Beispielgetriebene Schemainduktion beim induktiven Programmieren

Martin Hofmann

Kognitive Systeme Universität Bamberg

11. Februar 2010

Gliederung

- Automatisches Programmieren und IPS
- Igor II
 - Grundidee
 - Operatoren
- Catamorphismen als Programmschemata
 - Das fold Schema
 - Generalisierung f
 ür beliebige induktive Datentypen
 - Implementierungsskizze
- Zusammenfassung und Ausblick

Gliederung

- Automatisches Programmieren und IPS
- 2 Igor I
 - Grundidee
 - Operatoren
- Catamorphismen als Programmschemata
 - Das fold Schema
 - Generalisierung für beliebige induktive Datentypen
 - Implementierungsskizze
- Zusammenfassung und Ausblick

Automatisches Programmieren

"We're all lazy and trying to cheat — and let the computer write some piece of code."

Lennart Augustsson

Automatisches Programmieren fortges.

Die Vision

Dem Computer das Problem beschreiben und ihn ein entsprechendes Programm erstellen lassen.

Beschreibungsmöglichkeiten

- Natürliche Sprache
- Vollständige und formale Spezifikation
 - → Deduktive Programmsynthese.

Automatisches generieren ganzer Softwaresysteme zu ambitioniert.

Halb-automatisches Erzeugen von Modulen, Funktionen und Programmteilen.

Automatisches Programmieren fortges.

Die Vision

Dem Computer das Problem beschreiben und ihn ein entsprechendes Programm erstellen lassen.

Beschreibungsmöglichkeiten

- Natürliche Sprache
- Vollständige und formale Spezifikation
 - → Deduktive Programmsynthese.
- Eingabe/Ausgabe (E/A) Beispiele, beisp. Berechnungsspuren
 - → Induktive Programmsynthese.

Automatisches generieren ganzer Softwaresysteme zu ambitioniert.

Halb-automatisches Erzeugen von Modulen, Funktionen und Programmteilen.

IPS beschäftigt sich mit dem *automatischen Erzeugen (rekursiver) Programme* aus *unvollständigen Spezifikationen* (E/A Beispielen).

Beispiel: last

E/A Beispiele

```
last [a] = a
last [a,b] = b
last [a,b,c] = c
last [a,b,c,d] = d
```

induziertes Programm

```
last [x] = x
last (x:xs) = last xs
```

Anmerkung zur Syntax

IPS beschäftigt sich mit dem *automatischen Erzeugen (rekursiver) Programme* aus *unvollständigen Spezifikationen* (E/A Beispielen).

Beispiel: last

E/A Beispiele

```
last [a] = a
last [a,b] = b
last [a,b,c] = c
```

last [a,b,c,d] = d

induziertes Programm

```
last [x] = x
last (x:xs) = last xs
```

Anmerkung zur Syntax

IPS ist Suche in einer Klasse von Programmen.

Programmklasse beschrieben durch:

Syntaktische Bausteine

- Grundprimitive, gewöhnlich Datenkonstruktoren
- Hintergrundwissen, zusätzliche, problemspezifische, benutzerdefinierte Primitive
- Unterfunktionen, automatisch erzeugte Hilfsfunktionen

Restriction Bias

Syntaktische Einschränkungen einer deklarativen Sprache.

Ergebnis beeinflusst durch

Preference (oder Such-) Bias

IPS ist Suche in einer Klasse von Programmen.

Programmklasse beschrieben durch:

Syntaktische Bausteine

- Grundprimitive, gewöhnlich Datenkonstruktoren
- Hintergrundwissen, zusätzliche, problemspezifische, benutzerdefinierte Primitive
- Unterfunktionen, automatisch erzeugte Hilfsfunktionen

Restriction Bias

Syntaktische Einschränkungen einer deklarativen Sprache.

Ergebnis beeinflusst durch:

Preference (oder Such-) Bias

unterscheidet zwischen syntaktisch verschiedenen Ergebnissen.

Beispiel: reverse

E/A Beispiele

```
reverse [] = [] reverse [a,b] = [b,a] reverse [a] = [a] reverse [a,b,c] = [c,b,a]
```

Induziertes funktionale Programm

```
reverse [] = []
reverse (x:xs) = last (x:xs) : reverse(init (x:xs))
```

Automatisch induzierte Hilfsfunktionen (umbenannt)

```
last [x] = x
last (x:xs) = last xs

init [a] = []
init (x:xs) = x:(init xs)
```

analytisch erzeuge & teste

systematisch evolutionär

funktional IGORI, IGORII, MAGIC- ADATE

THESYS HASKELLER,

G∀sт

FFOIL, PROGOL

logisch DIALOGS,

Dialogs-II,

GOLEM

Analytisch

Erzeuge & Teste: Systematisch

Erzeuge & Teste: Evolutionär

	analytisch	erzeuge & teste	
		systematisch	evolutionär
funktional	IGORI, IGORII, THESYS	Magic- Haskeller, G∀st	ADATE
logisch	DIALOGS, DIALOGS-II, GOLEM	FFOIL, PROGOL	

Analytisch

- Rekursive Funktionen berechnen die Ausgabe mit Hilfe des Ergebnisses einer "kleineren" Eingabe.
- Dies zeigt sich in Regularitäten in den E/A Beispielen.
- Regularitäten werden in eine rekursive Definition "gefaltet".

 analytisch
 generiere & teste

 systematisch
 evolutionär

 funktional
 IGORI, IGORII, THESYS
 MAGIC- ADATE

 logisch
 HASKELLER, G∀ST

 logisch
 DIALOGS, DIALOGS-II, GOLEM

	analytisch	erzeuge & teste	
		systematisch	evolutionär
funktional	IGORI, IGORII, THESYS	Magic- Haskeller, G∀st	ADATE
logisch	DIALOGS, DIALOGS-II, GOLEM	FFOIL, PROGOL	

Erzeuge & Teste: Systematisch

- Zähle alle korrekten Programme systematisch auf.
- Suchbasierte Einschränkungen (Typinformation, Bibliotheken)
- E/A werden nur zum Testen verwendet.

	analytisch	erzeuge & teste	
		systematisch	evolutionär
funktional	IGORI, IGORII, THESYS	Magic- Haskeller, G∀st	ADATE
logisch	DIALOGS, DIALOGS-II, GOLEM	FFOIL, PROGOL	

Erzeuge & Teste: Evolutionär

- Programme sind Individuen einer Population.
- Genetische Operatoren verändern Individuen (Kreuzung, Mutation, etc.)
- Gesetz des Stärkeren bez. Laufzeit, Größe, etc.
- E/A werden nur zum Testen verwendet.

Gliederung

- Automatisches Programmieren und IPS
- Igor II
 - Grundidee
 - Operatoren
- Catamorphismen als Programmschemata
 - Das fold Schema
 - Generalisierung für beliebige induktive Datentypen
 - Implementierungsskizze
- Zusammenfassung und Ausblick

IGOR II ist funktional, analytisch und induktiv

Induktiv

- induziert Programme aus unvollständigen Spezifikationen
- inspiriert durch Summers THESYS
- Nachfolger von IGOR I

Analytisch

- datengetrieben
- findet Rekursionen durch Analyse der E/As
- integrierte uniforme Kostensuche

Funktional

- IGOR II erzeugt funktionale Programme
- erster Prototyp von Emanuel Kitzelmann in MAUDE
- reimplementiert und erweitert in HASKELL

IGOR II ist funktional, analytisch und induktiv

Stärken

- Termination durch Konstruktion
- beliebige nutzerdefinierte Datentypen
- beliebiges Hintergrundwissen nutzbar
- Unterfunktionen
- komplexe Aufrufbeziehungen (Baum-, genestete Rekursion)
- E/As mit Variablen
- induziert gleichzeitig mehrere (wechselseitig) rekursive Zielfunktionen

Eingabe

Datentypdefinitionen

```
data [a] = [] | a:[a]
```

Zielfunktion

```
reverse :: [a] \rightarrow [a]

reverse [] = [

reverse [a] = [a]

reverse [a,b] = [b,a]

reverse [a,b,c] = [c,b,a]
```

Hintergrundwissen

```
snoc :: [a] → a → [a]

snoc [] x = [x]

snoc [x] y = [x,y]

snoc [x,y] z = [x,y,z]
```

- Die ersten n E/A Beispiele müssen gegeben werden.
- Hintergrundwissen ist optional.

Ausgabe

Eine Menge von Gleichungen die die Beispiele modellieren.

reverse Lösung

```
reverse [] = []
reverse (x:xs) = snoc (reverse xs) x
```

Restriction Bias

- Untermenge von HASKELL
- Fallunterscheidung durch "pattern matching".
- Syntaktisch Einschränkungen: Patterns dürfen nicht unifizieren.

Preference Bias

Minimale Anzahl von Fallunterscheidungen werden bevorzugt.

- Für eine (Unter-) Menge von Beispielen wird eine Regel gesucht, die alle erklärt.
- Initiale Hypothese ist die "least general generalisation" der Beispiele.

Beispielgleichungen

```
reverse [a] = [a]
reverse [a,b] = [b,a]
```

Initiale Hypothese

```
reverse (x:xs) = (y:ys)
```

Hypothese enthält ungebundene Variablen!

- Für eine (Unter-) Menge von Beispielen wird eine Regel gesucht, die alle erklärt.
- Initiale Hypothese ist die "least general generalisation" der Beispiele.

Beispielgleichungen

```
reverse [a] = [a]
reverse [a,b] = [b,a]
```

Initiale Hypothese

```
reverse (x:xs) = (y:ys)
```

Hypothese enthält ungebundene Variablen!

Initiale Hypothese

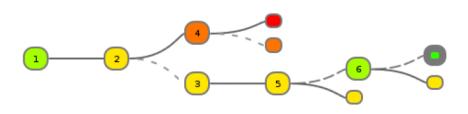
```
reverse (x:xs) = (y:ys)
```

Ungebundene Variablen sind der Induktionshinweis!

Drei Induktionsoperatoren

gleichzeitig anzuwenden

- Partitionierung der Beispieles
 - → Mengen von Gleichungen, Fallunterscheidungen
- Ersetze rechte Seite durch Programmaufruf (rekursiv oder Hintergrundwissen).
- Ersetze Unterterm mit ungebundener Variable durch Unterfunktion.



- In jeder Iteration entwickle die beste Hypothese mit den wenigsten Fällen.
- Bearbeiten einer Hypothese führt zu mehreren Nachfolgern.

Partitionierung der Beispiele, Fallunterscheidung

- Anti-unifizierte Terme unterscheiden sich an min. einer Position bez. des Konstruktors.
- Partitionierung der Beispiele bez. des Konstruktors an dieser Position

Beispiele

```
reverse [] = []
reverse (a:[]) = (a:[])
reverse (a:b:[]) = (b:a:[])
```

anti-unifizierter Term

```
reverse x = y
```

An der Wurzelposition stehen die Konstruktoren [] und (:)

```
\{2,3\}
reverse (x:xs) = (y:ys)
```

Partitionierung der Beispiele, Fallunterscheidung

- Anti-unifizierte Terme unterscheiden sich an min. einer Position bez. des Konstruktors.
- Partitionierung der Beispiele bez. des Konstruktors an dieser Position

Beispiele

```
reverse ([] = []
reverse (a:[]) = (a:[])
reverse (a:b:[]) = (b:a:[])
```

anti-unifizierter Term

```
reverse x = y
```

An der Wurzelposition stehen die Konstruktoren [] und (:)

```
\{2,3\}
reverse (x:xs) = (y:ys)
```

Partitionierung der Beispiele, Fallunterscheidung

- Anti-unifizierte Terme unterscheiden sich an min. einer Position bez. des Konstruktors.
- Partitionierung der Beispiele bez. des Konstruktors an dieser Position

Beispiele

```
reverse [] = []
reverse (a:[]) = (a:[])
reverse (a:b:[]) = (b:a:[])
```

anti-unifizierter Term

An der Wurzelposition stehen die Konstruktoren [] und (:)

$$\{2,3\}$$
reverse (x:xs) = (y:ys)

Programmaufruf

- Passt eine Ausgabe auf jene einer anderen Funktion f, so kann diese durch einen Aufruf von f ersetzt werden.
- Konstruktion der Argumente des Aufrufs ist eine neues Induktionsproblem.
- E/A Beispiele werden abduziert:
 - Eingaben bleiben die gleichen.
 - Ausgaben sind die substituierten Eingaben der passenden Ausgabe.

Beispielgleichung:

reverse [a,b] = b:[a]

Hintergrundwissen:

snoc [x] y = x:[y]

(b:[a]) passt auf (x:[y]) mit Substitution

$$x \leftarrow b, y \leftarrow a$$

ersetze rechte Seite von reverse

reverse [a,b] = snoc (funl [a,b]) (funl [a,b])

fun₁ berechnet 1. Argument

fun2 berechnet 2. Argument

abduzierte Beispiele

$$fun1 [a,b] = [b]$$

$$[un2 [a,b] = a]$$

Beispielgleichung:

reverse
$$[a,b] = b:[a]$$

Hintergrundwissen:

snoc [x]
$$y = x:[y]$$

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (fun1 [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument

fun2 berechnet 2. Argument

abduzierte Beispiele

$$fun1 [a,b] = [b]$$

$$[a,b] = a$$

Beispielgleichung:

reverse [a,b] = b:[a]

Hintergrundwissen:

snoc [x] y = x:[y]

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (fun1 [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument fun₂ berechnet 2. Argument

$$fun1 [a,b] = [b]$$

$$fun2 [a,b] = a$$

Beispielgleichung:

reverse [a,b] = b:[a]

Hintergrundwissen:

snoc [x] y = x:[y]

(b:[a]) passt auf (x:[y]) mit Substitution

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (fun1 [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument

fun₂ berechnet 2. Argument

abduzierte Beispiele

$$fun1 [a,b] = [b]$$

$$fun2 [a,b] = a$$

Beispielgleichung:

reverse [a,b] = b:[a]

Hintergrundwissen:

snoc [x] y = x:[y]

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (funl [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument fun₂ berechnet 2. Argument

abduzierte Beispiele

fun1
$$[a,b] = [b]$$

$$fun2 [a,b] = a$$

Beispielgleichung:

reverse [a,b] = b:[a]

Hintergrundwissen:

snoc [x] y = x:[y]

(b:[a]) passt auf (x:[y]) mit Substitution

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (fun1 [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument fun₂ berechnet 2. Argument

abduzierte Beispiele

$$fun1 \quad [a,b] = [b]$$

$$fun2 \quad [a,b] = a$$

Beispielgleichung:

reverse
$$[a,b] = b:[a]$$

Hintergrundwissen:

$$snoc(x) y = x:[y]$$

$$\left\{ x \leftarrow b, y \leftarrow a \right\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (funl [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument fun₂ berechnet 2. Argument

abduzierte Beispiele

fun1
$$[a,b] = (b)$$

$$fun2 [a,b] = a$$

Programmaufruf – Beispiel

Beispielgleichung:

Hintergrundwissen:

$$snoc [x] y = x:[y]$$

$$\{x \leftarrow b, y \leftarrow a\}$$

ersetze rechte Seite von reverse

reverse
$$[a,b] = snoc (funl [a,b]) (fun2 [a,b])$$

fun₁ berechnet 1. Argument fun₂ berechnet 2. Argument

abduzierte Beispiele

Rechte Seite von reverse und subst. 1./2. Argument von snoc

$$fun1 [a,b] = [b]$$

fun2
$$[a,b] = a$$

Unterfunktionen

Beispielgleichungen:

```
reverse [a] = [a]
reverse [a,b] = [b,a]
```

Initiale Hypothese:

```
reverse (x:xs) = (y:ys)
```

- Jeder Subterm der rechten Seite mit ungebundenen Variablen wird durch einen Aufruf einer Unterfunktion ersetzt.
- Konstruktion der Unterfunktion ist ein neues Induktionsproblem.
- E/As der Unterfunktion werden abduziert:
 - Eingaben bleiben bestehen.
 - Ausgaben werden die korrespondierenden Unterterme.

Beispielgleichungen:

```
reverse [a] = (a: [])
reverse [a,b] = (b:[a])
```

Initiale Hypothese:

```
reverse (x:xs) = (y : ys)
```

erhalte Konstruktoren und ersetze Variablen der rechten Seite

```
reverse (x:xs) = fun1 (x:xs) : fun2 (x:xs)
```

Beispielgleichungen:

```
reverse [a] = (a: [])
reverse [a,b] = (b:[a])
```

Initiale Hypothese:

```
reverse (x:xs) = (y:vs)
```

erhalte Konstruktoren und ersetze Variablen der rechten Seite

reverse
$$(x:xs) = fun1 (x:xs) : fun2 (x:xs)$$

Beispielgleichungen:

```
reverse [a] = (a: [])
reverse [a,b] = (b:[a])
```

Initiale Hypothese:

```
reverse (x:xs) = (y): (ys)
```

erhalte Konstruktoren und ersetze Variablen der rechten Seite

```
reverse (x:xs) = [fun1 (x:xs)] : [fun2 (x:xs)]
```

```
fun1 [a] = a fun2 [a] = []
fun1 [a,b] = b fun2 [a,b] = [a]
```

Beispielgleichungen:

Initiale Hypothese:

reverse
$$(x:xs) = (y): (ys)$$

erhalte Konstruktoren und ersetze Variablen der rechten Seite

reverse
$$(x:xs) = fun1 (x:xs) : fun2 (x:xs)$$

Beispielgleichungen:

```
reverse [a] = (a: [])
reverse [a,b] = (b: [a])
```

Initiale Hypothese:

```
reverse (x:xs) = (y): (ys)
```

erhalte Konstruktoren und ersetze Variablen der rechten Seite

reverse
$$(x:xs) = fun1 (x:xs)$$
: $fun2 (x:xs)$

Beispielgleichungen:

```
reverse [a] = (a: [])
reverse [a,b] = (b: [a])
```

Initiale Hypothese:

```
reverse (x:xs) = (y): (ys)
```

erhalte Konstruktoren und ersetze Variablen der rechten Seite

```
reverse (x:xs) = [fun1 (x:xs)] : [fun2 (x:xs)]
```

Gliederung

- Automatisches Programmieren und IPS
- 2 IGORI
 - Grundidee
 - Operatoren
- 3 Catamorphismen als Programmschemata
 - Das fold Schema
 - Generalisierung für beliebige induktive Datentypen
 - Implementierungsskizze
- Zusammenfassung und Ausblick

Suchproblem mit exponentiellem Aufwand

- Operatoranwendung läßt Auswahl:
 - viele Hintergrundfunktionen
 - viele "matchings"
 - viele Partitionsmöglichkeiten
- mehrere Operatoren
 - → Hoher Verzweigungsfaktor
 - → Plateaus im Suchraum

Traditionelle Lösung – Zusätzliches Wissen Templates oder Programmscher

Dies ist:

- Expertenwissen
- problemspezifisch

- benutzerunabhängig
- problemunabhängig

Suchproblem mit exponentiellem Aufwand

- → Hoher Verzweigungsfaktor
- → Plateaus im Suchraum

Traditionelle Lösung – Zusätzliches Wissen

Templates oder Programmschemata

Dies ist:

- Expertenwissen
- problemspezifisch
- schlecht diskriminierend

- benutzerunabhängig
- problemunabhängig
- stark diskriminierend

Suchproblem mit exponentiellem Aufwand

- → Hoher Verzweigungsfaktor
- → Plateaus im Suchraum

Traditionelle Lösung – Zusätzliches Wissen

Templates oder Programmschemata

Dies ist:

- Expertenwissen
- problemspezifisch
- schlecht diskriminierend

- benutzerunabhängig
- problemunabhängig
- stark diskriminierend

Suchproblem mit exponentiellem Aufwand

- → Hoher Verzweigungsfaktor
- → Plateaus im Suchraum

Traditionelle Lösung – Zusätzliches Wissen

Templates oder Programmschemata

Dies ist:

- Expertenwissen
- problemspezifisch
- schlecht diskriminierend

- benutzerunabhängig
- problemunabhängig
- stark diskriminierend

Suchproblem mit exponentiellem Aufwand

- → Hoher Verzweigungsfaktor
- → Plateaus im Suchraum

Traditionelle Lösung – Zusätzliches Wissen

Templates oder Programmschemata

Dies ist:

- Expertenwissen
- problemspezifisch
- schlecht diskriminierend

Es sollte aber sein:

- benutzerunabhängig
- problemunabhängig
- stark diskriminierend

Anpassen des Schemas an die Daten und nicht umgekehrt!

Universale Eigenschaften von Typmorphismen nutzen!

Catamorphismen auf Listen

Fold - ein Schema für strukturelle Rekursion

```
fold :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b

fold f v [] = v

fold f v (x:xs) = x 'f' (fold f v xs)
```

```
fold f v (a:b:c:d:[]) \rightsquigarrow a 'f' (b 'f' (c 'f' (d 'f' [])))
```

Fold - Universale Eigenschaft

```
g [] = v
g (x:xs) = f x (g xs)
\iff g = fold f v
```

Ermöglicht map / filter / reduce Schema

Universale Eigenschaften von Typmorphismen nutzen!

Catamorphismen auf Listen

Fold - ein Schema für strukturelle Rekursion

```
fold :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
fold f v [] = v
fold f v (x:xs) = x 'f' (fold f v xs)
```

```
fold f v (a:b:c:d:[]) \sim a 'f' (b 'f' (c 'f' (d 'f' [])))
```

Fold - Universale Eigenschaft

```
g[] = v

g(x:xs) = f x (g xs) \iff g = fold f v
```

Ermöglicht map / filter / reduce Schema

Neuer Operator – Fold Einführung

Ein analytischer "Vorverarbeitungsschritt"

exklusiv anzuwenden

Programmschema als Funktion h\u00f6herer Ordnung einf\u00fchren

Versuche universelle Eigenschaft mit E/A zu erfüllen:

Für Funktion g:

- Ist g definiert für []?
- Finde ein f, sodass für alle Beispiele subsumiert von g (x:xs) gilt:

$$f x (g xs) = g (x:xs)$$

Sonstruktion von f ist neues Induktionsproblem.

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a:[b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

```
reverse [] = v \Rightarrow v = [] reverse (x:xs) = f x (reverse xs) \Rightarrow f = fun3
```

Reformuliere Problem:

```
reverse x = fold fun3 [] x
```

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a:[b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

Reformuliere Problem:

```
reverse x = fold fun3[] x
```

```
fun3 a [] = [a]
fun3 a [b] = [b,a]
fun3 a [c,b] = [c,b,a]
```

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a:[b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

Reformuliere Problem:

```
reverse x = fold[fun3][] x
```

```
fun3 a [] = [a]
fun3 a [b] = [b,a]
fun3 a [c,b] = [c,b,a]
```

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a:[b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

```
reverse [] = v \Rightarrow v = [] reverse (x:xs) = f x (reverse xs) \Rightarrow f = fun3
```

Reformuliere Problem:

```
reverse x = fold fun3 [] x
```

```
fun3 a [] = [a]
fun3 a [b] = [b,a]
fun3 a [c,b] = [c,b,a]
```

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a:[b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

```
reverse [] = v \Rightarrow v = [] reverse (x:xs) = f x (reverse xs) \Rightarrow f = fun3
```

Reformuliere Problem:

```
reverse x = fold fun3 [] x
```

Beispielgleichungen:

```
reverse [] = []
reverse (a: []) = [a]
reverse (a: [b]) = [b,a]
reverse (a: [b,c]) = [c,b,a]
```

Überprüfe universale Eigenschaft:

```
reverse [] = v \Rightarrow v = [] reverse (x:xs) = f x (reverse xs) \Rightarrow f = fun3
```

Reformuliere Problem:

```
reverse x = fold fun3 [] x
```

```
fun3 a [] = [a]
fun3 a [b] = [b,a]
fun3 a [c,b] = [c,b,a]
```

Beispielgleichungen:

```
reverse (a: [b]) = [b,a]
reverse (a: [b], = [c,b,a]
```

Überprüfe universale Eigenschaft:

```
reverse [] = v \Rightarrow v = [] reverse (x:xs) = f x (reverse xs) \Rightarrow f = fun3
```

Reformuliere Problem:

```
reverse x = fold fun3 [] x
```

Optimierungen

Sei *IO* eine Beispielmenge der Form fun a_i $b_i = o_i$ mit $i = 1 \dots n$.

map verwenden

Wenn lgg(IO) gleich fun x xs = y:xs

- ignoriere 2. Argument in E/As von fun
- \bullet g x = map fun x

filter verwenden

Ist IO in zwei disjunkte Mengen IO₁ und IO₂ teilbar, sodass

$$lgg(IO_1)$$
: fun x xs = x:xs $lgg(IO_2)$: fun x xs = xs

dann sei fun' eine neue Funktion mit

fun'
$$a_i = True$$
 -- (*@f r a_i aus IO_1 @*)
fun' $a_i = False$ -- (*@f r a_i aus IO_2 @*)

• q x = filter fun' x

Funktionale Programmierung und Kategorientheorie

- In der Kategorie der Mengen Set
 - seien Objekte (Mengen) Typen
 - und Morphismen totale Funktionen zwischen Typen
- Morphismen aus der Einermenge ({()}), d.h. ein terminales Objekt,

weisen einem Typ A einen Wert a zu.

Funktionskomposition

$$f \circ a : \mathbf{1} \to B$$

beschreibt die Anwendung der Funktion $f : A \rightarrow B$ auf den Wert a : A

Terminologie

Sei \mathcal{C} eine distributive Kategorie, d.h. mit finiten Produkten $(\times, \mathbf{1})$, finiten Koprodukten $(+, \mathbf{0})$, und der Distribution von Produkten über Koprodukten.

$A \times B$ ist das Produkt von A und B

mit Projektionen

$$fst_{A,B}: A \times B \rightarrow A$$

 $snd_{A,B}: A \times B \rightarrow B$

A + B ist das Koprodukt von A und B

mit Injektionen

$$inl_{A,B}: A \rightarrow A + B$$

 $inr_{A,B}: B \rightarrow A + B$

Terminologie fortges.

Das Paar $f \otimes g : C \rightarrow A \times B$

der Morphismen $f:C\to A$ und $g:C\to B$ ist der eindeutige Morphismus, sodass

$$fst_{A,B} \circ f \otimes g = f$$

 $snd_{A,B} \circ f \otimes g = g$

Die Fallunterscheidung $f \oplus g : A + B \rightarrow C$

der Morphismen $f: A \rightarrow C$ und $g: B \rightarrow C$ ist der eindeutige Morphismus, sodass

$$f \oplus g \circ inl_{A,B} = f$$

 $f \oplus g \circ inr_{A,B} = g$

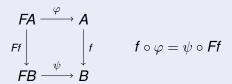
F-Algebren

F-Algebra — funktorinduzierte Algebra

Sei $F:\mathcal{C}\to\mathcal{C}$ ein Endofunktor. Ein F-Algebra (Algebra mit Signatur F) ist ein Tupel $\mathbf{A}=(A,\varphi)$, bestehend aus einem Objekt A (Träger) und einem Morphismus $\varphi:FA\to A$ (Struktur) aus \mathcal{C} .

F-Algebra Morphismus

Seien $\mathbf{A} = (A, \varphi)$ und $\mathbf{B} = (B, \psi)$ *F*-Algebren, ein Homomorphismus zwischen \mathbf{A} und \mathbf{B} ist ein Morphismus $f : A \to B$ aus \mathcal{C} , sodass



Kategorie der *F*-Algebren und initiale Objekte

Kategorie der *F* -Algebras – **Alg**_{*F*}

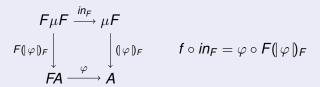
F-Algebren und *F*-Algebra Morphismen mit Identität und Komposition.

Initiale *F*-Algebra – **Alg**_{*F*}

Ein initiales Objekt \mathbf{Alg}_F ist eine initiale F-Algebra $\mu F = (\mu F, i n_F)$

F-Catamorphismus von $\varphi - (\varphi)_F$

Für Endofunktor F mit initialer F-Algebra existiert für jede F-Algebra $\mathbf{A}=(A,\varphi)$ ein eindeutiger Morphismus $(\varphi)_F:\mu F\to A$, sodass

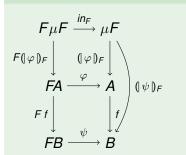


Initiale F-Algebren als Fixpunkte von F

Gegeben:

- initiale F-Algebra (μF , in)
- beliebige *F*-Algebren $\varphi : FA \rightarrow A$ und $\psi : FB \rightarrow B$
- Morphismus $f: A \rightarrow B$

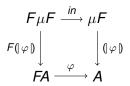
Dann:

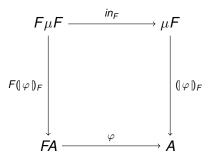


 $in_F : F \mu F \rightarrow \mu F$ ist ein Isomorphismus und μF ist der Fixpunkt von F.

Initiale Algebren und induktive Datentypen

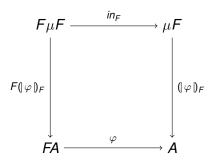
- Der Endofunktor F beschreibt die Signatur
- Die initiale Algebra $\mathbf{A} = (\mu F, in)$ ist der induktive Type
 - sowohl der reine Container (μF)
 - ▶ als auch die Konstruktoren (in)
- Catamorphismen, Zeugen der Initialität, korrespondieren mit induktiv definierten Funktionen:
 - Der Zieltyp und die Funktionen des induktive Schritts sind Algebren.
 - Der Catamorphismus beschreibt die induktive Funktion als Ganzes.





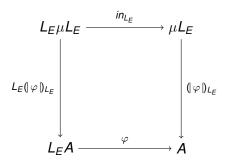
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_F = List_F$ und
- $in_{L_E} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



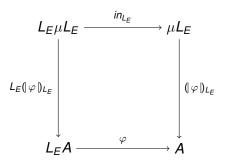
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_F = List_F$ und
- $in_{L_F} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



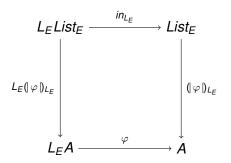
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



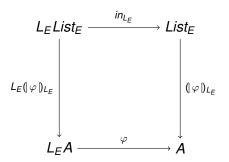
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



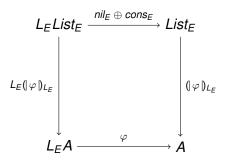
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_F} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



Für einen beliebigen Typ E sei L_E ein Endofunktor mit

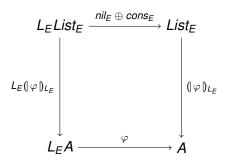
- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_F} = nil_E \oplus cons_E$,
- für einen beliebigen Typ A, $L_FA = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

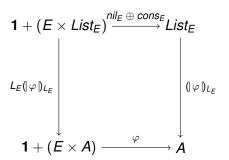
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

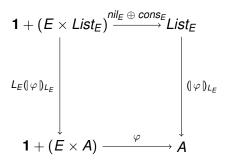
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

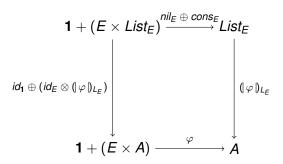
- für einen beliebigen Typ A, $L_FA = \mathbf{1} + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,



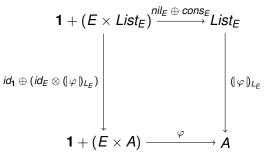
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

sodass

- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,

wobei $\varphi = g \oplus h$.



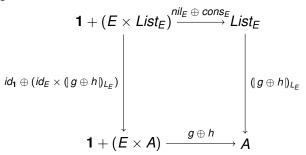
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

sodass

- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,

wobei $\varphi = g \oplus h$.



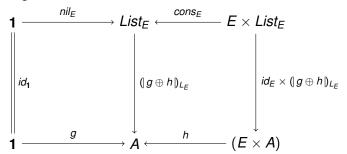
Für einen beliebigen Typ E sei L_E ein Endofunktor mit

- Fixpunkt $\mu L_E = List_E$ und
- $in_{L_E} = nil_E \oplus cons_E$,

sodass

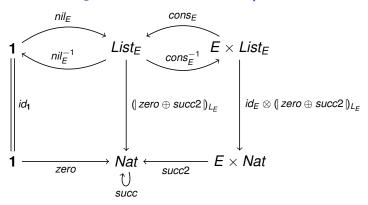
- für einen beliebigen Typ A, $L_E A = 1 + E \times A$, und
- für ein beliege Funktion f, $L_E f = id_1 \oplus id_E \otimes f$,

wobei $\varphi = g \oplus h$.



 $List_E$ -Iteration ist der eindeutige Morphismus ($g \oplus h$) $_{L_E}: List_E \to A$. $\circ \circ$

length als L_E-Catamorphismus



 $succ2 = succ \circ snd_{E,Nat}$

```
length, length' :: [e] \rightarrow Nat length [] = 0 length (x:xs) = 1 + (length xs) length' = cata (const 0 \lambda/ (+1).snd )
```

Implementierung in HASKELL

```
{-# OPTIONS GHC -XTypeOperators -XTypeFamilies #-}
module MorphEx where
import Generics.Pointless.Combinators
import Generics.Pointless.Functors hiding (Nat, Cons)
import Generics.Pointless.RecursionPatterns
-- Datentypdefinition
data List a = Nill | Cons a (List a) deriving (Show)
-- Typinstanz von Pattern Functor
type instance PF (List a) = Const One :+: (Const a :*: Id)
```

Implementierung in HASKELL fortges.

```
instance Mu (List a) where
   inn (Left ) = NilL
   inn (Right (a, 1)) = Cons a 1
  out Nill
           = Left L
  out (Cons a 1) = Right (a,1)
-- Catamorphismus Beispiel
length :: List a \rightarrow Nat
length = cata ( L :: (List a) ) ( q \lambda / h )
 where
 q = Z
 h(n) = Sn
```

Abduktion der E/A Beispiele

- Koprodukte induzieren Partitionen
- Terminale Objekte sind konstante Funktionen
- Produkte induzieren Funktionen mit Tupelparametern
- Fixpunkte werden durch entsprechende "kleinere" Ausgaben ersetzt
- Alles andere bleibt unverändert

```
length = cata ( _L :: (List a) ) ( g \lambda/ h )

length [] = Z g [] = Z

length (a:[]) = (S Z)

length (a:b:[]) = (S(S Z)) h (a, Z) = (S Z)

length (a:b:c:[]) = (S(S(S Z)) h (a, S Z) = (S(S Z))

h (a, S(S Z)) = (S(S(S Z)))
```

Gliederung

- Automatisches Programmieren und IPS
- 2 Igor I
 - Grundidee
 - Operatoren
- 3 Catamorphismen als Programmschemata
 - Das fold Schema
 - Generalisierung f
 ür beliebige induktive Datentypen
 - Implementierungsskizze
- 4 Zusammenfassung und Ausblick

Empirischer Vergleich I

Funktion	BK	ohne (·)	mit (·)	Δ
allodd	_	Q	6	6
and	_	Q	2	2
evens	_	23	4	19
fib	add	187	187	0
hanoi	_	5	5	0
lengths	-	36	2	34
powset	append	76	5	71
odd/even	_	2/2	2/2	0/0
shiftr	_	10	3	7
sum	<u> </u>	6	2	1
switch	_	10	Q	_
zeros	<u> </u>	6	2	4

Anzahl der Iterationen

🔿 Zeitlimit überschritten, BK Hintergrundwissen

Empirischer Vergleich II

	ohne (·)	mit (·)	Δ		
CPU in Sekunden					
Σ	16.4859	5.2871	11.1988		
max	8.7245	3.0962	5.6283		
min	0.0001	0.0001	0.0000		
Ñ	0.0080	0.0001	0.0079		
Ø	0.3111	0.0999	0.2112		
σ_{X}	1.2694	0.4512	0.8182		
Iterationen					
Σ	2107	555	1552		
max	1208	206	1002		
min	1	1	0		
\tilde{X}	5	2	3		
Ø	39.7500	10.4700	29.2800		
σ_{X}	167.2719	35.8448	131.4271		

 \varnothing Mittel, \tilde{X} Median, σ_{X} Std.Abw.

Auf Grundlage von 53 Beispielproblemen.

Fazit

- Catamorphismen lassen sich als Rekursionsschema für IPS datengetrieben verwenden
- Die Anwendbarkeit lässt sich durch Überprüfen der universellen Eigenschaften in den E/As zeigen.
- Die Verwendung von Schemata
 - reduziert die Anzahl der Schleifendurchläufe
 - verbessert die M\u00e4chtigkeit des Algorithmus insgesamt

Analytische Verwendung anderer Schemata könnte die Fähigkeit von IP Systemen weiter verbessern.

Ausblick

- Sensitivität $\stackrel{?}{=}$ 1, Spezifität < 1
- Programmschemata bez. universeller Eigenschaften in Entscheidungsbaum von speziell zu generell anordnen.
 - Andere Morphismen für strukturelle Rekursion ausprobieren.
 - ★ Hylomorphismus (primitive Rekursion)
 - ⋆ Paramorphismus (primitive Rekursion via Tupel)
 - ★ Anamorphismus (strukturelle Koinduktion)
 - ★ Apomorphismus (primitive Korekursion via Tupel)
 - ***** ...
 - Haben derartige Funktionen "aussagekräftige" E/As?
 - Können ihre universellen Eigenschaften ähnlich leicht implementiert werden?
 - Können ihre universellen Eigenschaften diskriminierend?

Unser Projekt

http://www.cogsys.wiai.uni-bamberg.de/effalip/

- Publikationen
- Downloads
- Links

inductive-programming.org

http://www.inductive-programming.org

- Einführung in IPS
- Systemüberblick
- Repositorium mit Testproblemen
- IPS nahe Publikationen
- EMailverteiler
-

Herzlichen Dank!

Unser Projekt

http://www.cogsys.wiai.uni-bamberg.de/effalip/

- Publikationen
- Downloads
- Links

