Analytical Inductive Functional Programming

Emanuel Kitzelmann

Cognitive Systems Group
University of Bamberg

International Symposium on
Logic-Based Program Synthesis and Transformation

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

0 Inductive (Functional) Programming
@ Introduction

e Our Approach
@ Basic Concepts
@ The IGOR2 Algorithm
@ Empirical Results and Further Research

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 2/25

° Inductive (Functional) Programming
@ Introduction

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 3/25

Inductive (Functional) Programming

@ constructing programs (functional programs here) from

input/output-examples (I/O-examples) or other kinds of incomplete
specifications

@ also known as inductive program synthesis

Example (Reverse)
I/O-examples (containing variables):

Reverse([]) =[], Reverse([X]) = [X], Reverse([X,Y])=[Y,.X], ...

Induced program:

Reverse([]) =]
Reverse([X|Xs]) = Reverse(Xs) @ [X]

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

Two General Approaches

Generate-and-test: (heuristically) enumerate and test programs until
one is found which correctly computes all I/0-examples
systems: ADATE(Olsson), MAGICHASKELLER(Katayama), FOIL(Quinlan)

Analytical: detect syntactical regularities, imposed by (hypothetical)
repeated recursive calls, within and between I/O-examples
or traces and derive a recursive function definition from
them
systems: THESYS(Summers), IGOR1(Kitzelmann & Schmid),
CRUSTACEAN (Aha et al.)

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 5/25

Characteristics of the Two Approaches and Our Idea

The analytical approach:

+ no search in program space and no evaluation of I/0O-examples,
thus fast

— strongly restricted program schemas
— no background knowledge

The enumerative approach:
+ theoretically no restrictions

— practically very expensive (combinatorial explosion and repeated
evaluation of 1/0-examples)

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 6/25

Characteristics of the Two Approaches and Our Idea

The analytical approach:

+ no search in program space and no evaluation of I/0O-examples,
thus fast

— strongly restricted program schemas
— no background knowledge

The enumerative approach:
+ theoretically no restrictions

— practically very expensive (combinatorial explosion and repeated
evaluation of 1/0-examples)

Our idea: combine both approaches:
@ search in a relatively unrestricted program space, but

@ compute successor programs based on regularities between
I/O-examples

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 6/25

e Our Approach
@ Basic Concepts

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 7125

Basic Concepts

@ functional programs are sets of equations over typed,
user-defined, signatures
@ evaluation by reading them as rewrite rules

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 8/25

Basic Concepts

@ functional programs are sets of equations over typed,
user-defined, signatures
@ evaluation by reading them as rewrite rules
@ equations/rules form a constructor (term rewriting) system (CS),
i.e.
e each function symbol denotes either a (type) constructor or a
defined function (defined by equations)
@ rules have the form F(py,...,px) = t where F is a defined function
symbol and the p;, called pattern, are constructor terms (terms
consisting of constructors and variables only)

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 8/25

Basic Concepts

@ functional programs are sets of equations over typed,
user-defined, signatures

@ evaluation by reading them as rewrite rules

@ equations/rules form a constructor (term rewriting) system (CS),
i.e.

e each function symbol denotes either a (type) constructor or a
defined function (defined by equations)

@ rules have the form F(py,...,px) = t where F is a defined function
symbol and the p;, called pattern, are constructor terms (terms
consisting of constructors and variables only)

@ defined function symbols denote either target functions (to be
induced) or background knowledge (functions assumed to be
already implemented)

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 8/25

Basic Concepts

functional programs are sets of equations over typed,
user-defined, signatures

evaluation by reading them as rewrite rules

equations/rules form a constructor (term rewriting) system (CS),
ie.

e each function symbol denotes either a (type) constructor or a
defined function (defined by equations)

@ rules have the form F(py,...,px) = t where F is a defined function
symbol and the p;, called pattern, are constructor terms (terms
consisting of constructors and variables only)

defined function symbols denote either target functions (to be
induced) or background knowledge (functions assumed to be
already implemented)

I/O-examples (example equations) are equations/constructor
systems with constructor terms as rhss

we have example equations both for target functions and
background knowledge

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

Analytical Function Induction

Let E be a set of example equations, F a defined function symbol
occurring in E, p a pattern for F, and Er , C E the example equations
for F whose inputs match p with substitutions o.

Let C be a context, F', F" (further) defined function symbols occuring
in E.

If for all F(i) = o € EF p exist equations F'(i") = o’ € E such that
o= Cold] and F'(i)y=1

then

(E\ Erp) U{F(p) = CIF'(F"(P))I} = E

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 9/25

e Our Approach

@ The IGOR2 Algorithm

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 10/25

Characteristics

Given example equations for target functions E and background

knowledge B, IGOR2 returns a set of equations P (a hypothesis),
constituting a confluent CS, such that

F(i) >pug0 forall F(i)=o€cE

Inductive bias

@ fewest number of case distinctions (fewest number of different
patterns)

@ patterns pairwise non-unifying (to guarantee confluence)

@ patterns are least general generalizations (lggs) of the example
inputs they respectively subsume

During search, hypotheses are unfinished, meaning that they contain
variables in rhss not occuring in Ihss.

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming

LOPSTR 2008 11/25

The General Algorithm

The general algorithm is a kind of best first search in the program
space.

IGOR2

h — the initial hypothesis (one rule per target function)
H — {h}

while h unfinished do
@ r — an unfinished rule of h

@ S «— all successor rule sets of r
@ foreach h e Hwith r € hdo

@ remove h from H
e foreach successor set s € Sdo

@ add h with r replaced by sto H

@ h «— a hypothesis from H with least number of case distinctions
return h

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming

LOPSTR 2008 12/25

Initial Rules

@ given a set of example equations for one target function, the initial
rule is the least general generalization (lgg) of the example
equations

@ only initial rules are (possibly) unfinished, i.e., processing an
unfinished rule either finishes the rule or completely replaces it by
a set of new initial rules

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 13/25

Initial Rules

@ given a set of example equations for one target function, the initial
rule is the least general generalization (lgg) of the example
equations

@ only initial rules are (possibly) unfinished, i.e., processing an
unfinished rule either finishes the rule or completely replaces it by
a set of new initial rules

Example equations:

Reverse([X]) = [X], Reverse([X,Y])=1Y,X]

Initial rule:

Reverse([X|Xs]) = [Z|Zs]

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 13/25

Processing Unfinished Rules

Example (Initial Rule)

Reverse([X|Xs]) = [Z|Zs]

Problem: unbound variables Y, Ys in rhs, i.e., unfinished

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 14/25

Processing Unfinished Rules

Example (Initial Rule)

Reverse([X|Xs]) = [Z|Zs]

Problem: unbound variables Y, Ys in rhs, i.e., unfinished

Three possible solutions (successor functions):

@ partition the example equations and compute initial rules for each
subset

@ treat subterms of the rhs containing unbound variables as new
(sub)problems

© replace rhs by a defined function call

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 14/25

Partitioning Example Equations, Case Distinction

@ choose a position u with a variable in the lhs of the unfinished rule
and with different constructors in the lhss of the example
equations

@ take all example equations with the same constructor at u into the
same subset

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 15/25

Partitioning Example Equations, Case Distinction

@ choose a position u with a variable in the lhs of the unfinished rule
and with different constructors in the lhss of the example
equations

@ take all example equations with the same constructor at u into the
same subset

Example equations:
1. Reverse([]) =[], 2. Reverse([X]) = [X], 3. Reverse([X, Y]) =[Y, X]

Unfinished initial rule: Reverse(Xs) = Zs

u is root position of the pattern, different constructors [|, cons
Partition: {{1}{2,3}}
New initial rules: Reverse([]) =[], Reverse([X|Xs]) = [Z|Zs]

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

Dealing with Unfinished Subterms

@ for an unfinished initial rule F(p) = t and corresponding example
equations F(i) = o:

@ replace unfinished subterms sy, ..., s in the rhs t by calls to new
subprograms Si(p), ..., Sk(p) (finishes the rule)

@ induce each S; from example equations S;(i) = o|, with u the
position of subterm s; in ¢

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 16/25

Dealing with Unfinished Subterms, Example

Example equations:
Reverse([X]) = [X], Reverse([X,Y])=1[Y,X]

Initial Rule:
Reverse([X|Xs]) = [Z|Zs]

Finished Rule:
Reverse([X|Xs]) = [S1([X|Xs]) | So([X]Xs])]
Example equations for Sy, S»:

Si(X]) =X S([X])
Si([X, Y1)

[]
Y o S(X Y]) = [X]

Initial rules for Sy, So:
Si([X|Xs]) =2
So([X|Xs]) = Zs

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

Introduce a Defined Function Call

@ for a fixed defined function F’ (to be called) and for each (currently
considered) example equation F(i/) = o choose a (matched)
example equation F’(i") = o’ such that o = o'

@ replace the rhs t of the unfinished rule F(p) = t by F'(S(p))
(finishes it) for a new subprogram S

© induce S from example equations S(i) = i'7’

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 18/25

Defined Function Call, Example

Unfinished rule:
So([X|Xs]) = Zs

Example equations:

So([X]) =1[1, Sa(IX, Y]) = [X]
Matched Reverse-examples:

Reverse([]) =[], Reverse([X]) = [X]
Finished equation:
So([X|Xs]) = Reverse(Ss([X|Xs]))

Examples for Sj:

Ss([X]) =11, Ss(IX, Y]) = [X]

Initial rule for S3:
S3([X|Xs]) = Zs

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008

Current State of the Reverse Example

Example (Current Hypothesis)

Reverse([])
Reverse([X|Xs])
S1([X|Xs])
Sa([X]| Xs])
Ss([X|Xs])

[]
[S1(IX1Xs]) | Sa([X|Xs])]

Y
Reverse(S3([X|Xs]))
Y

A\

Example (Example Equations for S;, Ss)

Si([X]) =X Sa([X])
Si(X, YD) =Y Ss([X,Y])

[]
[X]

\

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 20/25

The Induced Reverse Program

Suppose we would have given Last as background knowledge. Then
Sy will match Last. Sz will become the Init function.

Example (Induced Reverse Program)

Reverse([]) =[]
Reverse([X|Xs]|) = [Last([X|Xs]) | Reverse(Init([X|Xs]))]
Init([X]) = [

[

Init([X1, X2| Xs]) = [X1 | Init([X2|Xs])]

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 21/25

e Our Approach

@ Empirical Results and Further Research

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 22/25

Empirical Results

on a P4 with Linux and the MAUDE 2.3 interpreter

@ Length, Last, Reverse, Member, Take (keeps first n elements and
“deletes” the rest), Insertion Sort (with Insert as background
knowledge) Even, Odd, Add, Mirror (mirrors a binary tree)
induced in milliseconds from < 6 examples (Member 13
examples)

@ Reverse has been specified in two variants:

@ without background knowledge; Last and Init automatically
introduced

@ with Snoc (inserts an element at the end of a list) as background
knowledge

@ Quicksort with Append and the partitioning functions as
background knowledge in about one minute

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 23/25

Future Research

@ relaxing the requirement of complete example sets

@ heuristics, algorithm schemas, more powerfull kinds of
specifications in order to reduce search costs

@ higher-order functions

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 24 /25

@ “pure” analytical approaches too restrictive, generate-and-test
approaches too expensive, so try a combination

@ that is: apply a search but use data-driven successor functions
@ we have developed such an algorithm and implemented it: IGOR2

@ IGOR2 is more powerfull than existing analytical approaches to
inductive programming and on some tested problems more time
efficient than existing generate-and-test based systems

Emanuel Kitzelmann (University of Bamberg) Analytical Inductive Functional Programming LOPSTR 2008 25/25

	Inductive (Functional) Programming
	Introduction

	Our Approach
	Basic Concepts
	The Igor2 Algorithm
	Empirical Results and Further Research

	Summary

