Chapter 2
Representations for Classical Planning

Dana S. Nau
CMSC 722, AI Planning
University of Maryland, Spring 2008
Quick Review of Classical Planning

- Classical planning requires all eight of the restrictive assumptions:
 - A0: Finite
 - A1: Fully observable
 - A2: Deterministic
 - A3: Static
 - A4: Attainment goals
 - A5: Sequential plans
 - A6: Implicit time
 - A7: Offline planning
Representations: Motivation

- In most problems, far too many states to try to represent all of them explicitly as s_0, s_1, s_2, \ldots
- Represent each state as a set of features
 - e.g.,
 - a vector of values for a set of variables
 - a set of ground atoms in some first-order language L
- Define a set of operators that can be used to compute state-transitions
- Don’t give all of the states explicitly
 - Just give the initial state
 - Use the operators to generate the other states as needed
Outline

- Representation schemes
 - Classical representation
 - Set-theoretic representation
 - State-variable representation
 - Examples: DWR and the Blocks World
 - Comparisons
Classical Representation

- Start with a *function-free* first-order language
 - Finitely many predicate symbols and constant symbols, but *no* function symbols

- Example: the DWR domain
 - Locations: l1, l2, …
 - Containers: c1, c2, …
 - Piles: p1, p2, …
 - Robot carts: r1, r2, …
 - Cranes: k1, k2, …
Classical Representation

- **Atom**: predicate symbol and args
 - Use these to represent both fixed and dynamic relations
 - adjacent(l, l')
 - attached(p, l)
 - belong(k, l)
 - occupied(l)
 - at(r, l)
 - loaded(r, c)
 - unloaded(r)
 - holding(k, c)
 - empty(k)
 - in(c, p)
 - on(c, c')
 - top(c, p)
 - top(pallet, p)
 - **Ground** expression: contains no variable symbols - e.g., in($c1, p3$)
 - **Unground** expression: at least one variable symbol - e.g., in($c1, x$)

- **Substitution**: $\theta = \{ x_1 \leftarrow v_1, \ x_2 \leftarrow v_2, \ldots, \ x_n \leftarrow v_n \}$
 - Each x_i is a variable symbol; each v_i is a term
- **Instance** of e: result of applying a substitution θ to e
 - Replace variables of e simultaneously, not sequentially
States

- **State**: a set s of ground atoms
 - The atoms represent the things that are true in one of Σ’s states
 - Only finitely many ground atoms, so only finitely many possible states
Operators

- **Operator**: a triple $o=(\text{name}(o), \text{precond}(o), \text{effects}(o))$
 - $\text{name}(o)$ is a syntactic expression of the form $n(x_1, \ldots, x_k)$
 - n: *operator symbol* - must be unique for each operator
 - x_1, \ldots, x_k: variable symbols (parameters)
 - must include every variable symbol in o
 - $\text{precond}(o)$: *preconditions*
 - literals that must be true in order to use the operator
 - $\text{effects}(o)$: *effects*
 - literals the operator will make true

```plaintext
take(k, l, c, d, p)
    ;; crane k at location l takes c off of d in pile p
    \text{precond}: \text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d)
    \text{effects}: \text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)
```
Actions

- **Action**: ground instance (via substitution) of an operator

\[
\text{take}(k, l, c, d, p) \\
\text{;; crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p \\
\text{precond: belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d) \\
\text{effects: holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)
\]

\[
\text{take}(\text{crane1}, \text{loc1}, c3, c1, p1) \\
\text{;; crane crane1 at location loc1 takes c3 off c1 in pile p1} \\
\text{precond: belong(\text{crane1}, \text{loc1}), attached(p1, \text{loc1}), empty(\text{crane1}), top(c3, p1), on(c3, c1)} \\
\text{effects: holding(\text{crane1}, c3), \neg empty(\text{crane1}), \neg in(c3, p1),} \\
\neg \text{top}(c3, p1), \neg \text{on}(c3, c1), \text{top}(c1, p1)
\]
Notation

- Let S be a set of literals. Then
 - $S^+ = \{\text{atoms that appear positively in } S\}$
 - $S^- = \{\text{atoms that appear negatively in } S\}$

- More specifically, let a be an operator or action. Then
 - $\text{precond}^+(a) = \{\text{atoms that appear positively in } a\text{'s preconditions}\}$
 - $\text{precond}^-(a) = \{\text{atoms that appear negatively in } a\text{'s preconditions}\}$
 - $\text{effects}^+(a) = \{\text{atoms that appear positively in } a\text{'s effects}\}$
 - $\text{effects}^-(a) = \{\text{atoms that appear negatively in } a\text{'s effects}\}$

$\text{take}(k, l, c, d, p)$

;; crane k at location l takes c off of d in pile p
precond: $\text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d)$
effects: $\text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)$

- $\text{effects}^+(\text{take}(k, l, c, d, p)) = \{\text{holding}(k, c), \text{top}(d, p)\}$
- $\text{effects}^-(\text{take}(k, l, c, d, p)) = \{\text{empty}(k), \text{in}(c, p), \text{top}(c, p), \text{on}(c, d)\}$
Applicability

- An action \(a \) is *applicable* to a state \(s \) if \(s \) satisfies \(\text{precond}(a) \),
 - i.e., if \(\text{precond}^+(a) \subseteq s \) and \(\text{precond}^-(a) \cap s = \emptyset \)

- Here are an action and a state that it’s applicable to:

\[
\text{take(crane1,loc1,c3,c1,p1)} \\
\hspace{1cm} ;; \text{crane crane1 at location loc1 takes c3 off c1 in pile p1} \\
\text{precond: belong(crane1,loc1), attached(p1,loc1), empty(crane1), top(c3,p1), on(c3,c1)} \\
\text{effects: holding(crane1,c3), \neg empty(crane1), \neg in(c3,p1), \neg \text{top(c3,p1)}, \neg on(c3,c1), \text{top(c1,p1)}}
\]
Result of Performing an Action

- If \(a \) is applicable to \(s \), the result of performing it is
 \[
 \gamma(s,a) = (s - \text{effects}^-(a)) \cup \text{effects}^+(a)
 \]
 - Delete the negative effects, and add the positive ones

```plaintext
take(crane1,loc1,c3,c1,p1)
  ;; crane crane1 at location loc1 takes c3 off c1 in pile p1
  precond: belong(crane1,loc1), attached(p1,loc1),
           empty(crane1), top(c3,p1), on(c3,c1)
  effects: holding(crane1,c3), \neg empty(crane1), \neg in(c3,p1),
            \neg top(c3,p1), \neg on(c3,c1), top(c1,p1)
```

move(r, l, m)
 ;; robot r moves from location l to location m
 precond: adjacent(l, m), at(r, l), ¬occupied(m)
 effects: at(r, m), occupied(m), ¬occupied(l), ¬at(r, l)

load(k, l, c, r)
 ;; crane k at location l loads container c onto robot r
 precond: belong(k, l), holding(k, c), at(r, l), unloaded(r)
 effects: empty(k), ¬holding(k, c), loaded(r, c), ¬unloaded(r)

unload(k, l, c, r)
 ;; crane k at location l takes container c from robot r
 precond: belong(k, l), at(r, l), loaded(r, c), empty(k)
 effects: ¬empty(k), holding(k, c), unloaded(r), ¬loaded

put(k, l, c, d, p)
 ;; crane k at location l puts c onto d in pile p
 precond: belong(k, l), attached(p, l), holding(k, c), top(d, p)
 effects: ¬holding(k, c), empty(k), in(c, p), top(c, p), on(c, d), ¬top(d, p)

take(k, l, c, d, p)
 ;; crane k at location l takes c off of d in pile p
 precond: belong(k, l), attached(p, l), empty(k), top(c, p), on(c, d)
 effects: holding(k, c), ¬empty(k), ¬in(c, p), ¬top(c, p), ¬on(c, d), top(d, p)

- Planning domain:
 - language plus operators
- Corresponds to a set of state-transition systems
- Example:
 operators for the DWR domain
Planning Problems

- Given a planning domain (language \(L \), operators \(O \))
 - Statement of a planning problem: a triple \(P=(O,s_0,g) \)
 - \(O \) is the collection of operators
 - \(s_0 \) is a state (the initial state)
 - \(g \) is a set of literals (the goal formula)
 - The actual planning problem: \(\mathcal{P}=(\Sigma,s_0,S_g) \)
 - \(s_0 \) and \(S_g \) are as above
 - \(\Sigma=(S,A,\gamma) \) is a state-transition system
 - \(S=\{\text{all sets of ground atoms in } L\} \)
 - \(A=\{\text{all ground instances of operators in } O\} \)
 - \(\gamma=\text{the state-transition function determined by the operators} \)
- I’ll often say “planning problem” when I mean the statement of the problem
Plans and Solutions

- **Plan:** any sequence of actions $\sigma = \langle a_1, a_2, \ldots, a_n \rangle$ such that each a_i is a ground instance of an operator in O
- The plan is a *solution* for $P = (O, s_0, g)$ if it is executable and achieves g
 - i.e., if there are states s_0, s_1, \ldots, s_n such that
 - $\gamma(s_0, a_1) = s_1$
 - $\gamma(s_1, a_2) = s_2$
 - \ldots
 - $\gamma(s_{n-1}, a_n) = s_n$
 - s_n satisfies g
Example

- Let $P_1 = (O, s_1, g_1)$, where
 - O is the set of operators given earlier
 - $g_1 = \{\text{loaded}(r1,c3), \text{at}(r1,\text{loc2})\}$
 - $s_1 = \{\text{attached}(p1,\text{loc1}), \text{in}(c1,p1), \text{in}(c3,p1), \text{top}(c3,p1), \text{on}(c3,c1), \text{on}(c1,\text{pallet}), \text{attached}(p2,\text{loc1}), \text{in}(c2,p2), \text{top}(c2,p2), \text{on}(c2,\text{pallet}), \text{belong}(\text{crane1},\text{loc1}), \text{empty}(\text{crane1}), \text{adjacent}(\text{loc2},\text{loc1}), \text{adjacent}(\text{loc2},\text{loc1}), \text{at}(r1,\text{loc2}), \text{occupied}(\text{loc2}), \text{unloaded}(r1)\}$.
Example (continued)

Here are three solutions for P_1:

- \langletake(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), move(r1,loc1,loc2), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)\rangle

- \langletake(crane1,loc1,c3,c1,p1), move(r1,loc2,loc1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)\rangle

- \langlemove(r1,loc2,loc1), take(crane1,loc1,c3,c1,p1), load(crane1,loc1,c3,r1), move(r1,loc1,loc2)\rangle

Each of them produces the state shown here:
Example (continued)

● The first is redundant: can remove actions and still have a solution
 ◆ \(\langle \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{move}(r1, \text{loc2}, \text{loc1}), \text{move}(r1, \text{loc1}, \text{loc2}), \text{move}(r1, \text{loc2}, \text{loc1}), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \)
 ◆ \(\langle \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{move}(r1, \text{loc2}, \text{loc1}), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \)
 ◆ \(\langle \text{move}(r1, \text{loc2}, \text{loc1}), \text{take}(\text{crane1}, \text{loc1}, c3, c1, p1), \text{load}(\text{crane1}, \text{loc1}, c3, r1), \text{move}(r1, \text{loc1}, \text{loc2}) \rangle \)

● The 2nd and 3rd are irredundant and shortest
Set-Theoretic Representation

- Like classical representation, but restricted to propositional logic

- States:
 - Instead of a collection of ground atoms …
 \[\{\text{on(c1,pallet), on(c1,r1), on(c1,c2), …, at(r1,l1), at(r1,l2), …}\} \]
 - … use a collection of propositions (boolean variables):
 \[\{\text{on-c1-pallet, on-c1-r1, on-c1-c2, …, at-r1-l1, at-r1-l2, …}\} \]
• Instead of operators like this one,

\[
\text{take}(k, l, c, d, p)
\]

\[
;; \text{crane } k \text{ at location } l \text{ takes } c \text{ off of } d \text{ in pile } p
\]

precond: \(\text{belong}(k, l), \text{attached}(p, l), \text{empty}(k), \text{top}(c, p), \text{on}(c, d)\)

effects: \(\text{holding}(k, c), \neg \text{empty}(k), \neg \text{in}(c, p), \neg \text{top}(c, p), \neg \text{on}(c, d), \text{top}(d, p)\)

take all of the operator instances, e.g., this one,

\[
\text{take}(\text{crane}1, \text{loc}1, c3, c1, p1)
\]

\[
;; \text{crane } \text{crane}1 \text{ at location } \text{loc}1 \text{ takes } c3 \text{ off } c1 \text{ in pile } p1
\]

precond: \(\text{belong}(\text{crane}1, \text{loc}1), \text{attached}(p1, \text{loc}1), \text{empty}(\text{crane}1), \text{top}(c3, p1), \text{on}(c3, c1)\)

effects: \(\text{holding}(\text{crane}1, c3), \neg \text{empty}(\text{crane}1), \neg \text{in}(c3, p1), \neg \text{top}(c3, p1), \neg \text{on}(c3, c1), \text{top}(c1, p1)\)

and rewrite ground atoms as propositions

\[
\text{take-crate1-loc1-c3-c1-p1}
\]

precond: \(\text{belong-crate1-loc1}, \text{attached-p1-loc1}, \text{empty-crate1}, \text{top-c3-p1}, \text{on-c3-c1}\)

delete: \(\text{empty-crate1}, \text{in-c3-p1}, \text{top-c3-p1}, \text{on-c3-p1}\)

add: \(\text{holding-crate1-c3}, \text{top-c1-p1}\)
Comparison

- A set-theoretic representation is equivalent to a classical representation in which all of the atoms are ground.

- Exponential blowup
 - If a classical operator contains n atoms and each atom has arity k, then it corresponds to c^{nk} actions where $c = |\{\text{constant symbols}\}|$.

State-Variable Representation

- Use ground atoms for properties that do not change, e.g., adjacent(loc1,loc2)
- For properties that can change, assign values to *state variables*
 - Like fields in a record structure
- Classical and state-variable representations take similar amounts of space
 - Each can be translated into the other in low-order polynomial time

move(r, l, m)

;; robot r at location l moves to an adjacent location m
precond: rloc(r) = l, adjacent(l, m)
effects: rloc(r) ← m

```plaintext
{top(p1)=c3,
cpos(c3)=c1,
cpos(c1)=pallet,
holding(crane1)=nil,
rloc(r1)=loc2,
loaded(r1)=nil, ...}
```
Example: The Blocks World

- Infinitely wide table, finite number of children’s blocks
- Ignore where a block is located on the table
- A block can sit on the table or on another block
- Want to move blocks from one configuration to another
 - e.g.,

![Initial state diagram](image)

- Can be expressed as a special case of DWR
 - But the usual formulation is simpler
- I’ll give classical, set-theoretic, and state-variable formulations
 - For the case where there are five blocks
Classical Representation: Symbols

- **Constant symbols:**
 - The blocks: a, b, c, d, e

- **Predicates:**
 - ontable(x) - block x is on the table
 - on(x,y) - block x is on block y
 - clear(x) - block x has nothing on it
 - holding(x) - the robot hand is holding block x
 - handempty - the robot hand isn’t holding anything
Classical Operators

unstack(x,y)
Precond: on(x,y), clear(x), handempty
Effects: ~on(x,y), ~clear(x), ~handempty, holding(x), clear(y)

stack(x,y)
Precond: holding(x), clear(y)
Effects: ~holding(x), ~clear(y), on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ~ontable(x), ~clear(x), ~handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ~holding(x), ontable(x), clear(x), handempty
Set-Theoretic Representation: Symbols

- For five blocks, there are 36 propositions
- Here are 5 of them:
 - **ontable-a** - block a is on the table
 - **on-c-a** - block c is on block a
 - **clear-c** - block c has nothing on it
 - **holding-d** - the robot hand is holding block d
 - **handempty** - the robot hand isn’t holding anything
Set-Theoretic Actions

Fifty different actions

Here are four of them:

unstack-c-a
- **Pre:** on-c,a, clear-c, handempty
- **Del:** on-c,a, clear-c, handempty
- **Add:** holding-c, clear-a

stack-c-a
- **Pre:** holding-c, clear-a
- **Del:** holding-c, clear-a
- **Add:** on-c-a, clear-c, handempty

pickup-c
- **Pre:** on-table-c, clear-c, handempty
- **Del:** on-table-c, clear-c, handempty
- **Add:** holding-c

putdown-c
- **Pre:** holding-c
- **Del:** holding-c
- **Add:** on-table-c, clear-c, handempty
State-Variable Representation: Symbols

- **Constant symbols:**
 - a, b, c, d, e of type block
 - $0, 1, \text{table}, \text{nil}$ of type other

- **State variables:**
 - $\text{pos}(x) = y$ if block x is on block y
 - $\text{pos}(x) = \text{table}$ if block x is on the table
 - $\text{pos}(x) = \text{nil}$ if block x is being held
 - $\text{clear}(x) = 1$ if block x has nothing on it
 - $\text{clear}(x) = 0$ if block x is being held or has another block on it
 - $\text{holding} = x$ if the robot hand is holding block x
 - $\text{holding} = \text{nil}$ if the robot hand is holding nothing
State-Variable Operators

unstack($x : \text{block}, y : \text{block}$)

Precond: $\text{pos}(x)=y$, $\text{clear}(y)=0$, $\text{clear}(x)=1$, $\text{holding}=\text{nil}$

Effects: $\text{pos}(x)=\text{nil}$, $\text{clear}(x)=0$, $\text{holding}=x$, $\text{clear}(y)=1$

stack($x : \text{block}, y : \text{block}$)

Precond: $\text{holding}=x$, $\text{clear}(x)=0$, $\text{clear}(y)=1$

Effects: $\text{holding}=\text{nil}$, $\text{clear}(y)=0$, $\text{pos}(x)=y$, $\text{clear}(x)=1$

pickup($x : \text{block}$)

Precond: $\text{pos}(x)=\text{table}$, $\text{clear}(x)=1$, $\text{holding}=\text{nil}$

Effects: $\text{pos}(x)=\text{nil}$, $\text{clear}(x)=0$, $\text{holding}=x$

putdown($x : \text{block}$)

Precond: $\text{holding}=x$

Effects: $\text{holding}=\text{nil}$, $\text{pos}(x)=\text{table}$, $\text{clear}(x)=1$
Expressive Power

- Any problem that can be represented in one representation can also be represented in the other two.
- Can convert in linear time and space, except when converting to set-theoretic (where we get an exponential blowup).
Comparison

- Classical representation
 - The most popular for classical planning, partly for historical reasons

- Set-theoretic representation
 - Can take much more space than classical representation
 - Useful in algorithms that manipulate ground atoms directly
 » e.g., planning graphs (Chapter 6), satisfiability (Chapters 7)
 - Useful for certain kinds of theoretical studies

- State-variable representation
 - Equivalent to classical representation in expressive power
 - Less natural for logicians, more natural for engineers
 - Useful in non-classical planning problems as a way to handle numbers, functions, time