Intuitions on Planning

- Intelligent Agents: Natural or artificial systems which act in an intelligent way
- Intelligent action is rational action, that is, the best possible action in a given situation
- Planning is the reasoning side of acting
- Abstract, explicit deliberation process that chooses and organizes actions by anticipating their expected outcomes
- Some actions require planning, many do not
 - we act more frequently than we explicitly plan
 - performing well-trained behaviors for which we have pre-stored plans
 - acting and adapting in flexible settings
Intuitions on Planning

- Planning is a complicated, time consuming, and costly process.
- Planning is needed when:
 - new situations, unfamiliar actions are involved
 - complex tasks, complex objectives are addressed
 - actions are constrained by high risks, high costs, joint activities, need for synchronization
- Typically we seek feasible, good plans, not optimal plans (cf. Simon’s “bounded rationality”)
Motivations for Automated Planning

- Practical
 - Designing information processing tools that give access to affordable and efficient planning resources
 - Some professionals face complex changing tasks that involve demanding safety and/or efficiency requirements
 - Example: disaster rescue operations
 - large number of actors, deployment of communication and transportation infrastructure, time constrained, demands for immediate decisions
 - relies on careful planning and assessment of several alternate plans
 - Example: organizers of social meetings
Motivations for Automated Planning cont.

- **Theoretical**
 - Planning is an important component of rational behavior
 - Purpose of AI: grasping computational aspects of intelligence
 - planning, as the reasoning side of acting, is a key element
 - Studying planning as abstract process (complexity, efficiency of algorithms, ...)
 - Planning as integrated component of deliberative behavior
Motivations for Automated Planning cont.

- Hot topic: study and design of autonomous intelligent machines
 - satellites, spacecrafts, robots cannot always be teleoperated
 - interaction with nonexpert humans on task level rather than control signals
 - machines that can sense and act as well as reason on their actions
Automated Planning

- Plan: Sequence of actions to achieve a goal
- Planning: Computation of such a sequence
- Examples of successful applications
 - Space Exploration
 - Manufacturing
 - Games
Space Exploration

- Autonomous planning, scheduling, control
 - NASA: JPL and Ames
- Remote Agent Experiment (RAX)
 - Deep Space 1
- Mars Exploration Rover (MER)
Manufacturing

- Sheet-metal bending machines - Amada Corporation
 - Software to plan the sequence of bends
 [Gupta and Bourne, *J. Manufacturing Sci. and Engr.*, 1999]
Games

- *Bridge Baron* - Great Game Products
 - 1997 world champion of computer bridge
 [Smith, Nau, and Throop, *AI Magazine*, 1998]
 - 2004: 2nd place
Conceptual Model of Planning

1. Environment

- Initial state
- Objectives
- Execution status
- Plans
- Observations
- Actions
- Events

System Σ

State transition system $\Sigma = (S, A, E, \gamma)$

- S = {states}
- A = {actions}
- E = {exogenous events}
- γ = state-transition function
Conceptual Model of Planning

State Transition System

\[\Sigma = (S, A, E, \gamma) \]

- \(S = \{ \text{states} \} \)
- \(A = \{ \text{actions} \} \)
- \(E = \{ \text{exogenous events} \} \)
- State-transition function \(\gamma: S \times (A \cup E) \rightarrow 2^S \)

- \(S = \{ s_0, \ldots, s_5 \} \)
- \(A = \{ \text{move1, move2, put, take, load, unload} \} \)
- \(E = \{ \} \)
- \(\gamma: \) see the arrows

The Dock Worker Robots (DWR) domain
Conceptual Model of Planning

2. Controller

- Initial state
- Objectives
- Execution status

Planner

- Description of Σ
- Plans
- Observations
- Actions

Controller

System Σ

Observation function $h: S \rightarrow O$

Given observation o in O, produces action a in A
Conceptual Model of Planning

3. Planner’s Input

- Planning problem
- Initial state
- Objectives
- Execution status
- Descriptions of Σ
- Plans
- Controller
- Observations
- Actions
- System Σ
- Events

Omit unless planning is online
Conceptual Model of Planning

Planning Problem

Description of Σ
Initial state or set of states
 Initial state $= s_0$
Objective
 Goal state, set of goal states, set of tasks, “trajectory” of states, objective function, …
 Goal state $= s_5$

The Dock Worker Robots (DWR) domain
Conceptual Model of Planning

Conceptual Model

4. Planner’s Output

- **Initial state**
- **Objectives**
- **Execution status**
- **Plan**
- **System Σ**
- **Observations**
- **Actions**
- **Events**

- **Description of Σ**

- **Planner**

- **Controller**

- **Instructions to the controller**
Conceptual Model of Planning

Plans

Classical plan: a sequence of actions

\(<\text{take}, \text{move1}, \text{load}, \text{move2} >\)

Policy: partial function from \(S\) into \(A\)

\[\{ (s_0, \text{take}), (s_1, \text{move1}), (s_3, \text{load}), (s_4, \text{move2}) \}\]

The Dock Worker Robots (DWR) domain
Syntax of FOL Terms and Formulae

Inductive definition:

- **Terms:**
 - A variable \(v \in V \) is a term.
 - If \(f \) is a function symbol with arity \(n \) and \(t_1 \ldots t_n \) are terms, then
 \(f(t_1, \ldots, t_n) \) is a term. (including constant symbols as 0-ary function symbols)
 - That are all terms.

- **Formulas:**
 - if \(P \) is a predicate symbol with arity \(n \) and \(t_1 \ldots t_n \) are terms, then
 \(P(t_1, \ldots, t_n) \) is a formula. (atomic formula)
 - For all formulas \(F \) and \(G \), \(\neg F \), \(F \land G \), \(F \lor G \), \(F \rightarrow G \) and \(F \leftrightarrow G \) are formula. (connectives “not”, “and”, “or”, “implies”, “equivalent”)
 - If \(v \) is a variable and \(F \) is a formula, then \(\exists v \ F \) and \(\forall v \ F \) are formulas. (existential and universal quantifier, “exists”, “for all”)
 - That are all formulas.
Remarks on Syntax of FOL

- Formula are constructed over terms. Never confuse this categories!
- Additionally, parentheses can be used to group sub-expressions.
- Expressions which obey the given inductive definition are called well-formed formulas (wwfs).
 The closure “that are all terms/formulas” is necessary to exclude all other kinds of (not well-formed) expressions.
- We refer to atomic formulas also as “atoms”. Positive and negated atoms \((P, \neg P)\) are called positive/negative literals.
Remarks on Syntax of FOL cont.

- A variable which is in the scope of a quantor is called **bound**, otherwise it is called **free**.

 \[P(x) \lor \forall y \exists z \ Q(y, z) \]

 `x` is free and `y` and `z` are bound.

- A formula without free variables is called **sentence**.

- Propositional logic is a special case of FOL: use only unary predicate symbols (then there are no terms, no variable and no quantors) or just forbid variables and quantors (use only grounded formulas).
Problem solving: using domain-specific heuristics to search for a (optimal) sequence of actions

Scheduling: decide when and how to perform a given set of actions obeying time constraints, resource constraints, objective functions

Planning: decide what actions to use in what sequence to achieve some set of objectives

biggest algorithmical challenge: often worse than NP-complete, worst case is undecidable (see lecture about complexity of classical planning)
Domain-Independent Planning

- In principle, a domain-independent planner works in any planning domain.
- Uses no domain-specific knowledge except the definition of the basic actions.
- In practice, it is not feasible to develop a planner that works in every possible domain.
- Make simplifying assumptions to restrict the set of domains: mostly classical planning.
- Domain-specific planners can be very successful in specific domains but one needs to write an entire program (lots of work).
Classical Planning

- Restrictive assumptions (see next slide): finite set of states and actions; fully observable states; deterministic outcome of actions, ...
- Reduces to the problem of path searching in a graph with nodes as states and edges as actions (which is still hard enough):
 - Generalize the earlier example to 5 locations, 3 robot carts, 100 containers, 3 piles: 10^{277} states
 - Number of particles in the universe is about 10^{87}
- Most research is on classical planning with many different algorithms
- Planning Competition (AIPS 1998, AIPS 2000, IPC 2002, ...) shows the progress every two years
Restrictions

restrictive Assumptions

- **A0**: Finite system:
 - finitely many states, actions, events
- **A1**: Fully observable:
 - the controller always Σ's current state
- **A2**: Deterministic:
 - each action has only one outcome
- **A3**: Static (no exogenous events):
 - no changes but the controller’s actions
- **A4**: Attainment goals:
 - a set of goal states S_g
- **A5**: Sequential plans:
 - a plan is a linearly ordered sequence of actions (a_1, a_2, \ldots, a_n)
- **A6**: Implicit time:
 - no time durations; linear sequence of instantaneous states
- **A7**: Off-line planning:
 - planner doesn’t know the execution status
A running example: Dock Worker Robots

- Generalization of the earlier example
 - A harbor with several locations
 - e.g., docks, docked ships, storage areas, parking areas
 - Containers
 - going to/from ships
 - Robot carts
 - can move containers
 - Cranes
 - can load and unload containers
A running example: Dock Worker Robots

- **Locations:** l1, l2, ...
- **Containers:** c1, c2, ...
 - can be stacked in piles, loaded onto robots, or held by cranes
- **Piles:** p1, p2, ...
 - fixed areas where containers are stacked
 - pallet at the bottom of each pile
- **Robot carts:** r1, r2, ...
 - can move to adjacent locations
 - carry at most one container
- **Cranes:** k1, k2, ...
 - each belongs to a single location
 - move containers between piles and robots
 - if there is a pile at a location, there must also be a crane there
A running example: Dock Worker Robots

- Fixed relations: same in all states
 - \texttt{adjacent}(l,l')
 - \texttt{attached}(p, l)
 - \texttt{belong}(k, l)

- Dynamic relations: differ from one state to another
 - \texttt{occupied}(l)
 - \texttt{at}(r, l)
 - \texttt{loaded}(r, c)
 - \texttt{unloaded}(r)
 - \texttt{holding}(k, c)
 - \texttt{empty}(k)
 - \texttt{in}(c, p)
 - \texttt{on}(c, c')
 - \texttt{top}(c, p)
 - \texttt{top}(pallet, p)

- Actions:
 - \texttt{take}(c, k, p)
 - \texttt{put}(c, k, p)
 - \texttt{load}(r, c, k)
 - \texttt{unload}(r)
 - \texttt{move}(r, l, l')
Closed-World Assumption (CWA)

- An atom that is not explicitly given in a state does not hold in the state
- That is: Assumption of the value \textit{false} for every atom which is not explicitly stated
- Classical, set-theoretical and state-variable representation all rely on the CWA
- CWA is a restriction of the logic calculus: no true negation but \textit{negation by failure} (If a proposition cannot be proven to be true, it is assumed to be false.)
This restriction makes state-based planning more efficient than deductive planning in full FOL where the frame problem exists.

Frame problem: not only the propositions which change by an action must be specified but also all propositions which are not affected by an action (e.g. If I put block x from block y on the table, $on(y,z)$ still holds).
Extended Representation

- Typed variables and relations
- Conditional Operators
- Quantified Expressions
- Equality Constraints
- Disjunctive Preconditions
- Function Symbols
- Axiomatic Inference
- Attached Procedures
Problem Domain Definition Language as common language for most modern planners (see PDDL Specification)

Example: Equality constraints and conditioned effects

(define (domain blocksworld-adl)
 (:requirements :strips :equality :conditional-effects)
 (:predicates (on ?x ?y)
 (clear ?x)) ; clear(Table) is static
 (:action puton
 :parameters (?x ?y ?z)
 :precondition (and (on ?x ?z) (clear ?x) (clear ?y)
 (not (= ?y ?z)) (not (= ?x ?z))
 (not (= ?x ?y)) (not (= ?x Table)))
 :effect (and (on ?x ?y) (not (on ?x ?z))
 (when (not (eq ?z Table)) (clear ?z))
 (when (not (eq ?y Table)) (not (clear ?y))))))
)