
CogSysI Lecture 6: Inference in
FOL

Intelligent Agents

Ute Schmid (lecture)

Emanuel Kitzelmann (practice)

Applied Computer Science, Bamberg University

last change: May 13, 2008

Schmid, CogSysI-6, Inference in FOL – p. 1

Remember ...

... in the last lecture we started to introduce resolution.

Resolution calculus is a basic approach for performing
logical proofs on a machine.

Logical formula must be rewritten into clause form,
using equivalence rules.

To perform a resolution step on a pair of clauses,
literals must be unified.

Schmid, CogSysI-6, Inference in FOL – p. 2

Clause Form

Conjunctive Normalform (CNF): Conjunction of
disjunctions of literals
∧n

i=1
(∨m

j=1
Lij)

Clause Form: Set of disjunctions of literals (can be
generated from CNF)

Rewriting of formulas to clause form:
8 steps, illustrated with example

∀x[B(x) → (∃y[O(x, y) ∧ ¬P (y)]

∧ ¬∃y[O(x, y) ∧ O(y, x)]

∧ ∀y[¬B(y) → ¬E(x, y)])]

Schmid, CogSysI-6, Inference in FOL – p. 3

Clause Form cont.

(1) Remove Implications
∀x[¬B(x) ∨ (∃y[O(x, y) ∧ ¬P (y)] ∧ ¬∃y[O(x, y) ∧ O(y, x)] ∧

∀y[¬(¬B(y)) ∨ ¬E(x, y)])]

(2) Reduce scopes of negation
∀x[¬B(x) ∨ (∃y[O(x, y) ∧ ¬P (y)] ∧ ∀y[¬O(x, y) ∨ ¬O(y, x)] ∧
∀y[B(y) ∨ ¬E(x, y)])]

(3) Skolemization (remove existential quantifiers)
Replace existentally quantified variables by
constant/function symbols.
∃x p(x) becomes p(C)
(“There exists a human who is a student.” is satisfiable if there
exists a constant in the universe U for which the sentence is true.
“Human C is a student.” is satisfiable if the constant symbol C can
be interpreted such that relation p is true.)

Schmid, CogSysI-6, Inference in FOL – p. 4

Clause Form cont.

Skolemization cont.
If an existentially quantified variable is in the scope of a
universally quantified variable, it is replaced by a function
symbol dependent of this variable:
∀x ∃y p(x) ∧ q(x, y) becomes ∀x p(x) ∧ q(x, f(x))
(“For all x holds, x is a positive integer and there exists a y which is
greater than x.” is satisfiable if for each x exists an y such that the
relation “greater than” holds. E.g., f(x) can be interpreted as
successor-function.)
Skolemization is no equivalence transformation. A formula
and its Skolemization are only equivalent with respect to
satisfiability! The skolemized formula has a model iff the
orginal formula has a model.
∀x[¬B(x) ∨ ((O(x, f(x)) ∧ ¬P (f(x))) ∧ ∀y[¬O(x, y) ∨
¬O(y, x)] ∧ ∀y[B(y) ∨ ¬E(x, y)])]

Schmid, CogSysI-6, Inference in FOL – p. 5

Clause Form cont.

(4) Standardize variables (“bounded renaming”)
A variable bound by a quantifier is a “dummy” and can be
renamed. Provide that each variable of universal quantor
has a different name. (Problematic case: free variables)
∀x[¬B(x) ∨ ((O(x, f(x)) ∧ ¬P (f(x))) ∧ ∀y[¬O(x, y) ∨
¬O(y, x)] ∧ ∀z[B(z) ∨ ¬E(x, z)])]

(5) Prenex-form
Move universal quantifiers to front of the formula.
∀x∀y∀z[B(x) ∨ ((O(x, f(x)) ∧ ¬P (f(x))) ∧ (¬O(x, y) ∨
¬O(y, x)) ∧ (B(z) ∨ ¬E(x, z)))]

(6) CNF
(Repeatedly apply the distributive laws)
∀x∀y∀z[(¬B(x) ∨ O(x, f(x))) ∧ (¬B(x) ∨ ¬P (f(x))) ∧
(¬B(x) ∨ ¬O(x, y) ∨ ¬O(y, x)) ∧ (¬B(x) ∨ B(z) ∨ ¬E(x, z))]

Schmid, CogSysI-6, Inference in FOL – p. 6

Clause Form cont.

(7) Eliminate Conjunctions
If necessary, rename variable such that each disjunction
has a different set of variables.
The truth of a conjunction entails that all its parts are true.
∀x[¬B(x)∨O(x, f(x))], ∀w[¬B(w)∨¬P (f(w))], ∀u ∀y[¬B(u)∨
¬O(u, y) ∨ ¬O(y, u)], ∀v ∀z[¬B(v) ∨ B(z) ∨ ¬E(v, z)]

(8) Eliminate Universal Quantifiers
Clauses are implicitely univerally quantified.
M = {¬B(x) ∨ O(x, f(x)),¬B(w) ∨ ¬P (f(w)),¬B(u) ∨
¬O(u, y) ∨ ¬O(y, u),¬B(v) ∨ B(z) ∨ ¬E(v, z)}

Schmid, CogSysI-6, Inference in FOL – p. 7

Substitution

A substitution is a set θ = {v1 ← t1, . . . vn ← tn} of

replacements of variables vi by terms ti.

If θ is a substitution and E an expression, E′ = Eθ is called

instance of E. E′ was derived from E by applying θ to E.

Example: E = p(x) ∨ (¬q(x, y) ∧ p(f(x))), θ = {x ← C},

Eθ = p(C) ∨ (¬q(C, y) ∧ p(f(C)))

Special case: alphabetic substitution (variable renaming).

Composition of substitutions: Let be

θ = {u1 ← t1, . . . un ← tn, v1 ← s1, . . . vk ← sk} and

σ = {v1 ← r1, . . . vk ← rk, w1 ← q1, . . . wm ← qm}. The

composition is defined as θσ =Def {u1 ← t1σ, . . . un ←

tnσ, v1 ← s1σ, . . . vk ← skσ, w1 ← q1, . . . wm ← qm}

Composition of substitutions is not commutative!

Schmid, CogSysI-6, Inference in FOL – p. 8

Unification

Let be {E1. . . En} a set of expressions. A substitution θ

is a unificator of E1. . . En, if E1θ = E2θ . . . = Enθ.

A unificator θ is called most general unifier (mgu), if for
each other unificator σ for E1. . . En there exists a
substitution γ with σ = θγ.

Theorem: If exists a unificator, then exists an mgu.

E

σ

θ

γ

E’

There are lots of unification algorithms, e.g. one proposed by Robinson.

Schmid, CogSysI-6, Inference in FOL – p. 9

Examples

(1) {P (x), P (A)} θ = {x ← A}

(2) {P (f(x), y, g(y)), P (f(x), z, g(x))} θ = {y ← x, z ← x}

(3) {P (f(x, g(A, y)), g(A, y)), P (f(x, z), z)} θ = {z ← g(A, y)}

(4) {P (x, f(y), B), P (x, f(B), B)} θ = {x ← A, y ← B}

σ = {y ← B}

In (4) holds:
σ is more general than θ: θ = σγ, with γ = {x ← A}
σ is mgu for {P (x, f(y), B), P (x, f(B), B)}

Schmid, CogSysI-6, Inference in FOL – p. 10

Unification Algorithm

For a given set of formula S:

1. Let be θ = {}

2. While |S| > 1 DO
(a) Calculate the disagreement set D of S

(b) If D contains a variable x and a term t in which x

does not occur
Then θ = θ{x ← t} and S = Sθ

Else stop (S not unifiable)

3. Return θ as mgu of S

Schmid, CogSysI-6, Inference in FOL – p. 11

Resolution

A clause C = ∨n
i=1

Li can be written as set C = {L1, . . . Ln}.
Let be C1, C2 and R clauses. R is called resolvent of C1 and
C2 if:

There are alphabetical substitutions σ1 und σ2 such that
C1σ1 and C2σ2 have no common variables.

There exists a set of literals L1, . . . Lm ∈ C1σ1(m ≥ 1)

and L′

1
, . . . L′

n ∈ C2σ2(n ≥ 1) such that
L = {¬L1,¬L2, . . .¬Lm, L′

1
, L′

2
, . . . L′

n} are unifiable with θ

as mgu of L.

R has the form:
R = ((C1σ1 \ {L1, . . . Lm}) ∪ (C2σ2 \ {L

′

1
, . . . L′

n}))θ.

Schmid, CogSysI-6, Inference in FOL – p. 12

Resolution cont.

Derivation of a clause by application of the resolution rule
can be described by a refutation tree:

R

C1 C2

C3

R’

Schmid, CogSysI-6, Inference in FOL – p. 13

Illustration

C1 = {P (f(x)),¬Q(z), P (z)}
C2 = {¬P (x), R(g(x), A)}

σ1 = {}, σ2 = {x ← u}

L = {P (f(x)), P (z),¬¬P (x)} =
{P (f(x)), P (z), P (u)}

θ = {z ← f(x), u ← f(x)}

{P(f(x)), ~Q(z),P(z)} {~P(u),R(g(u),A)}

[z <- f(x), u <- f(x)]

{~Q(f(x)), R(g(f(x)),A)}

R = [({P (f(x)),¬Q(z), P (z)} \ {P (f(x)), P (z)}) ∪
({¬P (u), R(g(u), A)} \ {P (u)})]θ = {¬Q(f(x)), R(g(f(x)), A)}

Schmid, CogSysI-6, Inference in FOL – p. 14

Resolution Proofs

To prove that formula G (assertion) logically follows
from a set of formula (axioms) F1 . . . Fn: Include the
negated assumption in the set of axioms and try to
derive a contradiction (empty clause).

Theorem: A set of clauses is not satisfiable, if the
empty clause (¤) can be derived with a resolution
proof.

(Contradiction: C1 = A,C2 = ¬A, stands for (A ∧ ¬A)
and (A ∧ ¬A) ⊢ ¤)

Schmid, CogSysI-6, Inference in FOL – p. 15

Example

Axiom “All humans are mortal” and fact “Socrates is human”

(both are non-logical: their truth is presupposed)

Assertion “Sokrates is mortal.”

Formalization:

F1 : ∀x Human(x) → Mortal(x)

F2 : Human(S)

F3 : ¬Mortal(S) (negation of assertion)

Clause form:

F ′

1
: ¬Human(x) ∨ Mortal(x)

F ′

2
: Human(S)

F ′

3
: ¬Mortal(S)

~Human(x) V Mortal(x)~Mortal(S)

~Human(S)

[x <− S]

Human(S)

Schmid, CogSysI-6, Inference in FOL – p. 16

Soundness and Completeness of Res.

A calculus is sound, if only such conclusions can be
derived which also hold in the model.

A calculus is complete, if all conclusions can be derived
which hold in the model.

The resolution calculus is sound and refutation complete.
Refutation completeness means, that if a set of formula (clauses) is

unsatisfiable, then resolution will find a contradiction. Resolution

cannot be used to generate all logical consequences of a set of

formula, but it can establish that a given formula is entailed by the

set. Hence, it can be used to find all answers to a given question,

using the “negated assumption” method.

Schmid, CogSysI-6, Inference in FOL – p. 17

Remarks

The proof ideas will given for resolution for
propositional logic (or ground clauses) only.

For FOL, additionally, a lifting lemma is necessary and
the proofs rely on Herbrand structures.

We cover elementary concepts of logic only.

For more details, see
Uwe Schöning, Logik für Informatiker, 5. Auflage,

Spektrum, 2000.
Volker Sperschneider & Grigorios Antoniou, Logic – A

foundation for computer science, Addison-Wesley,
1991.

Schmid, CogSysI-6, Inference in FOL – p. 18

Resolution Theorem

Theorem: A set of clauses F is not satisfiable iff the empty
clause ¤ can be derived from F by resolution.

Soundness: (Proof by contradiction)
Assume that ¤ can be derived from F . If that is the case, two
clauses C1 = {L} and C2 = {¬L} must be contained in F .
Because there exists no model for L ∧ ¬L, F is not satisfiable.

Refutation completeness: (Proof by induction over the
number n of atomar formulas in F)
Assume that F is a set of formula which is not satisfiable.

Because of the compactness theorem, it is enough to

consider the case that a finite non-satisfiable subset of

formula exists in F .
To show: ¤ is derived from F . (see e.g., Schöning)

Schmid, CogSysI-6, Inference in FOL – p. 19

Resolution Strategies

In general, there are many possibilities, to find two
clauses, which are resolvable. Of the many
alternatives, there are possibly only a few which help to
derive the empty clause →֒ combinatorial explosion!

For feasible algorithms: use a resolution strategy

E.g., exploit subsumption to keep the knowledge
space, and therefore the search space, small.
Remove all sentences which are subsumed (more
special than) an existing sentence.
If P (x) is in the knowledge base, sentences as P (A) or
P (A) ∨ Q(B) can be removed.

Well known efficient strategy: SLD-Resolution (linear
resolution with selection function for definite clauses)
(e.g. used in Prolog)

Schmid, CogSysI-6, Inference in FOL – p. 20

SLD-Resolution

linear: Use a sequence of clauses (C0 . . . Cn) starting
with the negated assertion C0 and ending with the
empty clause Cn. Each Ci is generated as resolvent
from Ci−1 and a clausel from the original set of axioms.

Selection function (for the next literal which will be
resolved) e.g. top-down-left-to-right in PROLOG;
makes the strategy incomplete! (“user” must order
clauses in a suitable way)

definite Horn clauses: A Horn clause contains
maximally one posititive literal; a definite Horn clause
contains exactly one positive literal (Prolog rule)

Schmid, CogSysI-6, Inference in FOL – p. 21

Prolog
PROLOG Logic

Fact isa(fish,animal). isa(Fish,Animal) positive literal

isa(trout,fish). isa(Trout,Fish)

Rule is(X,Y) :- isa(X,Y). is(x,y) ∨ ¬isa(x,y) definite Clause

is(X,Z) :- isa(X,Y), is(Y,Z). is(x,z) ∨ ¬isa(x,y) ∨ ¬is(y,z)

Query is(trout,animal). ¬is(Trout,Animal) Assertion

is(Fish,X) ¬is(Fish,x)

: − denotes the “reversed” implication arrow.

is(X,Z) :- isa(X,Y), is(Y,Z).

isa(x, y) ∧ is(y, z) → is(x, z) ≡

¬(isa(x, y)∧ is(y, z))∨ is(x, z) ≡ ¬isa(x, y)∨¬is(y, z)∨ is(x, z)

Variables which occur in the head of a clause are implicitely

universally quantified. Variables which occur only in the body

are existentially quantified.

∀x∀z∃y ¬isa(x, y) ∨ ¬is(y, z) ∨ is(x, z)

Schmid, CogSysI-6, Inference in FOL – p. 22

Prolog Example

Query: is(fish,X)
(stands for ∃x is(Fish, x))

Negation of query: ¬∃x is(Fish, x) ≡ ∀x ¬is(Fish, x)

SLD-Resolution:(extract)

is(v1,v2) V ~isa(v1,v2) is(v1,v2) V ~isa(v1,v2)

[

is(v1,v2) V ~isa(v1,v3) V ~is(v3,v2)

Fail!

~is(Fish,x)

~isa(Fish,x) isa(Fish,Animal)

[v1 <− Fish, v2 <− x]

[x <− Animal]

~is(Trout,Animal)

[v1 <− Trout, v2 <− Animal]

isa(Trout,Animal)

~is(Trout,Animal)

v1 <− Trout, v2 <− Animal]

~isa(Trout, v3) V ~is(v3, Animal) isa(Trout,Fish)

[v3 <− Fish]

~isa(Fish,Animal) isa(Fish,Animal)

Backtrack

Schmid, CogSysI-6, Inference in FOL – p. 23

Remarks on Prolog

When writing Prolog programs, one should be know
how the interpreter is working (i.e., understand
SLD-resolution)

Sequence of clauses has influence whether an
assertion which follows logically from a set of clauses
can be derived!

Efficiency: Facts before rules

Termination: non-recursive rule before recursive.

% Program % Query

isa(trout,fish). ? is(trout,animal).

isa(fish,animal).

is(X,Z) :- is(X,Y), isa(Y,Z). is(trout,Y),isa(Y,animal)

is(X,Y) :- isa(X,Y). is(trout,Y’),isa(Y’,animal),isa(Y,animal)

...
Schmid, CogSysI-6, Inference in FOL – p. 24

Applications of Resolution Calculus

PROLOG

as a basic method for theorem proving (others: e.g.
tableaux)

Question Answering Systems

Yes/No-Questions: Assertion/Query mortal(s)

Query is(trout,X) corresponds to “What is a trout?”
The variable X is instantiated during resolution and the
answer is “a fish”.

buys(peter, john,X): “What does John buy from Peter?”

buys(peter,X, car): “Who buys a car from Peter?”

Schmid, CogSysI-6, Inference in FOL – p. 25

Theorem Provers

Theorem provers typically are more general than
Prolog:
not only Horn clauses but full FOL; no interleaving of
logic and control (i.e. ordering of formulas has no
effect on result)

Examples: Boyer-Moore (1979) theorem prover;
OTTER, Isabelle

Theorem provers for mathematics, for verification of
hardware and software, for deductive program
synthesis.

Schmid, CogSysI-6, Inference in FOL – p. 26

Forward- and Backward Chaining

Rules (e.g. in Prolog) have the form:
Premises → Conclusion

All rule-based systems (production systems, planners,
inference systems) can be realized using either
forward-chaining or backward-chaining algorithms.

Forward chaining: Add a new fact to the knowledge
base and derive all consequences (data-driven)

Backward chaining: Start with a goal to be proved, find
implication sentences that would allow to conclude the
goal, attempt to prove the premises, etc.

Well known example for a backward reasoning expert
system: MYCIN (diagnosis of bacterial infections)

Schmid, CogSysI-6, Inference in FOL – p. 27

Logic Calculi in AI

Variants of logic calculi are part of many AI systems

Logic and logical inference is the base of most types of
knowledge representation formalisms (e.g. description
logics)

Most knowledge-based systems (e.g. expert systems)
are relying on some type of deductive inference
mechanism

Often, classical logic is not adequate: non-monotonic,
probabilistic or fuzzy approaches (see “Semantische
Informationsverarbeitung”)

Extensions of classical logic for dealing with time or
believe: Modal Logic (e.g., BDI-Logic for Multiagent
Systems)

Schmid, CogSysI-6, Inference in FOL – p. 28

Deductive Planning

Deductive inference can be used to solve planning
problems.

Introduce a situation variable to store the partial plans:
si+1 = put(A,B, si), ... s2 = puttable(A, s1)
s = put(A,B, puttable(A, [on(A,C), clear(A)...]))

Situation calculus: Introduced by McCarthy (1963) and
used for plan construction by resolution by Green
(1969)

In general: extensions of FOL (action languages)

Proof logically, that a set of goals follows from an initial
state given operator definitions (axioms)

Perform the proof in a constructive way (plan is
constructed as a byproduct of the proof)

Schmid, CogSysI-6, Inference in FOL – p. 29

Situation Calculus
A1 on(a, table, s1) (literal of the initial state)

A2 ∀ S[on(a, table, S) → on(a, b, put(a, b, S))] ≡ (axiom for
put-operator)
¬on(a, table, S) ∨ on(a, b, put(a, b, S)) (clausal form)

Proof the goal predicate on(a, b, SF)

1. ¬on(a, b, SF) (Negation of the theorem)

2. ¬ on(a, table, S) ∨ on(a, b, put(a, b, S)) (A2)

3. ¬ on(a, table, S) (Resolve 1, 2)
answer(put(a, b, S))

4. on(a, table, s1) (A1)

5. contradiction (Resolve 3, 4) →֒ answer(put(a, b, s1))

s2 = on(a, table, s1) with on(a, b, s2) exists and s2 can be
reached by putting a on b in situation s1.

Schmid, CogSysI-6, Inference in FOL – p. 30

Frame Problem

No closed world assumption →֒ full expressive power
of FOL

Problem: additionally to axioms describing the effects
of actions, frame axioms become necessary

Frame axioms are necessary to allow proofing
conjunctions of goal literals.

Example for a frame axiom:
∀ S[on(Y, Z, S) → on(Y, Z, put(X,Y, S))] on(Y, Z,
put(X, Y, S)) ← on(Y, Z, S)
After a block X was put on a block Y , it still holds that
Y is lying on a block Z, if this did hold before the action
was performed.

Schmid, CogSysI-6, Inference in FOL – p. 31

Blocksworld in Prolog

Effect Axioms:

on(X, Y, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S)

clear(Z, put(X, Y, S)) ← on(X, Z, S) ∧ clear(X, S) ∧ clear(Y, S)

clear(Y, puttable(X, S)) ← on(X, Y, S) ∧ clear(X, S)

ontable(X, puttable(X, S)) ← clear(X, S)

Frame Axioms:

clear(X, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S)

clear(Z, put(X, Y, S)) ← clear(X,S) ∧ clear(Y, S) ∧ clear(Z, S)

ontable(Y, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S) ∧ ontable(Y, S)

ontable(Z, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S) ∧ ontable(Z, S)

on(Y, Z, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S) ∧ on(Y, Z, S)

on(W, Z, put(X, Y, S)) ← clear(X, S) ∧ clear(Y, S) ∧ on(W, Z, S)

Schmid, CogSysI-6, Inference in FOL – p. 32

Blocksworld in Prolog cont.

Frame Axioms cont.:

clear(Z, puttable(X, S)) ← clear(X, S) ∧ clear(Z, S)

ontable(Z, puttable(X, S)) ← clear(X, S) ∧ ontable(Z, S)

on(Y, Z, puttable(X, S)) ← clear(X, S) ∧ on(Y, Z, S)

clear(Z, puttable(X, S)) ← on(Y, X, S) ∧ clear(Y, S) ∧ clear(Z, S)

ontable(Z, puttable(X, S)) ← on(Y, X, S) ∧ clear(Y, S) ∧ ontable(Z, S)

on(W, Z, puttable(X, S)) ← on(Y, X, S) ∧ clear(Y, S) ∧ on(W, Z, S)

Facts (Initial State):

on(d, c, s1) on(c, a, s1)

clear(d, s1) clear(b, s1)

ontable(a, s1) ontable(b, s1)

Theorem (Goal):

on(a, b, S) ∧ on(b, c, S)
Schmid, CogSysI-6, Inference in FOL – p. 33

Running Gag
Question: How many AI people does it take to change a lightbulb?
Answer: At least 81. The Logical Formalism Group (16)

One to figure out how to describe lightbulb changing in first order logic.
One to figure out how to describe lightbulb changing in second order logic.
One to show the adequacy of FOL.
One to show the inadequacy of FOL.
One to show that lightbulb logic is non-monotonic.
One to show that it isn’t non-monotonic.
One to show how non-monotonic logic is incorporated in FOL.
One to determine the bindings for the variables.
One to show the completeness of the solution.
One to show the consistency of the solution.
One to show that the two just above are incoherent.
One to hack a theorem prover for lightbulb resolution.
One to suggest a parallel theory of lightbulb logic theorem proving.
One to show that the parallel theory isn’t complete.
One to indicate how it is a description of human lightbulb changing behaviour.
One to call the electrician.

Schmid, CogSysI-6, Inference in FOL – p. 34

	Remember ...
	Clause Form
	Clause Form cont.
	Clause Form cont.
	Clause Form cont.
	Clause Form cont.
	Substitution
	Unification
	Examples
	Unification Algorithm
	Resolution
	Resolution cont.
	Illustration
	Resolution Proofs
	Example
	Soundness and Completeness of Res.
	Remarks
	Resolution Theorem
	Resolution Strategies
	SLD-Resolution
	Prolog
	Prolog Example
	Remarks on Prolog
	Applications of Resolution Calculus
	Theorem Provers
	Forward- and Backward Chaining
	Logic Calculi in AI
	Deductive Planning
	Situation Calculus
	Frame Problem
	Blocksworld in Prolog
	Blocksworld in Prolog cont.
	Running Gag

