/pi/
http://www.uni-bamberg.de/pi/

The most obvious reason for the high percentage of void input/output parameters can
be found in the fact that the intensive usage of entities resulted in a high number of
getter /setter who are responsible for many of those void methods. From these numbers
we can already guess that the first group must have done a much more thorough job
in this aspect since there are twice as many functions used than in the second group’s
implementation.

But these numbers are of no major importance to us right now, since we are interested in
functionality and here we are stricken by the fact that the number of recursive/iterative
statements is considerably low. In addition, a closer look at the implementation showed
that the majority of those recursive statements are iterations over a collection. The reasons
for this can for one be found in the not very complex nature of the assignment. Also the
usage of a database does rule out many interesting tasks such as sorting, combining and
searching within data. Since the process of software engineering per se produces a lot of
overhead there are of course many lines of code which don’t have anything to do with the
actual processes the final system is supposed to be executing. Many of the layers used to
abstract the software in order to meet the identified business process are just ‘containers
if you will. The level of encapsulation is very consequently increased along the way of
building the software, which makes sense in terms of reusability and maintainability. But
since we are interested in the core functionality here we have to dig a little deeper and
peel of all the layers around the system’s core.

Finally there was one suitable example (see listing 30) we might be able to pull something
out of in order to have Igor find a solution to this problem. The obvious problems these
methods suffer from are that in case of the compareStrings method the functionality of
Java is properly used by simply applying the contains(Object 0) method on String. The
method compareStringArrays is a little more interesting. Encapsulated in two methods
we find a nested loop within a loop - is this the point where we might try and find a
recursive solution which is a little more elegant and maybe even faster?

Let us just say for now that there is a strong feeling of uncertainty if there can be a
proper use of automated program induction within such a project for all the reasons just
mentioned. But since this project is certainly not nearly as complex as a real one would
be we can still not finally give up on this subject - we just cannot say that for sure right
now. What we can do is pretend that it might still be nice to have some support of this
kind available in any programming task. Remember, we already had to take RSA out of
the equation due to lack of access to the code building process. So let us presume for now
that we are trying to help a programmer in any situation to have an IP system to help
him find solutions to a problem, later on we can and will be worried about the problem
putting this back into the context of software engineering.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 9

5 Igor and Object Orientation

As already mentioned, Igor is firmly based within the functional paradigm along with
all its strengths and weaknesses. Nevertheless it is going to be subject of our concern in
which way it could be possible to represent an object-oriented specification with Maude
and feed it to Igor. For this we are going to put together some example specifications,
have them synthesised and evaluate the output. In order to do so it is important to
understand how we could possibly map the way object-oriented programs are presented
to a functional notation. We are going to deal with this problem’s theory first and then
try and find out how Igor will react to our input.

When we are dealing with Maude specifications in the following chapters, let the following
notation be established:

[object].[datatype]

This is the way datatypes are represented by Maude and we will stick to it for the sake
of transparency. For the Maude results we will also establish a notation since the code
generated is not quite readable. So the way results will be displayed follows the pattern-
matching concept, in which rules are written in PROLOG:

Result(EquationRHS) < Rule/Pattern(EquationLHS)

5.1 Representing the Object

In this attempt we will try and keep it simple, as we are only exploring so the motto is
to start small. When thinking about objects we can agree that they basically consist of
an identifier, a set of variables and a set of methods. So it seems quite advisable to
represent any object like this:

identi fier.String X variables.List x methods.List — Object

Let us for now just take variables and methods as blackboxes, we will deal with them after
this. Apart from the elaboration on those, there are only two things left in order to get a
basic quasi object-oriented system: calls and exceptions. The former is the basic notion
of a messages sent between objects in our system. The latter are a vital part of any high
level programming language and, more importantly, we are going to need them in order
to correctly specify some of our components. Since errorhandling is not the major part
of our concern, let it just be introduced as blackbox - we are not going to analyse it any
further.

Messages shall be defined like this:

ParamList x Object — Message

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 10

So a message consists of a number of arguments (ParamList) and an object which in case
of a function call can carry the return value back to the sender, which leaves us with the
following definition of the object in the Maude specification:

Listing 3: Object Constructor
op ——— : Identifier VarList MethodList — Object [ctor]

Note the __ as the constructor’s name - it is Maude syntax for n-ary constructors (three
blanks — three parameters). The constructor uses an identifier, a set of variables and
a list of methods in order to create a new object. Now that we have an idea of how to
represent an object, let us try and find out how we can do the same thing on methods.

5.2 Representing the Method

Before going on we have to bear in mind that - for now - we are dealing with methods
only on a syntactic level. We only want to find out how to represent them in the context
of an object. We are not concerned with the procedures within the method’s body nor
with how they are used. All we need to know for now is what information we need about
a method on the object level in order to keep it as abstract as possible. Remember that
we want to have this representation to be kept within the MethodList in our newly defined
object. Right now we can say that a representation of a method must contain the following
information:

e Method Name
e Return Value

e Argument Specification

When we formally put this together it ends up looking like this:
identi fier.String X return_value.DType X arguments.List — Method

The DType is again to be taken as blackbox here since we are not interested in type
inference or casting, so to understand that it is necessary information for any object
calling the method is enough in this context.

This leaves us with the definition in Maude as follows:

Listing 4: Method Constructor
op met : Identifier DType ParamList — Method [ctor].

5.3 Representing the Method Call

Before we can actually call a method we have to resolve the identifier within the object
which supposedly encapsulates it. In order not to become too confusing we are going to
step away from objects for one moment and just focus on the way you might find a method

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 11

within an object. For this let us assume that there exists a method list as depicted in
5.1 and an object trying to call a method by an identifier. The idea is to get a matching
process like:

Identifier x MethodList — Method

This would be quite straightforward since we already know that any object contains a
list of methods which all carry an identifier. So now it would just be a simple matter of
going through the list and returning the one method matching the identifier provided. Of
course if we would like to be pedantic we would have to ensure that no two methods can
have the same identifier unless they differ at least in return type or number/datatype of
requested argument/s.

Now let us try all this on Igor for a change and see if there is any chance that everything
we have conceptualised so far can be processed by the system. If it should fail on these
simple concepts there is no need to go on from here. For this we define a specification like
in listing 20.

Listing 5: Identifier Match

sorts InVec List Method Identifier DType ParamList NPException
subsort Method < NPException

In the first part there are some sort definitions which are quite obvious and should be
familiar by now. The only slightly strange thing is the second line. Here we basically bring
in the exception since we want a NullPointerEzception to be thrown in case an identifier
is not found within the method list. The exception is here derived from Method which is
not quite clean but since this is only used for testing it is not going to be a problem.

The next part of the specification (listing 6) gives us some constructors and variables
before we can go ahead and define our input examples.

Listing 6: Constructors and Variables
op [] : — List [ctor]
op cons : Method List — List [ctor]
op mm : Identifier DType ParamList — Method [ctor]
ops idl id2 id3 : — Identifier
op parlist : — ParamList [ctor]
op exc : —> NPException
op dt : — DType

op match : Identifier List — Method [metadata ”"induce”]

vars ml m2 m3 : Method

Listing Info: [] is the empty list, cons the constructor for lists as known from LISP, mm
a constructor for Method, exc a constructor of the type NP Exception (NullPointerEx-
ception)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 12

Here we find a basic procedure of constructing a list (11 1,2), a method (mm operator),
some random identifiers, arguments, an exception as well as a datatype. Note that identi-
fiers, arguments, exception and datatype are just instantiated without any concrete data
attached but for the current level of abstraction it is not necessary to do so. The operator
match now is the method to be induced by Igor and after declaring a few variables as
methods all there is left to do is to assert our input/output examples.

Listing 7: Input/Output Examples
eq match(idl, []) = exc
eq match(id2, []) = exc

eq match(idl, cons(mm(idl, dt, parlist) ,[])
eq match(idl, cons(mm(id2, dt, parlist), [])
; eq match(id2, cons(mm(idl, dt, parlist) ,[])
eq match(id2, cons(mm(id2, dt, parlist), [])

,)= mm(id1l, dt, parlist)
) = exc

) = exc

) =mm(id2, dt, parlist)

Y

(...

The equations in listing 7 are used to give Igor some basic examples in the problem
domain. The first two are quite obvious and finally explain why we insisted on exceptions
earlier. Of course there could just be an empty method as a return value, but since we
are trying to conquer the object oriented world with Igor, it feels more natural to express
it this way. All the other examples (see complete listing 20) are summarised quite quickly
- every time the method called is contained in the method list it is returned.

If this is now fed to Igor, one of the resulting hypotheses (translated into a little more
readable syntax) returned is a set of equations.

Info: X1 and X2 are identifiers, X3 is a list, dt a datatype and parlist a list of parameters

1. exc — match(X1,]])
3)) A=(X1==X2)

X1 «— Subl(X1, cons(mm(X2,dt, parlist), X
), X3)) A (X1 == X2)

X3 «— Sub2(X1, cons(mm(X2,dt, parlist),

- W

match(Subl(X1, cons(mm(X2,dt, parlist), Sub2(X1, cons(mm(X2,dt,parlist), X3))))) <«
match(X1, cons(mm(X2,dt,parlist), X3)) A (X1 == X2)

5. mm(X1,dt, parlist) «— match(X1, cons(mm(X2,dt,parlist), X3)) AN X1 == X2

From this simple example we can already see how Igor tackles this problem. The base
case is the first equation. Equations 2 to 4 ensure that the number of methods in the list
is gradually decreased every time the first method in the list does not correspond to the
one called. So at the end the list of methods becomes either void (— equation 1) or the
method is found at the head of the current method list (— equation 5).

Already we can observe how Igor tries to find a recursive solution to this problem, which
may seem a little complicated for this purpose, but it is exactly what we wanted to
achieve and so we can go on at this point knowing that Maude and Igor can handle what
we outlined earlier.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 13

5.4 Concerning Variables

For our purpose, variables are very similar to methods. They just happen to be much
more simple since there is no need for a list of arguments to be carried around. This
comes all down to this simple line in our object specification in Maude:

Listing 8: Variable Constructor
1op var : Identifier DType — Variable [ctor].

The way a variable is referenced is exactly the same as we have just done it with methods
- so there is no sense in repeating the procedure all over.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 14

-

w

5.5 Messages

As already mentioned, we are going to relate every action within our system to messages.
In 5.1 we have defined the specification of them and this is how they look in Maude:

Listing 9: Message Constructor
op msg : ParamList Object — Message [ctor |

We have seen how the matching of identifiers works, so let us now find out about messages
sent between two imaginary objects. Since we are now only concerned with the way data
is wrapped within them we drop overhead like identifiers and the like for now and focus
on the core procedure which takes a message and its arguments and returns an object as
result value.

We are going to test this with an example problem - the even operation which determines
if a number is even or not. As before, we first have to define a couple of sorts.

Listing 10: Identifier Match Sorts

sorts InVec Object

sorts Message ParamList

sorts Nat Bool Param
subsorts Param < Nat Bool
subsorts Object < Nat Bool

As we want to compute some real data this time, we have to refer Param and Object to
real values as we do here.

Listing 11: Identifier Match Constructors

op <> : —> ParamList [ctor]

op msg : ParamList Object — Message [ctor |
op null : — Object [ctor]

op 0 : — Nat [ctor]

op s : Nat — Nat [ctor]

op t : — Bool [ctor]

op f : — Bool [ctor]

op cpar : Param ParamList — ParamList [ctor]

op method : Message —> Message [metadata ”"induce”]

Listing Info: s is the successor-operator on natural numbers, ¢ and f the boolean con-
stants, cpar a constructor like cons on a list of parameters, <> is the empty parameter
list, msg a constructor of the type Message

Next to the already known definitions of message and the usual list operations there are
some more definitions. Since we have to provide natural numbers as peano numbers to
Igor, there has to be a successor operator (s), as well as we need the boolean values true
and false. What we want for Igor to do now is to unwrap a message, take the argument list
as input and put the result back into a message. Formulated with input/output examples
this is what we get:

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 15

Listing 12: Identifier Match Input/Output Examples

eq method(msg(cpar(0, <>), null)) = msg(<> ,t)

eq method(msg(cpar(s(0), <>), null)) =msg(< ,)

eq method(msg(cpar(s(s(0)), <>), null)) = msg(< , t) .

eq method(msg(cpar(s(s(s(0))), <>), null)) = msg(< , f) .
s eq method(msg(cpar(s(s(s(s(0)))), <>), null)) = msg(< , t)

So we assume that Igor simulates an object getting a message with a natural number as
parameter, returning a message containing a boolean. Now we will once again run this
through the system and get the following set of equations:

Info: X1 is a natural number

1. msg(cpar(X1, <>),null) < Subl9(msg(cpar(s(s(X1)),<>),null))
2. msg(<>,t) < method(msg(cpar(0, <>), null))
3. msg(<>, f) < method(msg(cpar(s(0), <>),null))

4. ;netho;l)(Sub19(msg(cpar(s(s(X1)), <>),null))) < method(msg(cpar(s(s(X1)), <>
,null

On the level of semantics this looks just like what we wanted. On every left hand side
there is a message with arguments and the right hand side contains messages with return
value. So Igor has learnt the concept of message-passing, but since we provided a real
problem specification encapsulated within the message this time, we will have to evaluate
the resulting program for functional validity also. For this it seems appropriate to take
off the wrapping from the synthesised equations and just show the important bits.

1. X1« Subl9(s(s(X1)))

2. t — method(0)

3. f — method(s(0))

4. method(Subl9(s(s(X1)))) — method(s(s(X1)))

Now this looks just like what we intended. Equations 2 and 3 are the base cases, 4 and 1
make sure that any number bigger than 1 will gradually be reduced by two until one of
the base-cases is reached. Then the result value is ultimately returned.

5.6 Back Into Perspective

As we have come to realise so far, it is possible to express some basic object oriented con-
cepts functionally using touples as datastructure. We have seen that Igor can even learn
some basic notions like referencing methods within objects (5.3) or using a simple protocol

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 16

like the one we called message-passing (5.5). Furthermore it has been demonstrated that
objects, methods and variables can be specified in a simple functional way. It is about
time to try and bring it all together and find out how we can use all this in a practical
way for our eclipse plug-in. Before we go ahead and do this, let us just come back to
our object specification (see listing 18). As you can tell from the example we are trying
to round up what we have done so far by putting it all together in one example. What
we now do is apply the method-call on an entire object, not just on the list of methods.
We just add one more layer to it - the result is still the same. This means that we could
now go ahead and take this approach all the way until we have successfully modelled a
complete object oriented world. Since this is not the main focus of this thesis we are going
to leave it at that point and get back to our primary objective which is trying to find out
how programmers can benefit from this.

As we have come to see, our case study did not provide a great variety of examples which
we could use for our purpose. But while we are still at it, why don’t we just pick one
of the things we came across in large numbers like iterating over a collection? It is true
that there is not a high relevance to it since Java offers a great deal of functionality to
do it very quickly. On the other hand we have just found out that Igor does not seem to
struggle too much with the basic object oriented concepts, so why don’t we just try and
find out if it can handle something a little more close to real programming than passing
messages and resolving method identifiers?

In listing 24 we take one collection of objects and as we iterate over them we apply a
method to them and put the results into a new collection.

Listing 13: Iterate Collection Input/Output Examples
eq iterate ([]) = {} .
eq iterate(put(Y,[])) = put2(met(Y), {}) .
e[q i’}:erate(put (X, put(Y,[]))) = put2(met(X), put2(met(Y) ,{}))

Listing Info: put and put2 are two list constructors like cons

As you can see from the equations in listing 13 we employ two different collections and
along with it two different constructors put and put2. This is not necessary but in order
to illustrate that we are actually removing the objects from one to another collection it
seems to be more appropriate.

In our second example in listing 26 we go the same way we already did with methods and
objects. Another layer of abstraction is added or, if you will, some more object oriented
‘overhead‘ by adding more detail into the method call itself. Now it is not just met(Y)
but a method call specified like this:

object.Object x identifier.String x return_value.DType X arguments.ParamList —
Method

The result (listing 27) shows that, like before, all the additional information is just
wrapped around the detected procedure which still does nothing else than moving ob-
jects from one collection to another.

So far it should have become evident that it is possible to formalise a simple object
oriented system in Maude and have Igor synthesise program fragments in this paradigm.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 17

But for now we only have been playing around with very basic examples and we still
have not found an answer to the question if and how a programmer might benefit from
this. In the next chapter we will be concerned with autoJAVA, a plug-in for eclipse which
was designed to integrate Igor into the eclipse workbench together with a simple way to
provide input/output specifications to the system and thus getting help by an automated
program induction system.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 18

6 Plug-in for Eclipse: autoJava

6.1 Requirements & Installation

This plug-in was built with Eclipse 3.4.1 (Ganymede) on an AMD X2 4200
with 2MB RAM, running on Kubuntu 8.10.

In order to get the plug-in running on your system you have to make sure you have the
following installed on your system:

e an up-to-date Linux distribution (Debian, Ubuntu, Gentoo, SuSe, ...)

the Eclipse development platform

the latest Maude binaries (download from here: http://maude.cs.uiuc.edu/)

Igor (download from here: http://www.cogsys.wiai.uni-bamberg.de/effalip/
download.html) version 2.2 or 2.3

the file ‘spec_frame.maude* (in the plug-in’s ‘res‘ folder) somewhere on your system

When you have installed the plug-in by simply copying the autoJava.jar into your Eclipse
plug-in folder you can go ahead and run Eclipse.

6.1.1 Some Notes

This plug-in is, as Igor, an experimental prototype and not meant for industrial use in
any kind. Do not expect a bug-free software either, just use it in order to get accustomed
with the system and explore the possibilities it may or may not hold.

6.2 autoJava in Theory
On the whole the plug-in consists of three major components:

1. antlworks & annparser (6.2.1)
2. easyigor (6.2.2)
3. autojava (6.2.3)

While 1. is concerned with parsing the syntax for the specification as well as building
the structure of simplified parenthesised expressions, 2. is the ‘application layer‘ (to use
software engineering terminology) and 3. is just the 'presentation layer’ which integrates
the application as a plug-in into the Eclipse workbench. The basic principle here is that
we have the user annotate the methods he wants to be automatically induced by Igor. For
this a simple annotation specification has been designed which is going to be described
in 6.2.1. Before going into detail we are going to run through the program’s routine like
depicted in figure 1.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 19

http://maude.cs.uiuc.edu/
http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html
http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

antlrworks

Maude Specification [7]

Make Equaticns
Extract Variables

Extract Methods

ExpressionParser

Raw Specification [§] User's Specification [5]

k.

easyigor

lgorController

L——IgerController [9c]

Y

MaudeController

Maude Specification [8]

MaudeSpecification [9a]

Parse Annotations
Extract Method Names

AnnotationParser [«

User's Specification [4]

File Content [3]

InputControlier Read File [1]
File String [2]
autojava
ListContentProvider

1

| -~

l -

Create [9h] =

|
1
h - =

Add TolUpdate [10]

]

e

ListWiew

o= List Element &= _ __ _ _ _

Java File

Show Maude
~¥| Specification

_|Abort Synthesizing

————— —» Run Specification

igor Result

Show Result

Figure 1: autoJava Architecture

1. ListContentProvider reads the currently active java file

2. send the file content as string to the InputController

3. pass it onto the AnnotationsParser which extracts the annotations containing a
specification and validates syntax

4. specification is returned to InputController as Simplelgor AnnotationPair for

every method found within the java string

5. results are passed on to the ExpressionParser which generates the equations and

extracts variables and methods from them

6. the raw specification is forwarded to the MaudeController

7. MaudeController takes the template Maude file and inserts the raw specification

data

8. Maude specification returned to ListContentProvider

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

20

9. a new list element is created for the specification (a), the Maude specification is
used to create an IgorController (b) which is stored within the list element (c)

The procedures 3 - 9 are repeated for every specification provided by an annotated method
within the Java file. At the end the ListView contains elements which each contain an
IgorController to be used to trigger the program synthesis, show the specification or
insert the result into the method’s body inside the java document.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 21

10

11

12

13

14

15

16

17

18

19

20

6.2.1 Antlrworks

Most important for this component are the parsers for annotations (AnnotationsParser)
and for the expressions (ExpressionsParser). The former is used to extract annotations
from the source code, find all the methods contained in a java file and, finally, check
the syntax of the annotations. The latter is used to build an abstract syntax tree of the
expressions in order to transfer their structure into valid Maude syntax. They have been
built by the IgorAnnotation (listing 32) and the ParEzpression grammar (listing 31). In
the EzpressionParser on the one hand, user provided equations are parsed and with the
help of an abstract syntax tree their features are translated into a valid Maude equation.
If the equation should contain a list, it will be converted from a more object oriented
notation into the functional equivalent like this:

[a, b, c] — cons(a, cons(b, cons(c,[])))

Lists can be nested or contain method calls, all this is extracted along the way of building
the syntax tree. This information will be used by the time the Maude specification is
built, as variables have to be declared before they can be used.

Secondly, the AnnotationsParser is used in order to validate the syntax of the annotated
Igor specification. A valid example would look like illustrated in listing 14

Listing 14: Correct Annotated Specification

/%%
* @lgorMETA (

x methodName = "last”.
x retValue = 7"0Object”.
X params = "List”.

%) ;

* @lgorEQ (

x equations = {

* ([z])=x".

x ([ey])=y 7

* 77([x’y}z/):z77‘
*

([x,z,¢c,n])=n".

x @Method(last) ;

*/
public void last (){

}

As we can see from the example, the specification consists of three parts:

e Meta-Part (@lgorMETA)
e Equations (QIgorEQ)

e Name of annotated method (@Method)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 22

Those three have to be specified in the following manner:
Qlidenti fier]([content]);

Meta content needs three parameters like in the example.

e methodName: the name for the induced method in the Maude specification (can
differ from the name of the java method)

e retValue: the datatype of the value to return by the induced method
e params: arguments for the function - if there are more than one they need to be
put one after another with blanks between them (params = ‘argl arg2 arg3...‘.)
Those parameters have to be annotated as key value pairs like this:
paramName = ‘value.

Finally the equations need a little more time to explain since this is where the knowledge
is put in. In the most basic form they need to be as follows:

(lhs) = rhs. as single equations, wrapped by:
equations = {[content]}

An equation’s left-hand-side must be put in parentheses to allow the parser to recognise
multi-component input like this:

([av b]? [Ca d]) = [av b,c, d]'
So on the left hand side the input can be specified in the following way:
(argl,arg2,arg3, ...)

Since the Antlr grammar files are practically BNF, all this can be found summarised in
listing 32.

6.2.2 Easyigor

The application-layer is basically an independent component which could be used for any
other purpose. It uses the parsers and in essence controls the whole process of building a
Maude specification. Most important parts are:

e InputController: process user input (mainly extract specification, parse syntax...)

e MaudeController: create Maude specification with all the parts handed over from
the InputController

e IgorController: serves as a ‘remote control® for Igor, allowing to start, stop and
read results from it (makes use of the java-wrapper App2lgorinterop *)

“see http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 23

http://www.cogsys.wiai.uni-bamberg.de/effalip/download.html

e AppConfiguration: the memory and central point of the application (provide
access to controllers, instantiate the logger)

So the major task of this layer is to provide the interfaces implemented by the controllers
to a presentation-layer which in this case is autoJava.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 24

6.2.3 Autojava

Autojava integrates the application-layer into the Eclipse workbench, wrapping it in a
plug-in. The user interface is contained in a list view which displays the methods found
in the active java file (figure 2)

£ problems | @ javadoc | © Decirarion [AR

@ method: member (Mo Synthesized Programs Available [Syntax Error])

i method: even (Synthesized Programs Available) B} Show Spec
1

2 Run Spec
Abort Igor
] show Results

Figure 2: autoJava List View with Context Menu

LX)

Figure 3: Syntax Error
i
Figure 4: Syntax OK

In this view, information about the status of the method is displayed. Here we can see
that there are two methods (member and even) and one of them apparently contains a
syntax error. The validity of syntax is for one displayed textually and, in addition, with
the help of an icon (figures 3 and 4).

The control over Igor can be triggered with the context menu on every list item (figure
2). As the options are self-explanatory there is nothing to go into detail here, just know
that if you select Show Spec, a message window will pop up showing the specification,
while Show Results will insert the synthesised program into the body of the java method.
As soon as you start Igor the list item will keep you updated about the progress, as soon
it has finished it will display ‘DONE‘, which is the point from which on you can access
the results and put them into them method body.

6.3 autoJava in Practise

To start off we go ahead and just use the example specification used earlier to introduce the
annotation language in listing 14. Supposedly, this specification will result in a program

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 25

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

which will automate the last element in a list. After creating an empty method called
‘last’ in a java file, the specification is added to the method’s annotation. If we now run
the specification and have the results inserted into the java file it should look like listing
15.

Listing 15: Automated solution of Last
/%%
x @lgorMETA (
x methodName = 7last”.
x retValue = 7"0Object”.
X params = 7List”.
%) ;
x@lgorEQ (
equations = {
« T([z])=x".
© (o))"
« T([zy,z])=2"
*

([x,z,¢,n])=n".

*

x @Method(last) ;

«/

public void last (){

VEET:

/x The following code has automatically been generated by
AutoJava

/% according to the wuser specification in the annotations
above

/% the result is printed below

ok k /

//hypo (true, 2, eq 'Subl[’cons[’X1:Object, cons[X2: Object,

// 'X8:List]]] = ‘cons[’X2:Object, 'X3:List] [none] .

//eq “last [cons[’X1:Object,” ‘[‘]. List]] = ’X1:0bject [none]

//eq last[’cons[’X1:Object, cons[’X2: Object, ’X3: List][]] =~
last [Subl [cons/[

// 'X1:0bject, "cons[’X2: Object, 'X3: List]]]] [none] .)

}

You can see that it looks like this problem has been solved correctly but you will notice
that the result comes in Maude syntax. As the focus of this thesis was to generally explore
if and how an integration of Igor into a development environment was possible and if the
object oriented paradigm was principally possible, the attempt to translate the results
into java would have simply put the whole out of proportion. But it should be mentioned
that a parser for those results already exists and so a translation is basically possible.
Also, the implementation lacks the object oriented flavor we have already demonstrated
on Igor. But you will have come to see in chapter 5 it is not a great difference for Igor how
you wrap things and so it should become clear that together with a general translation
of the results into java syntax this is a major to do for a next version of this plug-in, but

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 26

10

11

12

13

14

15

16

one which is essentially ready to be done. We will come back to this later when we draw
a resume, so let us for now stick with what we have and go ahead and find some more
challenging examples.

As mentioned earlier we found a lot of procedures on collections in our case study and
we have already successfully tested a specification on Igor. So how about trying to do
the same again without having to generate the whole specification ourselves by using
autoJava. The specification to be used should be familiar already, but of course this looks
a little different in our simple notation:

Listing 16: Iteration over a collection

/%%

x @lgorMETA (

* methodName = "iterate ”.
x retValue = 7List”.

x params = "List”.

x)

x @IgorEQ(

* equations = {

« ([])=]]".

« 7([z])=[met(z)]".

« ([z,y])=[met(z) met(y)]".
* ([x,y,z])=[met(z),met(y),met(z)]”.
*

*)

x @Method(iterate);

*/

The resulting equations are once again altered in order to be more readable:

Info: X1 is an Object, X2 a List

—_

. met(X1) — Subl(X1, X2)

2. iterate(Subb(cons(X1, X2))) «— Sub2(cons(X1, X2))
3. X2 «— Subb(cons(X1, X2))

4. [] « iterate(][])

5. cons(Subl(cons(X1, X2)), Sub2(cons(X X2)) « iterate(cons(X1, X2)

Comparing these results with the ones from the example we have already run through Igor
(see listings 24 and 25) you will realise that they correspond. As we surely agreed before,
there is actually no need for a programmer to give something away to program induction
when he can have it solved with the help of the java libraries just as easily (foreach-loop).
But by now we have already proved, that a concept which is frequently used in object
orientation can be transferred into the functional world and synthesised by Igor.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 27

10

11

12

13

14

15

16

17

18

19

20

21

22

Another very basic kind of operation in object oriented programming is string manipula-
tion. We can very elegantly fit this into our current perspective since a string is nothing
less than a list of characters. As we have already seen, lists are the strength of Igor and
so there will be one last example before we will begin to summarise the findings of the
last chapters.

Imagine, we want to transform a given string into all lowercase letters. Of course you will
again say ‘it’s been done‘, but for now it is important to understand that this is supposed
to be foundations of object orientation in inductive program synthesis. So for our purpose
it shall be a complex enough task to hand over to Igor. Before we start we have to come
up with a solution to the problem that we are not going to use concrete string values in
our example equations. This means that we have to find a way expressing the caption of a
letter. As we found out earlier, we can use any kind of ‘dummy‘ method for our purpose,
so let us quickly introduce two of them:

e uc() - upper case

e lc() - lower case

By using them as attributes for a string we can now go ahead and produce our specification
like the one in listing 17.

Listing 17: To-Lower Specification

Vit

x @lgorMETA (

x methodName = "tolower ”.
x retValue = 7String”.

x params = "String ”.
%)

x@IgorEQ (

*x equations = {

“([])=1[]".

"(uc(a))=lc(a)”.
“(le(a))=lc(a)”.
“([uc(a)])=[lc(a)]”.
“([le(a)])=[lc(a)]”.
"([uc(a),uc(b)])=[lc(a),lc(b)]”.
“([le(a),uc(b)])=[lc(a),lc(b)]".
"([uc(a),le(b)])=[lc(a),lc(b)]”.
“([le(a),le(b)])=[lc(a), lc(b)]".

O X X X X K K K X X

¥
%) ;
x @Method (tolower) ;
*/
This is already enough to have Igor compute one result (see listing 28), which correctly
iterates through the string, gradually transferring every capital letter to lowercase. We

could now go on trying to find more examples of fundamental procedures on objects within

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 28

the OO paradigm. You will have realised that the special strength of Igor concerning lists
and recursion had to be used as a major component when bringing the two different worlds
together. At the same time, it should have become evident that there is a way to unite
them like we were trying to do in chapter 5. In this chapter, the main focus was to try
and find a practical approach to this whole problem and the most important notion at
the end of it must be that there seems to be a possibility of bringing all this together on
a larger scale, but the restrictions on time and workload did not allow for it to happen in
this thesis.

6.4 autoJava in Conclusion

There are of course some shortcomings of the implementation since the primary focus of
this thesis was to find a way to bring object orientation and Igor together. The plug-in
itself was then created with the objective to simplify the way a specification has to be
produced for Igor. Some late changes to implement method calls seem to have had a
negative effect on the syntax checking, which is now not as restrictive as it initially was.
It is one of the major drawbacks of the current version, as is the fact that since the main
focus was on the processing of lists there may now be some problems which cannot be
constructed with this new annotation convention.

Some more known errors are listed below:

e Generation of specification always on the whole file - this causes slowdowns.
FIX: only generate those specifications which have changed or are new.
e Numbers within identifiers are basically possible, but practically not since every

number in the equations is replaced by its Peano value. Also Peano numbers are
only generated from 0 - 9, two digit numbers fail and mess up the specification

FIX: use a more intelligent algorithm to extract numbers from the equations.

e Non related javadoc comments may make it impossible to detect the annotations.

FIX: find a more sophisticated way to tell javadoc and Igor annotations apart.

e The change listener on the editor workbench is sometimes not correctly attached.
The file has to be closed and reopened to get it working again.

FIX: some more time spent on the listener and the list view should solve this
problem.

As pointed out before, autoJava is a prototype and therefore there is no claim that it is
complete or fully functional. The objective of simplifying the way to provide specifications
has been solved partially, when it comes to list functions it should be complete. This is
indeed the most important thing since it has been pointed out that the way to realise
object orientation in Igor uses lists on a large scale.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 29

7 Watch what we did

Finally, it is time to draw a conclusion and come up with a judgement on all the aspects
covered by now. In chapter 1 the focus of the thesis was described as bringing ‘object
oriented and functional programming together® and trying to put this into the context of
software engineering. This was the first problem to arise since neither RSA could be used
in the way intended, nor could we make proper use of the case study (see chapter 4).

This case study suffered from the problem that the main focus was not on functionality,
but on the application of software engineering techniques which left the remaining project
with very little functionality other than the many layers of the PCMEF architecture. The
only useful code sample identified (listing 30) was a glimpse of light but it turned out to
be very difficult to use. One main problem is that the algorithm is slightly awkward, it
doesn’t allow to specify a proper base case for Igor, which is why it took very long to
realise that this task could not be tackled very easily. In the end it was abandoned for
the sake of progressing with the more relevant work, but it would still be very interesting
to try and tackle this problem again. This is something which has to be left open and
illustrates at the same time one of the main issues around this thesis.

In chapter 5.1 the main understanding was to ‘start small* and this is what can be said for
this entire piece work. Along the way were many small problems that did not matter so
much at first glance. The case study is one of those, as was the generation of the syntax
grammars for the specification annotation, which is still not entirely correct. There were,
on the other hand, a number of things which were quite straightforward and surprisingly
intuitive. The whole procedure of modelling and testing the object oriented functionality
within Igor was still very time demanding but the final feeling is that there were some
concrete results as chapter 5 shows.

We have asked the question, whether this could be a benefit for a programmer at work.
In order to find this out the steps to be taken were:

1. create an interface to interact with Igor
2. keep the specification simple and closely connected to object orientation
3. be able to tackle object oriented problems

4. produce a usable program output

Considering those aspects, it can be said that 1. has been fulfilled simply by providing
the plug-in as it is. The second point can be checked as well with the minor comment on
the issues connected with the specification language in general. Even though it (for now)
was not possible to solve one of the problems out of the case study we were successfull
in other procedures like processing collections or strings. So there must be said that this
aspect is partially fulfilled even though it clearly has to be elaborated on. Finally the
synthesised program has not been processed in the current version and is still not usable
within any object oriented programming language. But since Igor’s results are ready to
be parsed and translated into other languages (XSL for example in [6] and [5]) we can
agree that this is a minor issue which would be quite tedious to carry out but manageable
nonetheless. Even more importantly the way to implement the specification annotation

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 30

provides a very elegant way to interconnect with RSA. Since it allows the programmer to
annotate any method as early as the modelling takes place it seems not too far from reality
to have him do this not in natural language but with a specification for Igor. Since those
annotations are translated into javadoc comments we would have successfully imported
our specification into the generated code. Here the programmer can elaborate on this
using autoJava and finally have some methods generated automatically.

It should be clear that we have not been able to come up with a running program that
seamlessly integrates within RSA and generates executable java code. But we have proven
that Igor is not only able to handle object oriented procedures, it can also synthesise them
as illustrated in chapter 5. The next steps to be taken are to create a complete model of
an object oriented system and integrate this via background knowledge into our running
plug-in. This becomes possible since we have used a concrete template which can of
course be enriched by addidtional modules, variables or equations. Since these would be
a knowledge base for object oriented processes in general there is no need to have the
programmer specify them every time. By employing this text template the door is open
for any kind of alteration - even on runtime.

All in all the direction is set as there exists a common foundation between functional
programming and object orientation. After having considered a number of facts and
examples the resume of this thesis would be that it is possible to use methods of program
synthesis in software engineering. Further, a way has been introduced to take down
the ‘barrier between functional and object oriented programming as a starter for future
development. The plug-in developed to demonstrate some basic functionality and how it
might be possible to integrate into tools used in software engineering (Eclipse) has clearly
demonstrated that the user interface is ready to support Ezample-Driven Programming
in this field and so it will be quite thrilling to see what can be made out of this.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 31

References

1]

[10]

[11]

[12]

Leszek Maciaszek; Bruc Lee Liong; Stephen Bills. Practical Software Engineering.
Pearson/ Addison Wesley, 2005.

Ruknet Cezzar. A Guide to Programming Languages. Artech House, 1995.

Allen Cypher. Programming repetitive tasks by demonstration. In Watch What I
Do: Programming by Demonstration, pages 205-217. The MIT Press, 1993.

Anthony J. Field; Peter G. Harrison. Functional Programming. Addison-Wesley,
1988.

Thomas Hieber. Transportation of the JEdit plug-in ProXSLbE to eclipse. Technical
report, Otto Friedrich University of Bamberg, 2008.

Martin Hofmann. Automated construction of xsl-templates: An inductive program-
ming approach. Master’s thesis, Otto Friedrich University of Bamberg, 2007.

Emanuel Kitzelmann. Analytical inductive functional programming. In Pre-
Proceedings of the 18th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2008). Michael Hanus.

Thomas Kiihne. A Functional Pattern System for Object-Oriented Design. PhD
thesis, Darmstadt University of Technology, 1999.

H. Lieberman. Tinker: A programming by demonstration system for beginning pro-
grammers. In Watch What I Do: Programming by Demonstration. MIT Press, 1993.

Neil Crossley; Emmanuel Kitzelmann; Martin Hofmann; Ute Schmid. Combining
analytical and evolutionary inductive programming. In Proceedings of the Second
Conference on Artificial General Intelligence. Pascal Hitzler; Marcus Hutter.

Ute Schmid. Inductive Synthesis of Functional Programs — Learning Domain-Specific
Control Rules and Abstract Schemes. Number 2654. Springer, 2003.

P. D. Summers. A methodology for LISP program construction from examples.
Journal of the ACM, 24(1):161-175, 1977.

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 32

8 Appendix

8.1 Maude Codesamples

1

2 fmod OBJECT is

3

4 *+%x Knowledge about how objects wrap variables and methods

5 s%% Uses ’IDENTIFYER—MATCH’ in the way methods are called on an object
6 «%% The same goes for variable extraction

7

8 sorts InVec Object Var Method VarList MethodList List ListEl NPException
9 subsorts Method < NPException

10 subsorts Var < NPException

11 subsorts List < VarList MethodList

12 subsorts ListEl < Var Method

13 sorts Identifier DType

14 sort MyBool

16 s*%% DT definitions
17 %% list to

store any value

Listing 18: Object

met (id1, dt)

met({d2 , dt)

(1
(1
H

cons

)
)
)
(

cons (

cons (

18 op [] —> List [ctor]

19 **%% object constructor, taking a list of variables & a list
20 *xx identifier for the object

21 op ___ Identifier VarList MethodList —> Object [ctor]
22 op met Identifier DType —> Method [ctor].

23 op var Identifier DType —> Var

24 ops idl id2 id3 —> Identifier

25 op dt —> DType

26 op exc —> NPException

27

28 %% standard operations

29 op cons ListEl List —> List [ctor]

30

31 *x% defined function names (to be induced, preds, bk) x*x
32 op mcall Object Identifier —> Method [metadata ”induce”]
33

34 var oid Identifier

35

36

37 eq mcall((oid [] []), idl) = exc

38 eq mcall((oid [] []), id2) = exc

39

40 eq mcall((oid [] cons(met(idl, dt), [])), idl) =

41 eq mcall((oid [] cons(met(id2, dt), [])), idl) = exc
42 eq mcall((oid [] cons(met(idl, dt), [])), id2) = exc
43 eq mcall((oid [] cons(met(id2, dt), [])), id2) =

44

45 eq mcall((oid [] cons(met(idl, dt), cons(met(id2, dt),
46 eq mcall((oid [] cons(met(id2, dt), cons(met(idl, dt),
47 eq mcall((oid [] cons(met(id2, dt), cons(met(idl, dt),
48

49 eq mcall((oid [] cons(met(idl, dt), cons(met(id2, dt),
50 met (id1l, dt) .

51

52 eq mcall((oid [] cons(met(id3, dt), cons(met(idl, dt),
53 met (id1, dt) .

54

55 eq mcall((oid [] cons(met(id3, dt), cons(met(id2, dt),
56 met (id1, dt) .

57

58 endfm

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

y, id1)
)y, id1)
)y, id2)

met (id3 ,

met (id2 ,

met (id1 ,

of methods together

d)

dt) ,

dt),

met (id1 ,
met (id1 ,
met (id2 ,

) s

) s

m» .

with an

dt)
dt)
dt)

id1)

id1)

id1)

33

D ;

o~

10
11
12
13
14
15
16
17

18
19

20
21

22
23
24
25
26
27
28
29
30

31
32

33
34

35
36
37
38
39
40
41
42
43

44
45

46
47

48
49
50
51
52
53
54
55
56

57
58

59
60

61

62

63

64

Listing 19: Object Result

reduce in IGOR : generalize (’OBJECT)
rewrites: 256100 in 564ms cpu (562ms real) (454049 rewrites/second)

result HypoList: hypo(true, 3, eq ’mcall[’ ___[’Xl:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] =
exc.NPException [none] .
ceq ’'Subl[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], ’X3:
List]], X4:Identifier] = ’___[’?X0:Identifier ,
> ¢[¢].List ,’X3: List] if '_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’ ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’X4:Identifier if ’_==_]
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq 'mecall [’ ___[’X1l:Identifier ,’ ‘[¢].List , cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|[
’X1:Identifier ,” ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], ' X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,” ‘[‘]. List ,
’cons | met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’'_=—_[’ X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’Xl:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException
none
ceq ’'Subl[’___[’Xl:Identifier ,’ ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = *___[’7X0:Identifier ,
[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq 'mecall[’___[’X1l:Identifier ,’ ‘[‘].List, ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1:Identifier ,’ ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,” ‘[‘]. List ,
‘cons [met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’_==_[’ X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq ’'mcall[’ ___[’X1l:Identifier ,’” ‘[“].List ,’ ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none |
ceq ’'Subl[’___[’X1l:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = *___[’X1l:Identifier ,
>¢[¢].List ,’X3:List] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’X4:Identifier if ’_==_|
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1l:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,’ ‘[‘]. List ,
’cons | met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4: Identifier]] if ’_==_[’ X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mcall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1:Identifier ,” ‘[“].List ,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none] .
ceq ’'Subl[’___[’X1l:Identifier ,’” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = *___[’X1l:Identifier ,
>¢[¢].List ,’X3:List] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’mcall[’Subl [’ ___][
’X1:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], X4:
Identifier],’ Sub2[’___[’Xl:Identifier ,’ ‘[‘]. List,
‘cons [met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]], X4: Identifier]] if ’_=—=_[X2:
Identifier ,’X4:Identifier|] = ’false.Bool [none]
ceq 'mcall[’___[’X1l:Identifier ,’ ‘[¢].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ' parlist .ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,” ‘[‘].List,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none]
ceq ’'Subl[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’___[’X2:Identifier ,
>¢[¢].List ,’X3:List] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], ’X3:
List]], X4:Identifier] = ’X4:Identifier if ’_==_|
’X2:Identifier ,’X4:Identifier] >false .Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|
’X1:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], ' X4:
Identifier], Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons [met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]], X4: Identifier]] if ’'_=—_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mecall [’ ___[’X1l:Identifier ,’ ‘[¢].List, cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist .ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 34

)

65
66
67
68
69

70
71

72
73

74
75
76
s
78
79
80
81
82

83
84

85
86

87
88
89
90
91
92
93
94
95

96
97

98
99

100
101
102
103
104
105
106
107
108

109
110

111
112

113
114
115
116
117
118
119
120
121

122
123

124
125

126

127

128

129
130

nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException
none]
ceq ’'Subl[’___[’Xl:Identifier ,’ ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = *___[’X2:Identifier ,
> ¢[¢].List ,’X3:List] if '_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:1Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mecall [’ ___[’X1:Identifier ,’ ‘[¢].List, cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|
’X1:Identifier ,” ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,” ‘[‘]. List ,
’cons | met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’'_=—=_[’ X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’Xl:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException
none |
ceq ’'Subl[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = _['X4:Identifier ,
[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’X1l:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’X4:Identifier if ’'_=—=_]
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[¢].List, ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1l:Identifier ,’ ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,” ‘[‘]. List ,
’cons [met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’_==_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mcall[’___[’X1l:Identifier ,’ ‘[‘].List, cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,” ‘[‘].List,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none |
ceq ’'Subl[’___[’X1l:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], ’X4:Identifier] = ’___[’'X4:Identifier ,
>¢[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’mcall[’Subl [’ ___][
’X1l:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’ Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons [met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]], X4: Identifier]] if ’_==_[X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mcall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’met[’X2:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1:Identifier ,” ‘[“].List,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none] .
ceq ’'Subl[’___[’X1l:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ~’ [’?X0:Identifier ,
>¢[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], ' X3:
List]], X4:Identifier] = ’X4:Identifier if ’_==_|
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|[
’X1:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons [met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’ ’X3: List]], X4: Identifier]] if
Identifier ,’X4:Identifier] = ’'false.Bool [none] .
ceq 'mecall [’ ___[’X1l:Identifier ,’ ‘[¢].List, cons|[’ ’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,” ‘[‘].List,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none|]
ceq ’Subl[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’___[’?X0:Identifier ,
>¢[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], ’X3:
List]], X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mcall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|
’X1:Identifier ,’ ‘[‘]. List, cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], ' X4:
Identifier], Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
’cons [met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mecall [’ ___[’X1:Identifier ,’ ‘[‘].List , cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 35

131
132
133
134

135
136

137
138

139
140
141
142
143
144
145
146
147

148
149

150
151

152
153
154
155
156
157
158
159
160

161
162

163
164

165
166
167
168
169
170
171
172
173

174
175

176
177

178

180

181
182
183
184
185

186

187
188

189
190

191

192

194
195
196

nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException
none]
ceq ’'Subl[’___[’Xl:Identifier ,’” ‘[‘].List,’ cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], ’X3:
List]],’X4:Identifier] = ’___[’X1l:Identifier ,
> ¢[¢].List ,’X3: List] if ° _[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’ ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’X4:Identifier if ’_==_]
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq 'mecall [’ ___[’X1l:Identifier ,’ ‘[¢].List, cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|[
’X1:Identifier ,” ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier], Sub2[’___[’X1:Identifier ,’ ‘[‘]. List ,
‘cons | ’met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’'_=—_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met|[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’Xl:Identifier ,’ ‘[‘].List,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException
none]
ceq ’'Subl[’___[’Xl:Identifier ,’ ‘[‘].List, cons[’'met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’*___[’X1l:Identifier ,
[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’X1l:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List, ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1:Identifier ,’ ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,” ‘[‘]. List ,
‘cons [met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’_==_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq ’'mcall[’ ___[’X1l:Identifier ,’ ‘[“].List ,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none |
ceq ’'Subl[’___[’X1l:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = *___[’X2:Identifier ,
>¢[¢].List ,’X3:List] if ’'_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’X4:Identifier if ’_==_|
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1l:Identifier ,’ ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], X4:
Identifier],’Sub2[’ ___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons | met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4: Identifier]] if ’_==_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mcall[’___[’X1l:Identifier ,’ ‘[¢].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,” ‘[‘].List ,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none] .
ceq ’'Subl[’___[’X1l:Identifier ,” ‘[‘].List, cons['met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = *___[’X2:Identifier ,
>¢[¢].List ,’X3:List] if ~’ _[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1:Identifier ,’ ‘[‘]. List , cons|[met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]], X4:
Identifier],’ Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons [met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]], X4: Identifier]] if ’*_=—=_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mcall[’___[’X1l:Identifier ,’ ‘[¢].List,’ ’cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ' parlist .ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3, eq 'mcall[’ ___[’X1l:Identifier ,” ‘[‘].List,” ‘[‘]. List],’X2:Identifier] = ’exc.NPException
none]
ceq ’'Subl[’___[’Xl:Identifier ,” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’___[’X4:Identifier ,
>¢[¢].List ,’X3:List] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]], X4:Identifier] = ’X4:Identifier if ’_==_|
’X2:Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mcall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___|
’X1:Identifier ,’ ‘[‘]. List, cons|[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], ' X4:
Identifier], Sub2[’___[’X1l:Identifier ,’ ‘[‘]. List,
‘cons | met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]], X4: Identifier]] if ’'_=—_[’X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq 'mecall [’ ___[’X1l:Identifier ,’ ‘[¢].List , cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)
nextHypo

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG 36

197
198

199

200
201

202
203

204

205

206

207

hypo(true, 3, eq ’mcall[’___[’Xl:Identifier ,’ ‘[‘].List ,’ ‘[‘].List],’X2:Identifier] = ’exc.NPException |
none|

ceq ’Subl[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], 'X3:
List]],’X4:Identifier] = ’___[’X4:Identifier ,

> ¢[¢].List ,’X3:List] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’___[’Xl:Identifier ,’” ‘[‘].List, cons[’met[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList], X3:
List]],’X4:Identifier] = ’idl.Identifier if
’_==_[’X2:1Identifier ,’X4:Identifier] = ’false.Bool [none]
ceq 'mecall [’ ___[’X1:Identifier ,’ ‘[¢].List, cons|[’ met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’mcall[’Subl [’ ___][
’X1:Identifier ,” ‘[‘]. List , cons[met[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]], X4:
Identifier], Sub2[’ ___[’X1:Identifier ,’ ‘[‘]. List ,
’cons ['met[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3: List]], X4:Identifier]] if ’'_=—_[’ X2:
Identifier ,’X4:Identifier] = ’false.Bool [none] .
ceq ’'mecall[’___[’X1l:Identifier ,’ ‘[‘].List,’ ’cons|[’ ’met[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:
List]],’X4:Identifier] = ’met[’X4:Identifier ,
’dt .DType, ’ parlist.ParamList] if ’_==_[’X2:Identifier ,’X4:Identifier] = ’true.Bool [none] .)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

37

Listing 20: Identifier-Match

1

2 fmod IDENTIFIER—-MATCH is

3

4 ***% Knowledge about how methods are called by providing an identifyer s*x*x

5 %% If a list of methods contains the called identifyer , the method is returned xxx
6

7 sorts InVec List Method Identifier DType ParamList NPException

8 subsort Method < NPException

9

10 op [] : —> List [ctor]

11 op cons : Method List —> List [ctor] .
12 op mm : Identifier DType ParamList —> Method [ctor]

13 ops idl id2 id3 : —> Identifier
14 op parlist : —> ParamList [ctor]
15 op exc : —> NPException

16 op dt : —> DType

17

18

19 op match : Identifier List —> Method [metadata ”induce”]
20

21 vars ml m2 m3 : Method

22

23 eq match(idl, []) = exc

24 eq match(id2, []) = exc

26 eq match(idl, cons(mm(idl, dt, parlist) ,[])
27 eq match(idl, cons(mm(id2, dt parlist), [])
1
M

R s s mm(idl, dt, parlist)
, > >

28 eq match(id2, cons(mm(idl, dt, parlist) ,
, > >

exc
exc

NSNS
([l

29 eq match(id2, cons(mm(id2 dt parlist), mm(id2, dt, parlist)

30

31 eq match(idl, cons(mm(idl, dt, parlist), cons(mm(id2, dt, parlist), []))) = mm(idl, dt, parlist)

32 eq match(idl, cons(mm(id2, dt, parlist), cons(mm(idl, dt, parlist), []))) = mm(idl, dt, parlist)

33 eq match(id2, cons(mm(id2, dt, parlist), cons(mm(idl, dt, parlist), []))) = mm(id2, dt, parlist)

34

35 eq match(idl, cons(mm(idl, dt, parlist), cons(mm(id2, dt, parlist), cons(mm(id3, dt, parlist), [])))
) =

36 mm(idl, dt, parlist)

37

38 eq match(idl, cons(mm(id3, dt, parlist), cons(mm(idl, dt, parlist), cons(mm(id2, dt, parlist), [])))

39 mm(idl, dt, parlist)

40

41 eq match(idl, cons(mm(id3, dt, parlist), cons(mm(id2, dt, parlist), cons(mm(idl, dt, parlist), [])))

42 mm(idl, dt, parlist)

43

44

45 endfm

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

38

WU WN -

WWWWWNNNNDNNDNNNDNRE ==
BWNF OO TOU R WNHFOOOITDUU R WN=OO

35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

78
79
80
81
82
83
84
85
86
87
88

Listing 21: Identifier-Match Result

reduce in IGOR : generalize (’IDENTIFIER—MATCH)
rewrites: 208528 in 440ms cpu (438ms real) (473898 rewrites/second)
result HypoList:

hypo(true, 3,
eq ’'match[’X1l:Identifier ,’ ‘[‘].List] = ’exc.NPException [none]

ceq ’'Subl[’Xl:Identifier ,’cons[’mm[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]] = ’XI1:

Identifier if
’_==_[’X1l:Identifier ,’X2:Identifier] =
>false .Bool [none]

ceq ’'Sub2[’X1l:Identifier ,’cons[’mm|[’X2:Identifier ,’dt.DType,’ parlist.ParamList], X3:List]] =
’X3: List if '_==_[’X1l:Identifier ,’X2:Identifier] = ’false.Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]] =
"match [’ Subl[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,

’dt .DType, ’ parlist .ParamList],’ ’X3:List]],’ ’Sub2[’X1l:Identifier , cons|[’mm[’X2:Identifier ,
’dt .DType, ’ parlist .ParamList],’X3:List |]] if *_==_|
’X1:Identifier ,’X2:Identifier] = ’false.Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ ’X3:List]]
'mm[’X1:Identifier ,’dt.DType, parlist.ParamList] if

’_==_[’X1l:Identifier ,’X2:Identifier] = ’true.Bool [none] .)
nextHypo
hypo(true, 3,
eq ’'match[’X1l:Identifier ,’ ‘[¢].List] = ’exc.NPException [none]

ceq ’'Subl[’X1l:Identifier ,’cons[’mm|[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]]
’id1.Identifier if ’_==_[’Xl:Identifier ,’X2:Identifier] =
>false .Bool [none]

ceq ’'Sub2[’X1l:Identifier ,’cons[’mm|[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:List]] = ’X3:List

if '_==_[’X1l:Identifier ,’X2:Identifier] =
>false .Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’X3:List]] =
"match[’Subl[’X1l:Identifier ,’ cons[’mm[’X2:Identifier ,
’dt .DType, ’ parlist .ParamList],’X3: List]], Sub2[’X1l:Identifier ,
’cons ['mm|[’X2:Identifier ,’dt.DType, parlist.ParamList], X3:List]]] if

_[’X1:Identifier ,’X2:Identifier] = ’false.Bool [none]

-

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’X3:List]] =
‘mm|[’X1:Identifier ,’dt.DType, parlist.ParamList] if
’_==_[’X1:Identifier ,’X2:Identifier] = ’true.Bool [none] .)

nextHypo

hypo(true, 3,
eq ’'match[’X1l:Identifier ,’ ‘[‘].List] = ’exc.NPException [none]

ceq ’Subl[’X1l:Identifier ,’cons[’mm|[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ X3:List]] =
’X1:Identifier if ’'_==_[’X1l:Identifier ,’X2:Identifier]| =
>false .Bool [none]

ceq ’'Sub2[’X1l:Identifier ,’cons[’mm|[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’ ’X3:List]] =
’X3:List if '_==_[’X1l:Identifier ,’X2:Identifier] = ’false.Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’X3:List]] =
"match [’ Subl[’X1: Identifier ,’cons|[’mm[’X2: Identifier ,

’dt .DType, ’ parlist .ParamList],’ ’X3:List]], Sub2[’X1l:Identifier ,
’cons ['mm[’X2: Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]]] if
’_==_[’X1l:Identifier ,’X2:Identifier] = ’false.Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]] =
‘mm|[’X2: Identifier ,’dt.DType, parlist.ParamList] if
’_==_[’X1l:Identifier ,’X2:Identifier] = ’true.Bool [none] .)

nextHypo

hypo(true, 3,
eq ’'match[’X1l:Identifier ,’ ‘[‘].List] = ’exc.NPException [none]

ceq ’'Subl[’Xl:Identifier

cons ['mm[’X2:Identifier ,’dt.DType,’ parlist.ParamList],’X3:List]] =

’id1l.Identifier if ’_==_[’Xl:Identifier ,’X2:Identifier] = ’false.Bool [none]
ceq ’'Sub2[’X1l:Identifier ,’cons|[’mm|[’X2:Identifier ,’dt.DType, parlist.ParamList],’X3:List]] = ’X3:List
if '_==_[’X1l:Identifier ,’X2:Identifier] =

>false .Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’ ’X3:List]] =
"match [’ Subl[’X1: Identifier ,’cons|[’mm[’X2:Identifier ,

>dt .DType, ’ parlist.ParamList],’ ’X3:List]], Sub2[’X1l:Identifier ,
’cons ['mm[’X2: Identifier ,’dt.DType, parlist.ParamList], ’X3:List]]] if
’_==_[’X1l:Identifier ,’X2:Identifier] = ’false.Bool [none]

ceq ’'match[’X1l:Identifier ,’cons|[’mm[’X2:Identifier ,’dt.DType,’ ’ parlist.ParamList],’X3:List]] =
'mm|[’X2: Identifier ,’dt.DType, parlist.ParamList] if
’_==_[’X1l:Identifier ,’X2:Identifier] = ’true.Bool [none] .)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

39

OO U B WN -

©OWTDU B WN -

Listing 22: OO-Call

fmod OO—CALL is

InVec Object

sorts Message ParamList

sorts Nat Bool Param Res
subsorts Param < Nat Bool
subsorts Res < Nat Bool
subsorts Object < Nat Bool

sorts

*+xx DT definitions

op * —> Object [ctor]

op <> —> ParamList [ctor]

op msg ParamList Object —> Message
op null —> Object [ctor]

[ctor]

—> Nat [ctor]

Nat —> Nat [ctor]
—> Bool [ctor]

—> Bool [ctor]

op
op
op
op

-, n O

s%% Standard Operators
**% op call Message —> Message [metadata ”pred_nomatch”

op cpar Param ParamList —> ParamList [ctor]

s, kK

#%+ defined function names (to be induced, ok

op method Message —> Message [metadata

preds , bk)

”induce”]

* ok k
op

* kK
[ctor]

input encapsulation
in Message —> InVec

ParamList
Nat

vars pl
vars n

Teven” ik
null)) = msg(<> ,t)
), null)) = msg(<> ,

ok ok
eq
eq
eq
eq
eq

input output examples
method (msg(cpar (
method (msg(cpar(s
method (msg(cpar(s
method (msg(cpar(s
method (msg(cpar(s

. :
, null)) = msg(<> , t
<>), null)) = msg(<> ,
), <>), mull)) =

endfm

]

)

msg(<>

f

) .
;b))

Listing 23: OO-Call Result

reduce in IGOR
rewrites: 230564
result Hypo:
hypo(true, 3
‘msg [’ cpar

generalize (’OO—CALL)

in 448ms cpu (449ms real) (514619

> €q
[’X1:Nat,’<>.ParamList], ’null.Object] [none]

eq ’'method [msg[’cpar[’0.Nat,”’<>.ParamList], null.Object]] =

eq

eq ’method [’ ’msg[’cpar[’s[’s[’X1:Nat]],’<>.ParamList]

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

’Subl9 [’msg|[’cpar|[’s[’s[’X1:Nat]],’< >.ParamList],’

method ['msg [’ cpar[’s[’0.Nat],’<>.ParamList], ’null.Object]] =

rewrites /second)

null.Object]] =

’msg[’< >.ParamList ,’t.Bool]

’msg[’<>.ParamList ,’ f.Bool]

,’null.Object]] =
"method [’ Subl9 [’msg[’cpar|[’s[’s[’X1:Nat]],’<>.ParamList], null.Object]]]

[none]

[none]

[none]

40

© WU A WN -

Listing 24: Iterate-Collection
fmod ITERATE—COLLECTION is
sorts Object Collection ResultCollection Method Result InVec

*x+% DT definitions (constructors)

op [] : — Collection [ctor]

op {} : = ResultCollection [ctor]

op put : Object Collection —> Collection [ctor] .

op put2 : Result ResultCollection —> ResultCollection [ctor]

op met : Object —> Result

#x% defined function names (to be induced, preds, bk)

op iterate : Collection —> ResultCollection [metadata ”induce”]
%% input encapsulation
op in : Collection —> InVec [ctor]

vars UVWXY Z F : Object

eq iterate ([]) = {} .

eq iterate(put(Y,[])) = put2(met(Y), {}) .

eq iterate(put(X,put(Y,[]))) = put2(met(X), put2(met(Y) ,{})) .

eq iterate(put(Y,put(X,put(Z,[])))) = put2(met(Y), put2(met(X), put2(met(Z),{})))
endfm

Listing 25: Iterate-Collection Result

reduce in IGOR : generalize (’ITERATE COLLECTION)
rewrites: 21887 in 52ms cpu (50ms real) (420879 rewrites/second)
result Hypo:
hypo(true, 2, eq ’Subl[’put[’X1l:Object, X2: Collection]] = ’'met[’X1:Object] [none]
eq ’Sub2[’put[’X1l:Object,’X2: Collection]] =

’iterate [’Sub5[put[’X1l:Object,’X2: Collection |]] [none]
eq ’Sub5[’put[’X1l:Object,’X2: Collection]] = ’X2: Collection [none]
eq ’iterate [’ ‘[‘]. Collection] = *‘{‘}.ResultCollection [none]

eq ’iterate [’ put[’X1l:Object,’X2: Collection]]

put2[’Subl[’put[’X1:Object,’X2: Collection]],’Sub2[’put[’X1l:Object,’X2: Collection]]] [none]

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

41

OO U B WN -

© WU A WN -

Listing 26: Foreach-Do
fmod FOREACH-DO is

sorts InVec Object Var Method VarList MethodList List ListEl ParamList Collection
subsorts List < VarList MethodList
subsorts ListEl < Var Method
subsorts Object < Method

sorts Identifier DType

%% DT definitions (constructors) sxsx
op [] : —> Collection [ctor]
op pp : —> ParamList

%% STANDARD OPERATORS s *
op push : Object Collection —> Collection [ctor]

*%% METHOD DECLARATION s *

op call : Object Identifier DType ParamList —> Method [ctor].
op idl : —> Identifier [ctor]

op dtl : —> DType [ctor]

#x% defined function names (to be induced, preds, bk) xx*x
op it_apply : Collection —> Collection [metadata ”induce”]

s%% input encapsulation sxx
op in : Collection —> InVec [ctor]

%% VARIABLES s
vars a b ¢ : Object

s%% [ITERATION SPECIFICATION s
eq it_apply ([]) = []

eq it_apply (push(a, [])) = push(call(a, idl, dtl, pp), [])

eq it_apply (push(a, push(b, []))) =

push(call(a, idl, dtl, pp), push(call(b, idl, dtl1, pp), []))
) =
,

eq it_apply (push(a, push(b, push(c, [])))
1(b

push(call(a, idl, dtl, pp), push(cal

endfm

Listing 27: Foreach-Do Result

reduce in IGOR : generalize (’FOREACH-DO) .
rewrites: 29271 in 64ms cpu (62ms real) (457330 rewrites/second)
result Hypo:
hypo(true, 2, eq ’Subl[’push[’X1l:Object,’X2: Collection]] =
’call [’X1:Object,’idl.Identifier ,’dtl.DType, pp.ParamList] [none]

eq ’'Sub2[’push[’X1:Object,’X2: Collection]] =
>it_apply [’Sub5[’push[’X1l:Object ,’X2: Collection]]] [none]

eq ’Sub5[’push|[’X1:Object,’ X2: Collection]] =
’X2: Collection [none]

eq ’it_apply [’ ‘[‘]. Collection] = ’¢[‘]. Collection [none]

eq ’'it_apply[’push[’X1:Object,’X2: Collection]] =
’push[’Subl[’push|[’X1:Object, X2: Collection]],’ Sub2[push[’X1:Object,’X2: Collection]]]

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

idl, dtl, pp), push(call(c, idl, dtl, pp), [])))

[none]

5

42

==

= O OO0 OU R WN -

Listing 28: To-Lower Result

hypo(true, 4, eq ’Subl[’cons|[’X1l:Object,’X2:List]] = ’tolower |
’Sub3[’cons|[’X1:Object, ’X2: List]]] [none]
eq ’Sub2[’cons|[’X1:Object,’X2: List]] = ’tolower[’Sub5[’cons|[’X1:Object,

’X2:List]]] [none]
eq ’'Sub3|[’cons[’X1:Object,’ X2: List |]
eq ’'Subb5[’cons[’X1:Object,’ X2: List |]

’X1:Object [none]
’X2:List [none]

eq ’'tolower [’ ‘[‘].List] = ’‘[¢].List [none] .

eq ’tolower[’cons[’X1l:Object,’X2:List]] = ’cons[’Subl[’cons|[’X1l:Object,
’X2: List]], Sub2[’cons[’X1:Object,’X2: List]]] [none]

eq ’'tolower [’lc[’X1:Object]] = ’lc[’X1:Object] [none]

eq ’'tolower [uc[’X1:Object]] = ’'lc[’X1:Object] [none] .)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

43

OO U A WN -

Listing 29: Maude Template

fmod GENERATEDMODULE is

*x% SORTS
k%% basic sorts sk
sorts InVec Int Boolean String
sorts Object Method
sorts List Item
subsort List < Item
subsort Object < Item
subsort Int < Object
subsort Boolean < Object
subsort String < Object

s*% user defined sorts xxx
<sorts>

#x% DT definitions (constructors)

**% empty list

op [] : — List [ctor]
%% list concatenation
op cons : Item List —> List [ctor]

k%% integer ”zero”

op 0 : —> Int [ctor]
*%% successor on Int
op s : Int —> Int [ctor]

*%% boolean
op true : —> Boolean [ctor]
op false : —> Boolean [ctor]

#x+ defined function names (to be induced,
<induce>

**%% background knowledge
<bk>

%% input encapsulation
<invector>

%% variables
<variables>

**x*x example equations
<examples>

endfm

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

preds)

44

© 0 N U s W N

P I T S T S S U
I R R N N S =)

23

24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Listing 30: Code sample from the implementation of group 2

/xx Compares two Strings by checking whether s1 is contained in s2.

The comparison s case insensible by calling toLowerCase() on
* each of the Strings.
* @param s1 The criteria string
*

@param s2 The string which is tested whether it does contain cl

* @Qreturn True, if sl is contained in s2. FElse return false

public static boolean compareStrings(String sl1, String s2) {
sl = sl.trim();
s2 = s2.trim () ;

sl = sl.toLowerCase();
s2 = s2.toLowerCase() ;

if (s2.contains(sl)) {
return true;
} else {
return false;
}
}

/% Checks whether the given searchTerm is contained in any String of the attributes

array .

x Case insensitive by applying toLowerCase. As searchTerm can still contain empty

spaces ,

* 4t 1s split into an array of parts without empty space thus creating an array.

part

x of the search term has to be contained in one element of the attributes array. */
public static boolean compareStringArrays(String searchTerm, String][] attributes) {

searchTerm = searchTerm.trim () ;
searchTerm = searchTerm.toLowerCase () ;
String [] searchTerms = searchTerm.split (”_.”);

for (String term : searchTerms) {
if (!isTermIncludedInArray (term, attributes)) {
return false;
}

}

return true;

}

Every

/**% Checks whether a search term (without empty spaces) is contained in one element of

* the attributes array. */
private static boolean isTermIncludedInArray(String term, String []
for (String att : attributes) {
att = att.toLowerCase();
if (att.contains (term)){
return true;
}

}

return false;

}

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

attributes) {

45

© W N O s W N =

W oW W W W NN NN NN NN NN R R e e e
A D R R O ©® O N GA WRN R O © N O A W N = O

8.2 Grammars

Listing 31: Parenthesised Expression

INT : ’17..797 707..°9 %;
LIT : (Ca’..’ 2z)+;

value : 1 = INT+
| s = LIT+

identifier
LIT valuex

)

expression
id = identifier
| mc = methodCall
| 1i = list
| v = value

b

list
[’ expression (’,’ expression

methodCall

identifier ’(’ argument)’
argument
expression (’,’ expression)

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

46

o N o oA W N e

10
11
12

13

14
15
16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Listing 32: Igor Annotation

INT : "0° | "17..79" 70°..79" «;
LIT (A7) | (a2)+
annotation

"QIgorMETA ("meta’);’ ’QIgorEQ(’equations’);’ ’'@Method(’ LIT+ (INT|LIT)=x

7) ;)

meta

method ret params
equations

‘equations={’ equationx ’}’
equation

’77(’ eXp (7” eXp)* 7)7 7:7 exp 7)
exp : atom (7,7 atom)=x

|07 (exp ((7,7)+ exp)x)x "]

atom : LIT | INT ;
method

"methodName="" LIT+ (INT|LIT)x ’”.°
ret

‘retValue="’ LIT4 7.’

params

"params="" LIT (’,’ LIT)*x '”.’

COGNITIVE SYSTEMS GROUP - UNIVERSITY OF BAMBERG

47

	1 Software Engineering and Example Driven Programming
	2 Object Oriented or Functional?
	2.1 Object Oriented Programming
	2.2 Functional Programming
	2.3 Differences

	3 Igor and Maude
	3.1 Inductive Functional Programming
	3.2 Genetic/Evolutionary Programming
	3.3 Igor

	4 Case Study: Software Engineering
	4.1 Assignment Outline

	5 Igor and Object Orientation
	5.1 Representing the Object
	5.2 Representing the Method
	5.3 Representing the Method Call
	5.4 Concerning Variables
	5.5 Messages
	5.6 Back Into Perspective

	6 Plug-in for Eclipse: autoJava
	6.1 Requirements & Installation
	6.1.1 Some Notes

	6.2 autoJava in Theory
	6.2.1 Antlrworks
	6.2.2 Easyigor
	6.2.3 Autojava

	6.3 autoJava in Practise
	6.4 autoJava in Conclusion

	7 Watch what we did
	8 Appendix
	8.1 Maude Codesamples
	8.2 Grammars

