CogSysI Lecture 7: Human Problem Solving and Production Systems

Intelligent Agents

Ute Schmid (lecture)
Emanuel Kitzelmann (practice)

Applied Computer Science, Bamberg University

last change: June 2, 2008
Human Problem Solving

- Behaviorism: reinforcement of solutions found by trial and error
- Cognitivism: trial-and-error cannot explain the systematicity and productivity of thinking (finding new solutions)
- Most influential researchers: Newell and Simon (Human Problem Solving, 1972)
- Assumption: search in problem space
- Weak strategies (uninformed but complete)
- Strong strategies (informed but incomplete)
- Research questions: what types of strong strategies are used by human problem solvers?
Humans often use greedy strategies for solving problems ("bounded rationality", Herbert Simon)

The means-end (MEA) strategy which is the search algorithm used in the GPS (General problem solver) is such a greedy strategy

As we will see in the lecture on planning, MEA is not complete! (Sussman Anomaly)

Subjects have problems with the transformation from state (6) to (7). Here 2 and not only 1 passenger must be transported back to the left river bank. That is, there must be created a situation which is further removed from the goal state than the situation before.

Schmid, CogSysI-7, Human Problem Solving – p. 4
Means-End-Analysis

Transform: Compare current state with goal state

IF the current state fulfills the goal
THEN stop and announce success
ELSE **Reduce** the difference between the current state and the goal.

Reduce: Find operator which reduces the difference between current state and goal

IF there is no such operator
THEN stop and announce failure
ELSE **Apply** the operator to the current state.

Apply: Apply an operator to the current state

IF the operator is applicable to the current state
THEN apply it and **transform** the resulting state into the goal.
ELSE **Reduce** the difference between the current state and the application conditions of the operator.
MEA Example

Transform: initial state (discs 1, 2, 3 on peg A) to goal state (discs 1, 2, 3 on peg C)

Reduce: 3 is not on C
Apply: Move 3 to C
 Reduce: 3 is not free, because of 2
 Apply: Remove 2
 Reduce: 2 is not free, because of 1
 Apply: Remove 1;
 1 can be moved to C
 2 is free
 2 can be moved to B
 3 is free
 Reduce: 3 cannot be moved to C, because of 1
 Apply: Remove 1;
 1 can be moved to B
 3 can be moved to C
MEA Example cont.

Transform: State (1 and 2 on B, 3 on C) to goal state
Reduce: 2 is not on C
Apply: Move 2 to C
Reduce: 2 is not free because of 1
Apply: Remove 1;
1 can be moved to A
2 is free
2 can be moved to C
Transform: State (1 is on A, 2 and 3 on C) to goal
Reduce: 1 is not on C
Apply: Move 1 to C;
1 can be moved to C
1 is on 3
Transform: State (1, 2 and 3 on C) to goal
success
Cognitive Architectures

Cognitive Architecture: “unified theory of cognition”
- explicit definition of basic mechanisms of information processing
- assumption that these mechanisms are constant over all domains (problem solving, language understanding, pattern recognition etc.)
- basic mechanisms: control of interaction with environment, representation of information in memory, strategy to select rules
- Advantage: different models realized in the same architecture get comparable

Alternative: special purpose cognitive models (such as SME for analogical reasoning, see below)
Cognitive Architectures cont.

- Prominent Architectures: The ACT-family (J.R. Anderson et al.), Soar (based on GPS)
- ACT and Soar are production systems
- ACT: long-term memory is divided in a declarative memory ("know what", activation net) and a procedural memory ("know how")
- Example strategies for selecting rules: most specific first, most recently used, priority values (updated in dependence of success)
Production System

INTERPRETER

Match
Select
Apply

Production Rules

("long term memory")

Data

("working memory")

Input

Output

Schmid, CogSysI-7, Human Problem Solving – p. 10
Finding a good representation

In human problem solving, there is an interaction between constructing a suitable representation and solving the problem.

In AI systems, typically the representation needs to be fixed before problem solving (see Kaplan & Simon, 1990). Exceptions: approaches to solving proportional analogies using re-representation (Copycat, Hofstadter et al. 1995, PAN, O’Hara 1992, Indurkhya 1992)

Empirical studies: Plötzer & van Lehn, 1997

Examples: Mutilated checkerboard, nine-dots problem
Re-Representation
Context Effects

- Since human problem solving is typically guided by knowledge, search for a solution might be misled by preconceptions.

- Gestalt-Theory: functional fixation (Duncker 1945)
 Examples: Candle, matches, and box with pushpins; pendulum problem.

- A related phenomenon: set-effect (Luchins & Luchins, 1950)
 Water jug problems.
Analogical Problem Solving

A problem solving strategy alternative to heuristic search is using analogical reasoning.

- Retrieve a suitable source problem.
- Map the entities of the source with the entities of the target problem in a structure preserving way.
- “Carry-over” known parts of the source to target (possibly perform necessary adaptations)

Gentner (1983)

Cognitive Models: SME (Falkenhainer et al. 1989), LISA (Hummel & Holyoak, 1998)

Empirical investigation of analogical transfer (Schmid et al., 1999)
Learning by Doing

- A problem solving system has no memory. Therefore, it might recalculate solutions which it already had achieved in another problem solving episode.
- The power law of learning (Anzai & Simon, 1979): learning curve, speed-up effect
- Humans acquire skills (procedural knowledge) when solving problems
- Cognitive Models, based on production systems: ACT (Anderson et al.), SOAR (Newell et al.): Declarative knowledge is “compiled” into rules
- But: these models do not cover strategy learning/control rule learning (see Schmid et al. 2000)
The Running Gag of CogSysI

Question: How many AI people does it take to change a lightbulb?

Answer: At least 67.

2nd part of the solution: The Problem Space Group (5)

- One to define the goal state
- One to define the operators
- One to describe the universal problem solver
- One to hack the production system
- One to indicate about how it is a model of human lightbulb-changing behavior

(“Artificial Intelligence”, Rich & Knight)