
CogSysI Lecture 3: State-Space
Planning

Intelligent Agents

Ute Schmid (lecture)

Emanuel Kitzelmann (practice)

Applied Computer Science, Bamberg University

Extensions to the slides for chapter 4 of Dana Nau

last change: May 6, 2008

Schmid, CogSysI-3, State-Space Planning – p. 1



Remarks on Backward Planning

Also called regression planning

Advantage: typically smaller search trees

Problem: inconsistent states can be produced
can e.g. be detected by including axioms (domain
knowledge!)

Graphplan strategy: build a Planning Graph by
forwards search (polynomial effort) and extract the
plan from the graph backwards (exponential effort, as
usual for planning)

Schmid, CogSysI-3, State-Space Planning – p. 2



Backward Planning cont.

clear(x)

clear(B)
ontable(A)
on(B, C)

on(x, A)
clear(x’)
on(x’, B)
clear(A)
ontable(A)
on(B, C)

on(A, B)
on(B, C)

clear(A)
clear(B)
ontable(A)
on(B, C)

clear(B)
clear(C)
on(B, z’)
on(A, B)

clear(B)
clear(C)
ontable(B)
on(A, B)

inconsistent:

to fulfill clear(y), y= B

puttable(x)

deletes on(x, B)
clear(A)
on(A, y)
clear(B)
on(B, C)

clear(B)
clear(C)
ontable(B)
clear(A)
ontable(A)

clear(B)
clear(C)
on(B, z’’)
clear(A)
ontable(A)

clear(A)
clear(B)
on(A, z)
on(B, C)

put(A, B)

put(A, B)
put(B, C)

put(B, C)

puttable(x) puttable(x’)
puttable(A) put(B, C) put(B, C)

will become inconsistent

for z = B

Schmid, CogSysI-3, State-Space Planning – p. 3



STRIPS

by Fikes & Nilsson (1971), “Stanford Research
Institute Problem Solver”

classical example: moving boxes between rooms
(“Strips World”)

Originally: representation formalism (relying on
CWA)and planning algorithm
today: “STRIPS planning” refers to classical
representation without extensions and not to a specific
algorithm

STRIPS algorithm: a linear (and therefore incomplete)
approach

compare to: General Problem Solver (GPS), a
cognitively motivated problem solving algorithm which
is also linear and therefore incomplete

Schmid, CogSysI-3, State-Space Planning – p. 4



STRIPS Algorithm

Backward-search with a kind of hill climbing strategy

In each recursive call only such subgoals are relevant
which are preconditions of the last operator added

Consequence: considerable reduction of branching,
but resulting in incompleteness

Linear planning: organizing subgoals in a stack

Non-linear planning: organizing subgoals in a set,
interleaving of goals

Schmid, CogSysI-3, State-Space Planning – p. 5



STRIPS Algorithm
STRIPS(O, s, g)

Π ← empty plan

loop
if s satisfies g then return Π

A ← {a|a is a ground instance of an operator in O,
and a is relevant for g}

if A = ∅ then return failure
nondeterministically choose any action a ∈ A

Π′ ← STRIPS(O, s, precond(a))
if Π′ = failure then return failure
;; if we get here, then Π′ achieves precond(a) from s

s ← γ(s, Π′) ;; s now satisfies precond(a)
s ← γ(s, a)

Π ← Π.Π′.a

Schmid, CogSysI-3, State-Space Planning – p. 6



Incompleteness of Linear P.

The Sussman Anomaly

A

C

BC

A B

Initial State Goal: on(A, B) and
on(B, C)

C

A

B

C

A

B

on(B, C) on(A, B)

Schmid, CogSysI-3, State-Space Planning – p. 7



Sussman Anomaly

Linear planning corresponds to dealing with goals
organized in a stack:

[on(A, B), on(B, C)]

try to satisfy goal on(A, B)
solve sub-goals [clear(A), clear(B)]a

all sub-goals hold after puttable(C)
apply put(A, B)

goal on(A, B) is reached

try to satisfy goal on(B, C).

aWe ignore the additional subgoalontable(A) rsp.on(A, z) here.

Schmid, CogSysI-3, State-Space Planning – p. 8



Interleaving of Goals

Non-linear planning allows that a sequence of planning
steps dealing with one goal is interrupted to deal with
another goal.

For the Sussman Anomaly, that means that after block
C is put on the table pursuing goal on(A, B), the
planner switches to the goal on(B, C).

Non-linear planning corresponds to dealing with goals
organized in a set.

The correct sequence of goals might not be found
immediately but involve backtracking.

Schmid, CogSysI-3, State-Space Planning – p. 9



Interleaving of Goals cont.

{on(A, B), on(B, C)}

try to satisfy goal on(A, B)
{clear(A), clear(B), on(A, B), on(B, C)}
clear(A) and clear(B) hold after puttable(C)

try to satisfy goal on(B, C)

apply put(B, C)

try to satisfy goal on(A, B)

apply put(A, B).

Schmid, CogSysI-3, State-Space Planning – p. 10



Rocket Domain

(Veloso)

Objects: n boxes, Positions (Earth, Moon), one Rocket

Operators: load/load a box, move the Rocket (oneway:
only from earth to moon, no way back!)

Linear planning: to reach the goal, that Box1 is on the
Moon, load it, shoot the Rocket, unload is, now no
other Box can be transported!

Schmid, CogSysI-3, State-Space Planning – p. 11



The Running Gag of CogSysI

Question: How many AI people does it take to change a
lightbulb?
Answer: At least 81.

The Planning Group (4)

One to define STRIPS-style operators for lightbulb
changing

One to show that linear planning is not adequate

One to show that nonlinear planning is adequate

One to show that people don’t plan; they simply react
to lightbulbs

Schmid, CogSysI-3, State-Space Planning – p. 12


	Remarks on Backward Planning
	Backward Planning cont.
	STRIPS
	STRIPS Algorithm
	STRIPS Algorithm
	Incompleteness of Linear P.
	Sussman Anomaly
	Interleaving of Goals
	Interleaving of Goals cont.
	Rocket Domain
	The Running Gag of CogSysI

