Lecture 2: Foundations of Concept Learning

Cognitive Systems II - Machine Learning

SS 2005

Part I: Basic Approaches to Concept Learning

Version Space, Candidate Elimination, Inductive Bias
Definition of Concept Learning

- **learning** involves acquiring general concepts from a specific set of training examples D

- each **concept** c can be thought of as a boolean-valued function defined over a larger set

i.e. a function defined over all animals, whose value is true for birds and false for other animals

\Rightarrow **concept learning**: Inferring a boolean-valued function from training examples
A Concept Learning Task - Informal

- example target concept Enjoy: “days on which Aldo enjoys his favorite sport”
- set of example days D, each represented by a set of attributes

<table>
<thead>
<tr>
<th>Example</th>
<th>Sky</th>
<th>$AirTemp$</th>
<th>$Humidity$</th>
<th>$Wind$</th>
<th>$Water$</th>
<th>$Forecast$</th>
<th>$Enjoy$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sunny</td>
<td>Warm</td>
<td>Normal</td>
<td>Strong</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>String</td>
<td>Warm</td>
<td>Same</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>Rainy</td>
<td>Cold</td>
<td>High</td>
<td>String</td>
<td>Warm</td>
<td>Change</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Sunny</td>
<td>Warm</td>
<td>High</td>
<td>String</td>
<td>Cool</td>
<td>Change</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- the task is to learn to predict the value of Enjoy for an arbitrary day, based on the values of its other attributes
A Concept Learning Task - Informal

• hypothesis representation
 • each hypothesis h consists of a conjunction of constraints on the instance attributes, that is, in this case a vector of six attributes
 • possible constraints:
 ? : any value is acceptable
 single required value for the attribute
 \emptyset : no value is acceptable
 • if some instance x satisfies all the constraints of hypotheses h, then h classifies x as a positive example ($h(x) = 1$)

\Rightarrow most general hypothesis: $< ?, ?, ?, ?, ?, ? >$

\Rightarrow most specific hypothesis: $< \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset >$
A Concept Learning Task - Formal

Given:
- Instances X: Possible days, each described by the attributes
 - Sky (with values $Sunny$, $Cloudy$ and $Rainy$)
 - $AirTemp$ (with values $Warm$ and $Cold$)
 - $Humidity$ (with values $Normal$ and $High$)
 - $Wind$ (with values $Strong$ and $Weak$)
 - $Water$ (with values $Warm$ and $Cool$)
 - $Forecast$ (with values $Same$ and $Change$)
- Hypotheses H where each $h \in H$ is described as a conjunction of constraints on the above attributes
- Target Concept $c : Enjoy : X \rightarrow \{0, 1\}$
- Training examples D: positive and negative examples of the table above

Determine:
- A hypothesis $h \in H$ such that $(\forall x \in X)[h(x) = c(x)]$
A Concept Learning Task - Example

example hypothesis $h_e = < Sunny, ?, ?, ?, Warm, ? >$

According to h_e Aldo enjoys his favorite sport whenever the sky is sunny and the water is warm (independent of the other weather conditions!)

example 1: $< Sunny, Warm, Normal, Strong, Warm, Same >$

This example satisfies h_e, because the sky is sunny and the water is warm. Hence, Aldo would enjoy his favorite sport on this day.

example 4: $< Sunny, Warm, High, Normal, Cool, Change >$

This example does not satisfy h_e, because the water is cool. Hence, Aldo would not enjoy his favorite sport on this day.

\Rightarrow h_e is not consistent with the training examples D
Concept Learning as Search

- concept learning as search through the space of hypotheses H (implicitly defined by the hypothesis representation) with the goal of finding the hypothesis that best fits the training examples.

- most practical learning tasks involve very large, even infinite hypothesis spaces.

- many concept learning algorithms organize the search through the hypothesis space by relying on the general-to-specific ordering.
FIND-S

exploits general-to-specific ordering

finds a maximally specific hypothesis h consistent with the observed training examples D

algorithm:

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x
 - if the constraint a_i is satisfied by x
 then do nothing
 - else replace a_i with the next more general constraint satisfied by x
3. Output hypothesis h
FIND-S - Example

- **Initialize** $h \leftarrow \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$

 - **example 1:** $\langle \text{Sunny, Warm, Normal, Strong, Warm, Same} \rangle$

 $$h \leftarrow \langle \text{Sunny, Warm, Normal, Strong, Warm, Same} \rangle$$

 - **example 2:** $\langle \text{Sunny, Warm, High, Strong, Warm, Same} \rangle$

 $$h \leftarrow \langle \text{Sunny, Warm, ?, Strong, Warm, Same} \rangle$$

 - **example 3:** $\langle \text{Rainy, Cold, High, Strong, Warm, Change} \rangle$

 This example can be omitted because it is negative.
 Notice that the current hypothesis is already consistent with this example,
 because it correctly classifies it as negative!

 - **example 4:** $\langle \text{Sunny, Warm, High, Strong, Cool, Change} \rangle$

 $$h \leftarrow \langle \text{Sunny, Warm, ?, Strong, ?, ?} \rangle$$
FIND-S - Example

Instances X

- $x_1 = \langle\text{Sunny Warm Normal Strong Warm Same}\rangle$, +
- $x_2 = \langle\text{Sunny Warm High Strong Warm Same}\rangle$, +
- $x_3 = \langle\text{Rainy Cold High Strong Warm Change}\rangle$, -
- $x_4 = \langle\text{Sunny Warm High Strong Cool Change}\rangle$, +

Hypotheses H

- $h_0 = \langle\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\rangle$
- $h_1 = \langle\text{Sunny Warm Normal Strong Warm Same}\rangle$
- $h_2 = \langle\text{Sunny Warm ? Strong Warm Same}\rangle$
- $h_3 = \langle\text{Sunny Warm ? Strong Warm Same}\rangle$
- $h_4 = \langle\text{Sunny Warm ? Strong ? ?}\rangle$
Remarks on FIND-S

- in each step, \(h \) is consistent with the training examples observed up to this point

- unanswered questions:
 - Has the learner converged to the correct target concept?
 No way to determine whether FIND-S found the only consistent hypothesis \(h \) or whether there are many other consistent hypotheses as well
 - Why prefer the most specific hypothesis?
 - Are the training examples consistent?
 FIND-S is only correct if \(D \) itself is consistent. That is, \(D \) has to be free of classification errors.
 - What if there are several maximally specific consistent hypotheses?
CANDIDATE-ELIMINATION addresses several limitations of the FIND-S algorithm.

Key idea: description of the set of all hypotheses consistent with D without explicitly enumerating them.

- Performs poorly with noisy data.
- Useful conceptual framework for introducing fundamental issues in machine learning.
Version Spaces

to incorporate the key idea mentioned above, a compact representation of all consistent hypotheses is necessary.

Version space $V S_{H,D}$, with respect to hypothesis space H and training data D, is the subset of hypotheses from H consistent with D.

$$V S_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

$V S_{H,D}$ can be represented by the most general and the most specific consistent hypotheses in form of boundary sets within the partial ordering.
Version Spaces

The **general boundary set** G, with respect to hypothesis space H and training data D, is the set of maximally general members of H consistent with D.

$$G \equiv \{ g \in H | \text{Consistent}(g, D) \land (\neg \exists g' \in H)[(g' >_g g) \land \text{Consistent}(g', D)] \}$$

The **specific boundary set** S, with respect to hypothesis space H and training data D, is the set of minimally general (i.e., maximally specific) members of H consistent with D.

$$S \equiv \{ s \in H | \text{Consistent}(s, D) \land (\neg \exists s' \in H)[(s >_g s') \land \text{Consistent}(s', D)] \}$$
Version Spaces

\[S_4: \{\langle \text{Sunny}, \text{Warm}, ?, \text{Strong}, ?, \rangle \}\]

\[G_4: \{\langle \text{Sunny}, ?, ?, ?, ?, \rangle, \langle ?, \text{Warm}, ?, ?, ?, \rangle \}\]
Algorithm

- Initialize \(G \) to the set of maximally general hypotheses in \(H \)
- Initialize \(S \) to the set of maximally specific hypotheses in \(H \)

For each training example \(d \in D \), do

- **If \(d \) is a positive example**
 - Remove from \(G \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(s \) in \(S \) that is inconsistent with \(d \)
 - Remove \(s \) from \(S \)
 - Add to \(S \) all minimal generalizations \(h \) of \(s \) such that \(h \) is consistent with \(d \) and some member of \(G \) is more general than \(h \)
 - Remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)

- **If \(d \) is a negative example**
 - Remove from \(S \) any hypothesis inconsistent with \(d \)
 - For each hypothesis \(g \) in \(G \) that is inconsistent with \(d \)
 - Remove \(g \) from \(G \)
 - Add to \(G \) all minimal specializations \(h \) of \(g \) such that \(h \) is consistent with \(d \) and some member of \(S \) is more specific than \(h \)
 - Remove from \(G \) any hypothesis that is less general than another hypothesis in \(G \)
Illustrative Example

Initialization of the Boundary sets

\[G_0 \leftarrow \{<?, ?, ?, ?, ?, ?> \} \]

\[S_0 \leftarrow \{<\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset > \} \]

example 1: \(<\text{Sunny}, \text{Warm}, \text{Normal}, \text{Strong}, \text{Warm}, \text{Same} > \)

\(S\) is overly specific, because it wrongly classifies example 1 as false. So \(S\) has to be revised by moving it to the least more general hypothesis that covers example 1 and is still more special than another hypothesis in \(G\).

\[S_1 = \{<\text{Sunny}, \text{Warm}, \text{Normal}, \text{Strong}, \text{Warm}, \text{Same} > \} \]

\[G_1 = G_0 \]

equation 2: \(<\text{Sunny}, \text{Warm}, \text{High}, \text{Strong}, \text{Warm}, \text{Same} > \)

\[S_2 = \{<\text{Sunny}, \text{Warm}, ?, \text{Strong}, \text{Warm}, \text{Same} > \} \]

\[G_2 = G_1 = G_0 \]
Illustrative Example

Training examples:
1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes
Example 3: <Rainy, Cold, High, Strong, Warm, Change>

G is overly general, because it wrongly classifies example 3 as true. So G has to be revised by moving it to the least more specific hypotheses that covers example 3 and is still more general than another hypothesis in S.

There are several alternative minimally more specific hypotheses.

$\Rightarrow S_3 = S_2$

Illustrative Example

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No
Illustrative Example

example 4: \(<\ Sunny, Warm, High, Strong, Cool, Change >\)

\[S_4 = \{ <\ Sunny, Warm, ?, Strong, ?, ? >\} \]

\[G_4 = G_3 \]
Illustrative Example

\[S_4: \{\langle \text{Sunny, Warm, ?, Strong, ?, ?}\rangle\} \]

\[\langle \text{Sunny, ?, ?, Strong, ?, ?}\rangle \quad \langle \text{Sunny, Warm, ?, ?, ?, ?}\rangle \quad \langle ?, \text{Warm, ?, Strong, ?, ?}\rangle \]

\[G_4: \{\langle \text{Sunny, ?, ?, ?, ?, ?}\rangle, \langle ?, \text{Warm, ?, ?, ?, ?}\rangle\} \]
Remarks

Will the algorithm converge to the correct hypothesis?
- convergence is assured provided there are no errors in D and the H includes the target concept
- G and S contain only the same hypothesis

How can partially learned concepts be used?
- some unseen examples can be classified unambiguously as if the target concept had been fully learned
 - positive iff it satisfies every member of S
 - negative iff it doesn’t satisfy any member of G
- otherwise an instance x is classified by majority (if possible)
Inductive Bias

- fundamental property of inductive learning
- a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying unseen examples

inductive bias ≈ policy by which the learner generalizes beyond the observed training data to infer the classification of new instances

Consider a concept learning algorithm L for the set of instances X. Let c be an arbitrary concept defined over X, and $D_c = \{< x, c(x) >\}$ an arbitrary set of training examples of c. Let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on the data D_c.

The inductive bias of L is any minimal set of assertions B such that

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_x)]$$
Kinds of Inductive Bias

Restriction Bias (aka Language Bias)
- whole H is searched by learning algorithm
- hypothesis representation **not expressive enough** to encompass all possible concepts
- e.g. CANDIDATE-ELIMINATION only includes conjunctive concepts

Preference Bias (aka Search Bias)
- hypothesis representation encompasses all possible concepts
- learning algorithm does not consider each possible hypothesis
- e.g. use of heuristics, greedy strategies

Preference Bias more desirable, because it assures

$$(\exists h \in H)[(\forall x \in X)[h(x) = c(x)]]$$

Lecture 2: Foundations of Concept Learning – p. 25
Un Unbiased Learner

- an unbiased $H = 2^{|X|}$ would contain every teachable function
- for such a H,
 - G would always contain the negation of the disjunction of observed negative examples
 - S would always contain the disjunction of the observed positive examples
- hence, only observed examples will be classified correctly
- in order to converge to a single target concept, every $x \in X$ has to be in D
- the learning algorithm is unable to generalize beyond observed training data
Inductive System vs. Theorem Prover

Inductive system

- Training examples
- New instance
- Candidate Elimination Algorithm Using Hypothesis Space H

Classification of new instance, or "don't know"

Equivalent deductive system

- Training examples
- New instance
- Assertion "H contains the target concept"

Theorem Prover

Classification of new instance, or "don't know"

Inductive bias made explicit