Data-Driven Induction of Recursive Functions from
Input/Output-Examples

Emanuel Kitzelmann

Faculty of Information Systems and Applied Computer Sciences
University of Bamberg

ECML/PKDD 2007 Workshop on Approaches and Applications of
Inductive Programming

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP’07 1/31

|
Outline

o Inductive (Functional) Programming
@ General Approaches
@ Formalization
@ Analytical Function Induction

9 Function Induction by Pattern Refinement, Matching, and
Ubiquitous Subprogram Introduction
@ General Algorithm
@ Processing Unfinished Rules

© Experimental Results

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 2/31

Inductive (Functional) Programming General Approaches

Outline

0 Inductive (Functional) Programming
@ General Approaches

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP’07 3/ 31

Inductive (Functional) Programming

General IP Approaches

Search-Based P
(generate-and-test)

General Approaches

Analytical IP (data-
driven)

general method

programs are gener-
ated and then tested
against given examples

programs are derived
from given examples

program classes unrestricted restricted

usage of prede- possible not possible

fined functions

induction times high short

possible appli- inventing new and effi- programming assis-

cation fields cient algorithms tence, enduser pro-
gramming

prototypical sys- ADATE DIALOGS, IGOR |

tems

Emanuel Kitzelmann (University of Bamberg)

Induction of Recursive Functions

AAIP'07 4/31

Inductive (Functional) Programming General Approaches

Our Contribution

An |P algorithm that

@ combines the analytical approach with search to achieve both
relatively unrestricted inducible program classes and reasonable
induction costs,

@ deals with arbitrary user-defined algebraic datatypes,

@ automatically “invents” necessary subprograms,

o facilitates use of background knowledge,

@ induces programs for multiple interdependent target functions,
°

induces rather complex recursive patterns (nested calls of induced
recursive functions, mutual recursion, tree recursion, arbitrary
numbers of base- and recursive cases).

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 5/31

Inductive (Functional) Programming Formalization

Outline

0 Inductive (Functional) Programming

@ Formalization

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions

AAIP'07

6/31

Inductive (Functional) Programming Formalization

Representation Language — Example

Hypotheses (induced programs), background knowledge and
examples are represented as equations fulfilling some structural
conditions over typed first-order signatures.

Example (A List Reversing Program)

Signature: ¥ = DUC, D = {Reverse, Last, Init}, C = {[], cons}.
Equations:

Reverse([]) =]

Reverse([X|Xs]) = [Last([X|Xs])|Reverse(Init([X|Xs]))]
Last([X]) =X

Last([X1, X2|Xs]) = Last([X2|Xs])

Init([X]) =

Init([Xq, Xo| Xs]) = [Xi|Init([Xo| Xs])]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 7131

Inductive (Functional) Programming Formalization

Representation Language

@ hypotheses, background knowledge and examples are equations
of a particular form over typed first-order signatures =

@ % is partitioned into a set of defined function symbols D and a set
of constructors C

@ equation left hand sides (lhss) have the form
F(t‘],,tn)

where F is a defined function symbol and the t; are composed of
constructors and variables

@ the argument list t4, .. ., f, is called pattern

@ the described form of equations corresponds to the concept of
pattern matching in functional languages

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 8/31

Inductive (Functional) Programming Formalization

Term Rewriting as Operational Semantics

@ equations can be read from left to right as rewriting (simplification)
rules ~ term rewriting system (TRS); a TRS whose rules have the
“pattern matching” form are called constructor systems (CSs)

@ the rewrite relation induced by a TRS is denoted by — g, its
reflexive transitive closure by —p

@ a term that cannot be further simplified is called normal form; if

t % sand s is in normal form we write t - s and say that t
normalizes to s or that s is a normal form of ¢

@ required characteristics: fermination and confluence

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 9/31

Inductive (Functional) Programming Formalization

Characterizing Hypotheses and Induction Algorithms

Definition (Correctness of Hypotheses)
A hypothesis, i.e., a CS R, is correct with respect to a set of example
equations iff F(/) g o for each example equation F(i)=o.

Definition (Soundness and Completeness of IP Algorithms)
@ An induction algorithms is sound iff it induces only correct
hypotheses.
@ An induction algorithm is complete with respect to a hypothesis
space H iff it finds a hypothesis if there exists a correct hypothesis
inH.

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 10/31

Inductive (Functional) Programming Formalization

The Inductive Functional Programming Problem

Given
@ a hypothesis space H,
@ a set of example equations E and
@ some background knowledge B,
find a hypothesis (set of equations) H € H such that HU B

@ constitutes a terminating and confluent constructor system that is
correct with respect to E and

@ computes arbitrary complex inputs.

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 11/31

Inductive (Functional) Programming Formalization

Inductive Functional Programming Example

Examples for Target Function Reverse and background knowledge Last

Reverse([]) = [|
Reverse([a]) = [a] Last([a]) = a
Reverse([a, b]) = [b, a] Last([a,b]) = b
Reverse([a, b, c]) = [c, b, 4] Last([a, b,c]) =c
Reverse([a, b, c,d]) = [d, ¢, b, 4] Last([a, b,c,d]) =d
Induced Constructor System
Reverse([]) —]
Reverse([X|Xs]) — [Last([X|Xs])|Reverse(Init([X|Xs]))]
Init([X]) —

Init([X1, Xo| Xs]) — [X |Init([Xa| Xs])]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07

12/31

Inductive (Functional) Programming Analytical Function Induction

Outline

0 Inductive (Functional) Programming

@ Analytical Function Induction

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 13/31

Inductive (Functional) Programming Analytical Function Induction

Analytical Function Induction

Theorem (Analytical Function Induction)

Let E be a set of example equations, p be a pattern, and E, be the
subset of E for which the inputs match p with substitutions o. Let CJ]
be a context? and r be a term. Then

(E\Ep) U {F(p)=CIF(n]}

is correct with respect to E if for all examples (F(i) = o) € Ep (with
i = po) exist an example (F(i") = 0') € E such that:

o0=Co[d] A i'=r0

%a term containing a distinguished symbol [J, called wole, at any position; then C[s]
denotes the result of replacing the whole by s in C[]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 14/31

I GV L ICUu Il Analytical Function Induction

Analytical Function Induction Example

Let p = [X]|Xs] be a pattern and E be the following example equations:
1. Unpack([]) =[]

2. Unpack([b]) = [[b]] E
3. Unpack([a, b]) = [[a], [b] [*

Then holds:

0> = [[X]|o1]loa iy = Xso» Withop = {X — b, Xs — [|}
03 = [[X]|oglos o= Xsoz with oz = {X « a,Xs — [b]}

And thus:

Unpack([]) =]
Unpack([X|Xs]) = [[X]|Unpack(Xs)]

is correct with respect to E.

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 15/31

Pattern Refinement, Matching, Subprogram Introduction General Algorithm

e Function Induction by Pattern Refinement, Matching, and
Ubiquitous Subprogram Introduction
@ General Algorithm

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 16/31

General Algorithm
Inductive Bias

A correct hypothesis is chosen according to the following conditions:

most specific patterns each pattern is the least general generalization
(lgg) of all matching example inputs (narrows pattern
search space)

non-unifying patterns no two patterns unify, i.e., each example input
matches exactly one pattern (assures confluence)

minimal number of case distinctions number of example input subsets
induced by the patterns is minimal, i.e., no correct CS
with fewer “case distinctions”

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 17 /31

General Algorithm

@ kind of best first search in the space of complete and terminating
CSs with most specific, non-unifying patterns

@ initial state: with respect to the “minimal number of case
distinctions” criterion — one initial rule per target function

@ during search, rhss may contain variables not occuring in Ihss,
such rhss and rules are called unfinished

@ unfinished rules of currently best hypotheses are replaced by
(sets of) successor rules repeatedly until goal state is reached

@ goal states: at least one of the currently best hypotheses is
finished (i.e., contains no unfinished rule)

@ same rule may be member of different hypotheses, hence several
hypotheses are processed in parallel

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 18/31

General Algorithm
Initial Rules

@ given a set of example equations, the initial rule contains the Igg
of the example inputs as pattern and the Igg—with respect to
substitutions for input Igg—of the example outputs as rhs

@ only initial rules are (possibly) unfinished, i.e., processing an
unfinished rule either finishes the rule or completely replaces the
rule by a set of new initial rules

Example
Example equations:

Unpack([b]) = [[¢]], ~Unpack({a, b]) = [[a], [b]]

Initial rule:
Unpack([X|Xs]) = [[X]| Y]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 19/31

Symbols in RHSs and Processing Unfinished RHSs

@ symbols in finished RHSs: constructors, pattern variables, defined
function symbols

@ symbols in unfinished RHSs: additionally “unbound” variables (to
be “removed”) but no defined function symbols

@ thus: to finish a RHS, subterms at positions on pathes from the
root to “unbound” variables has to be replaced by calls to defined
functions

Example
Example equations:

Unpack([b]) = [[b]], Unpack([a, b]) = [[a], [£]]

Initial rule:
Unpack([X|Xs]) = [[X]| Y]

v

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 20/31

Pattern Refinement, Matching, Subprogram Introduction Processing Unfinished Rules

e Function Induction by Pattern Refinement, Matching, and
Ubiquitous Subprogram Introduction

@ Processing Unfinished Rules

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 21/31

Splitting Rules by Pattern Refinement

Introducing a Case Distinction

Replaces an unfinished rule with pattern p by at least two new rules
with more specific patterns in order to establish a case distinction.

Method

@ chose a position u with a variable in p

@ take all example inputs with same constructor at position u into
same subset
~ partitions examples

© compute initial rules for all new example subsets

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 22/31

Processing Unfinished Rules

Splitting Rules — Example
example equations:

1. Unpack([a]) = [[a]]

2. Unpack([b]) = [[b]]

3. Unpack([b, c]) = [[b], [c]]

4. Unpack([a, b, c]) = [[al, [b], [c]
current unfinished rule: Unpack([X|Xs]) = [[X]| Y]
subsets for position 2 (variable Xs):

{1,2} with same constructor [|
{8,4} with same constructor cons

new initial rules:
Unpack([X]) = [[X]]
Unpack([X1, Xz|Xs]) = [[X1], [X2]| Y]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 23/31

Pattern Refinement, Matching, Subprogram Introduction Processing Unfinished Rules

Introducing (Recursive) Function Calls
Applying the Analytical Function Induction Principle

Replaces the rhs of an unfinished rule F with pattern p by a (recursive)
call to the/another target function or background knowledge function
F'.

Method

@ for a fixed defined function F’ find an example equation F'(i/") = o
for each (current) example equation F(i) = o

@ introduce a new defined function symbol R and example
equations R(i) = /'

© replace the unfinished rhs by F’(R(p)); this finishes the rule

© induce R from its examples

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 24 /31

Introducing Function Calls — Example

all given example equations E for Last:

1. Last([b]) = b

2. Last([c]) =c

3. Last([a, b]) = b

4. Last([b,c]) = ¢ Eix, x| xs]
5. Last([a, b,c]) = ¢

current unfinished rule: Last([X1, Xz2|Xs]) = Y

new examples:
R(la,b]) = [b], R([bc]) =[c], R([a b,c])=[b;c]
finished rule: Last([X1, X2|Xs]) = Last(R([X1, X2|Xs]))

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07

25/31

Processing Unfinished Rules
Introducing Subfunctions For Unfinished Subterms

Dealing with Unfinished Subterms as New Induction Problems

Did you miss (recursive) function calls at “deeper” positions in the rhs,
i.e., within a context C[| as described for the analytical principle?

Here you are!

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP’07 26/ 31

Pattern Refinement, Matching, Subprogram Introduction Processing Unfinished Rules

Introducing Subfunctions For Unfinished Subterms

Dealing with Unfinished Subterms as New Induction Problems

Replaces unfinished subterms of an unfinished rhs for a rule with
pattern p by calls to new subfunctions. Precondition: Root of rhs is a
constructor c.

Method

@ replace each direct unfinished subterm of ¢ by a call to a new
subfunction Sub(p); this finished the rule

@ induce each new subfunction Sub from example equations

Sub(i) = o|x where k is the index of the subterm replaced by
Sub(p)

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 27/31

Processing Unfinished Rules
Introducing Subfunctions — Example

example equations:
Unpack([b]) = [[b]], Unpack([a, b]) = [[a], []]
current unfinished rule:
Unpack([X|Xs]) = [[X]| Y]

finished rule:
Unpack([X|Xs]) = [[X]|Sub([X|Xs])

example equations for Sub:

Sub([b]) =[], Sub([a, b]) = [[b]]

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07

28 /31

Implementation

@ prototype of the described algorithm implemented in the reflective,
term rewriting language MAUDE.
@ two extensions:

@ example equations may contain variables such that necessary
amount of example equations decreases

~ advantageous for the user
~» smaller induction times

@ pattern variables can be tested for equality; establishes a second
form of case distinction

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 29/31

Empirical Results

on a P4 with Linux and the MAUDE 2.3 interpreter

@ Length, Last, Reverse, Member, Take (keeps first n elements and
“deletes” the rest), Insertion Sort (with Insert as background
knowledge) Even, Odd, Add, Mirror (mirrors a binary tree)
induced in milliseconds from < 6 examples (Member 13
examples)

@ Reverse has been specified in two variants:

@ without background knowledge; Last and Init automatically
introduced

@ with Snoc (inserts an element at the end of a list) as background
knowledge

@ Quicksort with Append and the partitioning functions as
background knowledge induced in 63 seconds; but depends on
applied reduction order, can be induced within one second

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 30/31

Conclusion

@ “pure” analytical approaches too restrictive, enumerative “pure”
generate-and-test approaches too expensive, so try a combination

@ that is: apply a search but use data-driven successor functions

@ we have developed such an algorithm and implemented it; the
algorithm is complete and sound

@ our algorithm is more powerfull than existing analytical
approaches to inductive programming and on some tested
problems more time efficient than existing generate-and-test base
approaches

@ future research must try to increase time efficiency

Emanuel Kitzelmann (University of Bamberg) Induction of Recursive Functions AAIP'07 31/31

	Inductive (Functional) Programming
	General Approaches
	Formalization
	Analytical Function Induction

	Function Induction by Pattern Refinement, Matching, and Ubiquitous Subprogram Introduction
	General Algorithm
	Processing Unfinished Rules

	Experimental Results
	Conclusion

