Analytical Inductive Programming as a
Cognitive Rule Acquisition Devise*

Ute Schmid and Martin Hofmann and Emanuel Kitzelmann
Faculty Information Systems and Applied Computer Science
University of Bamberg, Germany
{ute.schmid, martin.hofmann, emanuel.kitzelmann}@uni-bamberg.de

Abstract

One of the most admirable characteristic of the hu-
man cognitive system is its ability to extract gener-
alized rules covering regularities from example expe-
rience presented by or experienced from the environ-
ment. Humans’ problem solving, reasoning and verbal
behavior often shows a high degree of systematicity
and productivity which can best be characterized by a
competence level reflected by a set of recursive rules.
While we assume that such rules are different for dif-
ferent domains, we believe that there exists a general
mechanism to extract such rules from only positive ex-
amples from the environment. Our system IGOR2 is an
analytical approach to inductive programming which
induces recursive rules by generalizing over regularities
in a small set of positive input/output examples. We
applied IGOR2 to typical examples from cognitive do-
mains and can show that the IGOR2 mechanism is able
to learn the rules which can best describe systematic
and productive behavior in such domains.

Introduction

Research in inductive programming is concerned with
the design of algorithms for synthesis of recursive
programs from incomplete specifications such as in-
put/output examples of the desired program behav-
ior, possibly together with a set of constraints about
size or time complexity (Biermann, Guiho, & Kodratoff
1984; Flener 1995). In general, there are two distinct
approaches to inductive programming — search-based
generate-and-test algorithms (Olsson 1995; Quinlan &
Cameron-Jones 1995) and data-driven analytical algo-
rithms (Summers 1977; Kitzelmann & Schmid 2006).
In the first case, given some language restriction, hy-
pothetical programs are generated, tested against the
specification and modified until they meet some given
criteria. In the second case, regularities in the in-
put/output examples are identified and a generalized
structure is built over the examples. While search-
based approaches — in principle — can generate each pos-
sible program and therefore might be able to find the

*Research was supported by the German Research Com-
munity (DFG), grant SCHM 1239/6-1.
Copyright © 2008, The Second Conference on Artificial
General Intelligence (AGI-09.org). All rights reserved.

desired one given enough time, analytical approaches
have a more restricted language bias. The advantage of
analytical inductive programming is that programs are
synthesized very fast, that the programs are guaranteed
to be correct for all input/output examples and fulfill
further characteristics such as guaranteed termination
and being minimal generalizations over the examples.
The main goal of inductive programming research is to
provide assistance systems for programmers or to sup-
port end-user programming (Flener & Partridge 2001).

From a broader perspective, analytical inductive pro-
gramming provides algorithms for extracting general-
ized sets of recursive rules from small sets of positive
examples of some behavior. Such algorithms therefore
cannot only be applied to input/output examples de-
scribing the behavior of some program but to arbitrary
expressions. Taking this standpoint, analytical induc-
tive programming provides a general device for the ac-
quistion of generalized rules.

In the sixties, Chomsky proposed that the human
mind posseses a language acquisition device (LAD)
which allows us to extract grammar rules from the ex-
ample language experience we are exposed to (Chom-
sky 1959; 1965). Input to this device are the linguistic
experiences of a child, output is a grammar reflecting
the linguistic competence of the individuum. Unfor-
tunately, this postulation became quite unpopular for
several reasons (Levelt 1976): One reason is, that only
performance and not competence is empirically testable
and therefore the idea was only of limited interest to
psycholinguists. Second, Chomsky argued that there
“is little point in speculating about the process of ac-
quisition without much better understanding of what
is acquired” (Chomsky 1959) and therefore linguistic
research focussed on search for a universal grammar.
Third, the LAD is concerned with learning and learn-
ing research was predominantly associated with Skin-
ner’s reinforcement learning approach which clearly is
unsuitable as a language acquistion device since it ex-
plains language acquistion as selective reinforcement of
imitation.

Since the time of the original proposal of the LAD
there was considerable progress in the domain of ma-
chine learning (Mitchell 1997) and we propose that

it might be worthwhile to give this plausible assump-
tion of Chomsky a new chance. Obviously, typical ap-
proaches to classification learning from rather large sets
of positive and negative examples which are based on
the assumption of PAC (probably approximately cor-
rect) learnability are unsuitable to model a general rule
acquisition device. To model the acquisition of a gen-
eral cognitive competence, an approach is needed which
learns from positive examples only, covers all examples
correctly and learns a set of rules which capture the
regularities observed in these examples. A niche of ma-
chine learning research where algorithmic approaches
fulfilling these presuppositions are developped and in-
vestigated is inductive programming. Inductive pro-
gramming is based on the notion of language identi-
fication in the limit (Gold 1967) and can be viewed
as more general approach to rule learning than gram-
mar inference (Sakakibara 1997) since it is concerned
with learning recursive programs from examples. As
argued above, especially analytical approaches to in-
ductive programming might be helpful instruments to
provide an algorithmic foundation for a general rule ac-
quistion device.

Furthermore, the conception of inductive biases
(Mitchell 1997) introduced in machine learning, namely
restriction (i.e. language) and preference (i.e. search)
bias might be an alternative approach to the search of
a universal grammar: Instead of providing a general
grammatical framework from which each specific gram-
mar — be it for a natural language or for some other
problem domain — can be derived, it might be more
fruitful to provide a set of constraints (biases) which
characterize what kinds of rule systems are learnable
by humans.

In the following we give a short overview of our in-
ductive programming system IGOR2 together with its
biases. Then we illustrate IGOR2’s ability as a cogni-
tive rule acquisition device in the domains of problem
solving, reasoning, and natural language processing.!

Recursive Structure Generalization

Icor2 (Kitzelmann 2008) was developped as a succes-
sor to the classical THESYS system for learning Lisp
programs from input/output examples (Summers 1977)
and its generalization IGOR1 (Kitzelmann & Schmid
2006). To our knowledge, IGOR2 is currently the most
powerful system for analytical inductive programming.
Its scope of inducable programs and the time efficiency
of the induction algorithm compares well with inductive
logic programming and other approaches to inductive
programming (Hofmann, Kitzelmann, & Schmid 2008).
The system is realized in the constructor term rewriting
system MAUDE Therefore, all constructors specified for
the data types used in the given examples are available
for program construction.

!The complete data sets and results can be found on
www.cogsys.wiai.uni-bamberg.de/effalip/download.html.

IGOR2 specifications consist of: a small set of pos-
itive input/output examples, presented as equations,
which have to be the first examples with respect to the
underlying data type and a specification of the input
data type. Furthermore, background knowledge for ad-
ditional functions can (but must not) be provided.

IGOR2 can induce several dependent target functions
(i.e., mutual recursion) in one run. Auxiliary functions
are invented if needed. In general, a set of rules is con-
structed by generalization of the input data by intro-
ducing patterns and predicates to partition the given
examples and synthesis of expressions computing the
specified outputs. Partitioning and search for expres-
sions is done systematically and completely which is
tractable even for relative complex examples because
construction of hypotheses is data-driven. IGOR2’s re-
striction bias is the set of all functional recursive pro-
grams where the outermost function must be either
non-recursive or provided as background knowledge.

IGOR2’s built-in preference bias is to prefer fewer case
distinctions, most specific patterns and fewer recursive
calls. Thus, the initial hypothesis is a single rule per
target function which is the least general generalization
of the example equations. If a rule contains unbound
variables, successor hypotheses are computed using the
following operations: (i) Partitioning of the inputs by
replacing one pattern by a set of disjoint more specific
patterns or by introducing a predicate to the righthand
side of the rule; (ii) replacing the righthand side of a
rule by a (recursive) call to a defined function (includ-
ing the target function) where finding the argument of
the function call is treated as a new induction problem,
that is, an auxiliary function is invented; (iii) replacing
subterms in the righthand side of a rule which contain
unbound variables by a call to new subprograms.

Problem Solving

Often, in cognitive psychology, speed-up effects in prob-
lem solving are modelled simply as composition of prim-
itive rules as a result of their co-occurence during prob-
lem solving, e.g., knowledge compilation in ACT (An-
derson & Lebiere 1998) or operator chunking in SOAR
(Rosenbloom & Newell 1986). Similarily, in AI planning
macro learning was modelled as composition of prim-
itive operators to more complex ones (Minton 1985;
Korf 1985). But, there is empirical evidence that hu-
mans are able to acquire general problem solving strate-
gies from problem solving experiences, that is, that gen-
eralized strategies are learned from sample solutions.
For example, after solving Tower of Hanoi problems, at
least some people have acquired the recursive solution
strategy (Anzai & Simon 1979). Typically, experts are
found to have superior strategic knowledge in contrast
to novices in a domain (Meyer 1992).

There were some proposals to the learning of do-
main specific control knowledge in AI planning (Shell &
Carbonell 1989; Shavlik 1990; Martin & Geffner 2000).
All these approaches proposed to learn cyclic/recursive
control rules which reduce search. Learning recursive

Problem domain:

puttable(x)
PRE: clear(x), on(x, y)
EFFECT: ontable(x), clear(y), not on(x,y)

Problem Descriptions:

: init-1 clear(A), ontable(A)

: init-2 clear(A), on(A, B), ontable(B)

: init-3 on(B, A), clear(B), ontable(A)

: init-4 on(C, B), on(B, A), clear(C), ontable(A)
: goal clear(a)

Problem Solving Traces/Input to IGOR2

fmod CLEARBLOCK is
*** data types, constructors
sorts Block Tower State .
op table : -> Tower [ctor] .
op __ : Block Tower -> Tower [ctor] .
op puttable : Block State -> State [ctor] .
*x% target function declaration

op ClearBlock : Block Tower State -> State [metadata "induce"] .

*%x variable declaration

vars A B C : Block .

var S : State .

*** examples

eq ClearBlock(A, A table, S) =S .

eq ClearBlock(A, A B table, S) = S .

eq ClearBlock(A, B A table, S) = putt(B, S) .

eq ClearBlock(A, C B A table, S) = putt(B, putt(C, S)) .
endfm

Figure 1: Initial experience with the clearblock problem

control rules, however, will eliminate search completely.
With enough problem solving experience, some gener-
alized strategy, represented by a set of rules (equivalent
to a problem solving scheme) should be induced which
allows a domain expert to solve this problem via appli-
cation of his/her strategic knowledge. We already tried
out this idea using IGOR1 (Schmid & Wysotzki 2000).
However, since IGOR1 was a two-step approach where
examples had to be first rewritten into traces and af-
terwards recurrence detection was performed in these
traces, this approach was restricted in its applicabil-
ity. With IGOR2 we can reproduce the results of IGOR1
on the problems clearblock and rocket faster and with-
out specific assumptions to preprocessing and further-
more can tackle more complex problem domains such
as building a tower in the blocksworld domain.

The general idea of learning domain specific problem
solving strategies is that first some small sample prob-
lems are solved by means of some planning or problem
solving algorithm and that then a set of generalized
rules are learned from this sample experience. This set
of rules represents the competence to solve arbitrary
problems in this domain. We illustrate the idea of our
approach with the simple clearblock problem (see fig-
ure 1). A problem consists of a set of blocks which are
stacked in some arbitrary order. The problem solving
goal is that one specific block — in our case A — should
be cleared such that no block is standing above it. We

Clearblock (4 examples, 0.036 sec)

ClearBlock(A, (B T), S) =S if A ==B
ClearBlock(A, (B T), S) =
ClearBlock(A, T, puttable(B, S)) if A =/= B

Rocket (3 examples, 0.012 sec)

Rocket(nil, S) = move(S) .
Rocket((0 0s), S) = unload(0, Rocket(Os, load(0, S)))

Tower (9 examples of towers with up to four blocks, 1.2 sec)
(additionally: 10 corresponding examples for Clear and IsTower pred-
icate as background knowledge)

Tower(0, S) = S if IsTower(0, S)
Tower (0, S) =
put(0, Subl(0, S),
Clear (0, Clear(Subi(0, S),
Tower (Sub1(0, S), S)))) if not(IsTower(0, S))
Sub1(s(0), S) =0 .
Tower of Hanoi (3 examples, 0.076 sec)
Hanoi(0, Src, Aux, Dst, S) = move(0O, Src, Dst, S)
Hanoi(s D, Src, Aux, Dst, S) =
Hanoi(D, Aux, Src, Dst,
move(s D, Src, Dst,
Hanoi(D, Src, Dst, Aux, S)))

Figure 2: Learned Rules in Problem Solving Domains

use predicates clear(z), on(z, y), and ontable(z) to rep-
resent problem states and goals. The only available
operator is puttable: A block x can be put on the table
if it is clear (no block is standing on it) and if it is not
already on the table but on another block. Application
of puttable(z) has the effect that block x is on the table
and the side-effect that block y gets cleared if on(z, y)
held before operator application. The negative effect is
that x is no longer on y after application of puttable.

We use a PDDL-like notation for the problem domain
and the problem descriptions. We defined four differ-
ent problems of small size each with the same problem
solving goal (clear(A) but with different initial states:
The most simple problem is the case where A is already
clear. This problem is presented in two variants — A is
on the table and A is on another block — to allow the
induction of a clearblock rule for a block which is posi-
tioned in an arbitrary place in a stack. The third initil
state is that A is covered by one block, the fourth that
A is covered by two blocks. A planner might be pre-
sented with the problem domain — the puttable operator
— and problem descriptions given in figure 1.

The resulting action sequences can be obtained by
any PDDL planner (Ghallab, Nau, & Traverso 2004)
and rewritten to IGOR2 (i.e. MAUDE) syntax. When
rewriting plans to MAUDE equations (see figure 1) we
give the goal, that is, the name of the block which
is to be cleared, as first argument. The second ar-
gument represents the initial state, that is, the stack
as list of blocks and table as bottom block. The
third argument is a situation variable (McCarthy 1963;
Manna & Waldinger 1987; Schmid & Wysotzki 2000)

representing the current state. Thereby plans can be
interpreted as nested function applications and plan ex-
ecution can be performed on the content of the situation
variable. The righthand sides of the example equations
correspond to the action sequences which were con-
structed by a planner, rewritten as nested terms with
situation variable S as second argument of the puttable
operator. Currently, the transformation of plans to ex-
amples for IGOR2 is done “by hand”. For a fully au-
tomated interface from planning to inductive program-
ming, a set of rewrite rules must be defined.

Given the action sequences for clearing a block up to
three blocks deep in a stack as initial experience, [GOR2
generalizes a simple tail recursive rule system which rep-
resents the competence to clear a block which is situated
in arbitrary depth in a stack (see figure 2). That is, from
now on, it is no longer necessary to search for a suitable
action sequence to reach the clearblock goal. Instead,
the generalized knowledge can be applied to produce
the correct action sequence directly. Note, that IGOR2
automatically introduced the equal predicate to discern
cases where A is on top of the stack from cases where
A is situated farther below since these cases could not
be discriminated by disjoint patterns on the left-hand
sides of the rules.

A more complex problem domain is rocket (Veloso
& Carbonell 1993). This domain was originally pro-
posed to demonstrate the need of interleaving goals.
The problem is to transport a number ob objects from
earth to moon where the rocket can only fly in one di-
rection. That is, the problem cannot be solved by first
solving the goal at(o1, moon) by loading it, moving it
to the moon and then unloading it. Because with this
strategy there is no possibility to transport further ob-
jects from earth to moon. The correct procedure is first
to load all objects, then to fly to the moon and finally
to unload the objects. IGOR2 learned this strategy from
examples for zero to two objects (see figure 2).

A most challenging problem domain which is still
used as a benchmark for planning algorithms is
blocksworld. A typical blocksworld problem is to build a
tower of some blocks in some prespecified order. With
evolutionary programming, an iterative solution pro-
cedure to this problem was found from 166 examples
(Koza 1992). The found strategy was to first put all
blocks on the table and than build the tower. This
strategy is clearly not efficient and cognitively not very
plausible. If, for example, the goal is a tower on(A, B),
on(B, C) and the current state is on(C, B), on(B,A),
even a young child will first put C on the table and
then directly put B on C' and not put B on the ta-
ble first. Another proposal to tackle this problem is to
learn decision rules which at least in some situations
can guide a planner to select the most suitable action
(Martin & Geftner 2000). With the learned rules, 95.5%
of 1000 test problems were solved for 5-block problems
and 72.2% of 500 test problems were solved for 20-block
problems. The generated plans, however, are about two
steps longer than the optimal plans. In figure 2 we

eq Tower(s s table,
((s s s s table) (s table) table | ,
(s s s table) (s s table) table | , nil)) =
put(s s table, s table,
put(s s s table, table,
put(s s s s table, table,
((s s s s table) (s table) table | ,
(s s s table) (s s table) table | , nil)))) .

Figure 3: One of the nine example equations for tower

present the rules IGOR2 generated from only nine ex-
ample solutions. This rule system will always produce
the optimal action sequence!

To illustrate how examples were presented to IGOR2
we show one example in figure 3. The goal is to con-
struct a tower for some predefined ordering of blocks.
To represent this ordering, blocks are represented con-
structively as “successors” to the table with respect to
the goal state. Therefore the top object of the to be con-
structed tower is given as first argument of the tower
function. If the top object is s s s table, the goal is
to construct a tower with three blocks with s table on
the table, s s table on s table and s s s table on s s ta-
ble. The second argument again is a situation variable
which initially holds the initial state. In the example
in figure 3 s s table (we may call it block 2) shall be
the top object and the initial state consists of two tow-
ers, namely block 4 on block 1 and block 3 on block 2.
That is, the desired output is the plan to get the tower
block 2 on block 1. Therefore blocks 1 and 2 have to be
cleared, these are the both innermost puts, and finally
block 2 has to be stacked on block 1 (block 1 lies on the
table already), this is the outmost put.

In addition to the tower example, IGOR2 was given an
auxiliary function IsTower as background knowledge.
This predicate is true if the list of blocks presented to
it are already in the desired order. Furthermore, we did
not learn the Clear function used in tower but presented
some examples as background knowledge.

Finally, the recursive solution to the Tower of Hanoi
problem was generated by IGOR2 from three examples
(see figure 2). The input to IGOR2 is given in figure 4.

For the discussed typical problem solving domains
IGOR2 could infer the recursive generalizations very fast
and from small example sets. The learned recursive
rule systems represent the strategic knowledge to solve
all problems of the respective domains with a minimal
number of actions.

Reasoning

A classic work in the domain of reasoning is how hu-
mans induce rules in concept learning tasks (Bruner,
Goodnow, & Austin 1956). Indeed, this work has in-
spired the first decision tree algorithms (Hunt, Marin,
& Stone 1966). This work addressed simple conjunc-
tive or more difficult to acquire disjunctive concepts.
However, people are also able to acquire and correctly

eq Hanoi(0, Src, Aux, Dst, S) =
move (0, Src, Dst, S)
eq Hanoi(s 0, Src, Aux, Dst, S) =
move (0, Aux, Dst,
move(s 0, Src, Dst,
move(0, Src, Aux, S))) .
eq Hanoi(s s 0, Src, Aux, Dst, S) =
move(0, Src, Dst,
move(s 0, Aux, Dst,
move(0, Aux, Src,
move(s s 0, Src, Dst,
move(0, Dst, Aux,
move(s 0, Src, Aux,
move (0, Src, Dst, S))))))) .

Figure 4: Posing the Tower of Hanoi problem for IGOR2

Ancestor (9 examples, 10.1 sec)
(and corresponding 4 examples for IsIn and Or)

Ancestor(X, Y, nil) = nilp .
Ancestor(X, Y, node(Z, L, R)) =
IsIn(Y, node(Z, L, R)) if X ==
Ancestor(X, Y, node(Z, L, R)) =
Ancestor(X, Y, L) Or Ancestor(X, Y, R) if X =/=7 .

Corresponding to:
ancestor(x,y) = parent(x,y).

ancestor(x,y) = parent(x,z), ancestor(z,y).

isa(x,y) = directlink(x,y).
isa(x,y) = directlink(x,z), isa(z,y).

Figure 5: Learned Transitivity Rules

apply recursive concepts such as ancestor, prime num-
ber, member of a list and so on.

In the following, we will focus on the concept of an-
cestor which is often used as standard example in in-
ductive logic programming (Lavra¢ & Dzeroski 1994).
The competence underlying the correct application of
the ancestor concept, that is, correctly classifying a per-
son as ancestor of some other person, in our opinion is
the correct application of the transitivity relation in
some partial ordering. We believe that if a person has
grasped the concept of transitivity in one domain, such
as ancestor, this person will also be able to correctly
apply it in other, previously unknown domains. For ex-
ample, such a person should be able to correctly infer
is-a relations in some ontology. We plan to conduct
a psychological experiment with children to strenghten
this claim.

For simplicity of modeling, we used binary trees as
domain model. For trees with arbitrary branching fac-
tor, the number of examples would have to be increased
significantly. The transitivity rule learned by IGOR2 is
given in figure 5.

Natural Language Processing

Finally, we come back to Chomsky’s claim of an LAD.
We presented IGOR2 with examples to learn a phrase-

original grammar (in the very original grammar, d n v are non-

terminals D N V which go to concrete words)

S -> NP VP
NP ->dn
VP -> v NP | vS

examples

fmod GENERATOR is
*** types
sorts Cat CList Depth .
ops d n v : -> Cat [ctor]
op ! : => CList [ctor]
op __ : Cat CList -> CList [ctor]
op 1 : -> Depth [ctor]
op s_ : Depth -> Depth [ctor]
x% target fun declaration
op Sentence : Depth -> CList [metadata "induce"]
**% examples
eq Sentence(1) = (dnvdn!) .
eq Sentence(s 1) = (dnvdnvdn!) .
eq Sentence(s s 1) = (dnvdnvdnvdn!) .

learned grammar rules (3 examples, 0.072 sec)

Sentence(1) = (dnvdn!)
Sentence(s N) = (d n v Sentence(N))

Figure 6: Learning a Phrase-Structure Grammar

structure grammar. This problem is also addressed
in grammar inference research (Sakakibara 1997). We
avoided the problem of learning word-category associa-
tions and provided examples abstracted from concrete
words (see figure 6). This, in our opinion is legiti-
mate since word categories are learned before complex
grammatical structures are acquired. There is empiri-
cal evidence that children first learn rather simple Pivot
grammars where the basic word categories are sys-
tematically positioned before they are able to produce
more complex grammatical structures (Braine 1963;
Marcus 2001).

The abstract sentence structures correspond to sen-
tences as (Covington 1994):

1: The dog chased the cat.

2: The girl thought the dog chased the cat.

3: The butler said the girl thought the dog chased the cat.
4:

The gardener claimed the butler said the girl thought the dog
chased the cat.

The recursive rules can generate sentences for an ar-
bitrary depth which is given as parameter. IGOR2 can
also learn more complex rules, for example allowing for
conjunctions of noun phrases or verb phrases. In this
case, a nested numerical parameter can be used to spec-
ify at which position conjunctions in which depth can
be introduced. Alternatively, a parser could be learned.
Note that the learned rules are simpler than the original
grammar but fulfill the same functionality.

Conclusion
IGOR2 is a rather succesful system for analytical induc-

tive programming. Up to now we applied IGOR2 to
typical programming problems (Hofmann, Kitzelmann,
& Schmid 2008). In this paper we showed that analyti-
cal inductive programming is one possible approach to
model a general cognitive rule acquisition device and
we succesfully applied IGOR2 to a range of prototypical
problems from the domains of problem solving, reason-
ing, and natural language processing. Analytical in-
ductive programming seems a highly suitable approach
to model the human ability to extract generalized rules
from example experience since it allows fast general-
ization from very small sets of only positive examples
(Marcus 2001). In our opinion, it would be worth-
wile including such a mechanism into general cognitive
architectures to model rule acquisition on a symbolic
level. From the perspective of universal grammar re-
search, it would be interesting to obtain empirical data
which can give hints about which types of rule systems
can be learned from what example sets in what time
and thereby get new insights in the language bias of
human learners.

References

Anderson, J. R., and Lebiere, C. 1998. The atomic com-
ponents of thought. Mahwah, NJ: Lawrence Erlbaum.
Anzai, Y., and Simon, H. 1979. The theory of learning by
doing. Psychological Review 86:124-140.

Biermann, A. W.; Guiho, G.; and Kodratoff, Y., eds. 1984.
Automatic Program Construction Techniques. New York:
Macmillan.

Braine, M. 1963. On learning the gramamtical order of
words. Psychological Review 70:332-348.

Bruner, J. S.; Goodnow, J. J.; and Austin, G. A. 1956. A
Study of Thinking. New York: Wiley.

Chomsky, N. 1959. Review of Skinner’s ‘Verbal Behavior’.
Language 35:26-58.

Chomsky, N. 1965. Aspects of the Theory of Syntax. Cam-
bridge, MA: MIT Press.

Covington, M. A. 1994. Natural Language Processing for
Prolog Programmers. Prentice Hall.

Flener, P., and Partridge, D. 2001. Inductive program-
ming. Automated Software Engineering 8(2):131-137.
Flener, P. 1995. Logic Program Synthesis from Incomplete
Information. Boston: Kluwer Academic Press.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Gold, E. 1967. Language identification in the limit. Infor-
mation and Control 10:447-474.

Hofmann, M.; Kitzelmann, E.; and Schmid, U. 2008. Anal-
ysis and evaluation of inductive programming systems in
a higher-order framework. In Dengel, A. et al., eds., KI
2008: Advances in Artificial Intelligence, number 5243 in
LNAI, 78-86. Berlin: Springer.

Hunt, E.; Marin, J.; and Stone, P. J. 1966. FExperiments
in Induction. New York: Academic Press.

Kitzelmann, E.,; and Schmid, U. 2006. Inductive synthe-
sis of functional programs: An explanation based general-

ization approach. Journal of Machine Learning Research
7(Feb):429-454.

Kitzelmann, E. 2008. Analytical inductive functional pro-
gramming. In Hanus, M., ed., Pre-Proceedings of LOPSTR
2008, 166-180.

Korf, R. E. 1985. Macro-operators: a weak method for
learning. Artificial Intelligence, 1985 26:35-77.

Koza, J. 1992. Genetic programming: On the programming
of computers by means of natural selection. Cambridge,
MA: MIT Press.

Lavra¢, N., and Dzeroski, S. 1994. Inductive Logic Pro-
gramming: Techniques and Applications. London: Ellis
Horwood.

Levelt, W. 1976. What became of LAD? Lisse: Peter de
Ridder Press.

Manna, Z., and Waldinger, R. 1987. How to clear a block: a
theory of plans. Journal of Automated Reasoning 3(4):343—
378.

Marcus, G. F. 2001. The Algebraic Mind. Integrating Con-
ncetionism and Cognitive Science. Bradford.

Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. In Proc. KR
2000, 667-677. San Francisco, CA: Morgan Kaufmann.

McCarthy, J. 1963. Situations, actions, and causal
laws. Memo 2, Stanford University Artificial Intelligence
Project, Stanford, California.

Meyer, R. 1992. Thinking, Problem Solving, Cognition,
second edition. Freeman.

Minton, S. 1985. Selectively generalizing plans for problem-
solving. In Proc. IJCAI-85, 596-599. San Francisco, CA:
Morgan Kaufmann.

Mitchell, T. M. 1997. Machine Learning. New York:
McGraw-Hill.

Olsson, R. 1995. Inductive functional programming using
incremental program transformation. Artificial Intelligence
74(1):55-83.

Quinlan, J., and Cameron-Jones, R. 1995. Induction of
logic programs: FOIL and related systems. New Genera-
tion Computing 13(3-4):287-312.

Rosenbloom, P. S., and Newell, A. 1986. The chunking
of goal hierarchies: A generalized model of practice. In
Michalski, R. S.; Carbonell, J. G.; and Mitchell, T. M.,
eds., Machine Learning - An Artificial Intelligence Ap-
proach, vol. 2. Morgan Kaufmann. 247-288.

Sakakibara, Y. 1997. Recent advances of grammatical
inference. Theoretical Computer Science 185:15—45.

Schmid, U., and Wysotzki, F. 2000. Applying inductive
programm synthesis to macro learning. In Proc. AIPS
2000, 371-378. AAAT Press.

Shavlik, J. W. 1990. Acquiring recursive and iterative con-
cepts with explanation-based learning. Machine Learning
5:39-70.

Shell, P., and Carbonell, J. 1989. Towards a general
framework for composing disjunctive and iterative macro-
operators. In Proc. IJCAI-89. Morgan Kaufman.
Summers, P. D. 1977. A methodology for LISP program
construction from examples. Journal ACM 24(1):162-175.
Veloso, M. M., and Carbonell, J. G. 1993. Derivational
analogy in Prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10:249-278.

