Lecture slides for
Automated Planning: Theory and Practice

Chapter 9
Heuristics in Planning

Dana S. Nau

CMSC 722, Al Planning
University of Maryland, Spring 2008

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Planning as Nondeterministic Search

Abstract-search(u)
if Terminal(u) then return(u)

u «— Refine(u) .. refinement step
B « Branch(u) .. branching step
B" < Prune(B) .. pruning step

if B' = () then return(failure)
[nondeterministically choose v € B |
return(Abstract-search(v))
end

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Making it Deterministic

Depth-first-search(u)
if Terminal(u) then return(u)

u < Refine(u) .. refinement step
B « Branch(u) .. branching step
C' < Prune(B) .» pruning step
while C' # () do
[v — Select(C) ., node-selection step |
C —C—{v}

7 < Depth-first-search(v)
if = 5 failure then return()
return(failure)
end

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Node-Selection Heuristic

® Suppose we’re searching a tree in which each edge (s,s") has a cost c(s,s")
¢ If p is a path, let c¢(p) = sum of the edge costs g(s)
N

¢ For classical planning, this is the length of p 4
O

® For every state s, let

¢ g(s) = cost of the path from s, to s ‘
& h*(s) = least cost of all paths from s to goal nodes | h*(s) o

& f*(s) = g(s) + h*(s) = least cost of all paths
from s, to goal nodes that go through s

® Suppose A(s) is an estimate of /2 *(s)
& Let f(s) = g(s) + h(s)
» f(s) 1s an estimate of f*(s)
¢ K is admissible if for every state s, 0 < A(s) < h*(s)
¢ If /1 is admissible then fis a lower bound on f*

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

The A* Algorithm

® A¥* on trees:

loop

choose the leaf node s such that f(is) is smallest
if s is a solution then return it and exit
expand it (generate its children)

® On graphs, A* is more complicated

¢ additional machinery to deal with
multiple paths to the same node

® If a solution exists (and certain other
conditions are satisfied), then:

¢ If A(s) 1s admissible, then A* is guaranteed to find an optimal solution

¢ The more “informed” the heuristic 1s (1.e., the closer it 1s to 2 7%),
the smaller the number of nodes A* expands

¢ If /i(s) is within ¢ of being admissible, then A* is
guaranteed to find a solution that’s within ¢ of optimal

Dana Nau: Lecture slides for Automated Planning 5
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristic Functions for Planning

® A*(s,p): minimum distance from state s to a state that contains p

® A*(s,s"): minimum distance from state s to a state that contains
all of the literals in s’

¢ Hence 4 *(s) = A*(s,g) 1s the minimum distance from s to the
goal

® Fori=0,1,2,... we will define the following functions:
¢ A(s,p): an estimate of A*(s,p)
¢ A(s,s): an estimate of A*(s,s)
® /i(s) = A(s,g), where g 1s the goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristic Functions for Planning

® A,(s,s") =what we get 1f we pretend that
¢ Negative preconditions and effects don’t exist

¢ The cost of achieving a set of preconditions {p, ..., p,}
1s the sum of the costs of achieving each p, separately

0, ifpEs
Ag(s, p) =< o, if p&sand Va € A, p & effects*(a)
Lmin, {1 + A,(s,precond’(a)) | p € effects™(a), otherwise
As. &) = [0, ifgCs,
{Zpe ¢ A(s,p), otherwise

® A/ (s,s') 1s not admissible, but we don’t necessarily care
® Usually we’ll want to do a depth-first search, not an A* search
¢ This already sacrifices admissibility

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Computing A,

® Given s, can compute Ay(s,p) for every proposition p
¢ Forward search from s
¢ U s a set of sets of propositions

Delta(s)

for each p do: if p € s then Ag(s,p) « 0, else Ag(s,p) «— o

U —{s}

iterate

for each a such that Ju € U, precond(a) C u do
U — {u} Ueffects™ (a)
for each p € effects™(a) do
A(')(Sap) A min{AU(Sv 7)) , 1+ ZqCprocoud(a.) AU(S! Q)}

until no change occurs in the above updates

end

® From this, can compute /y(s) = Ay(s,g) = X, e , Ao(5.0)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristic Forward Search

Heuristic-forward-search(m, s, g, A)
If s satisfies g then return =
options «— {a € A | a applicable to s}
for each a € options do Delta(v(s,a))
while options # () do
a — argmin{Ag(v(s,a),q) | a € options}
options «— options — {a}
n’ < Heuristic-forward-search(m.a, (s, a), g, A)
if 7’ # failure then return(z’)
return(failure)
end
® This 1s depth-first search, so admissibility 1s 1rrelevant

® This 1s roughly how the HSP planner works
¢ First successful use of an A*-style heuristic in classical planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristic Backward Search

® HSP can also search backward

Backward-search(m, sq, g, A)
if so satisfies g then return(m)
options «— {a € A | a relevant for g}
while options # () do
a — argmin{Ay(sg,7 (g,a)) | a € options}
options «— options — {a}
n’ « Backward-search(a.7, 59,7 (g, a), A)
if 7" # failure then return(w’)
return failure
end

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

10

An Admissible Heuristic

0, ifpEs
A (s, p) =< o, if p&sand Va€ A, p & effects*(a)
Lmin, {1 + A,(s,precond’(a)) | p € effects"(a), otherwise
A(s,g)= 10, ifgCys,
max,e, A(s,p), otherwise

® A (s, s') = what we get if we pretend that
¢ Negative preconditions and effects don’t exist

¢ The cost of achieving a set of preconditions {p,, ..., p,}
1s the max of the costs of achieving each p, separately

® This heuristic is admissible; thus 1t could be used with A*

¢ It is not very informed

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

11

A More Informed Heuristic

® A,:instead of computing the minimum distance to each p in g, compute
the minimum distance to each pair {p,g} in g:

¢ Analogy to GraphPlan’s mutex conditions

s

0, ifpEs
Ay(s, p) =< o, ifp&sand Va € A, p & effects’(a)
_min, {1 + A,(s, precond’(a)) | p € effects"(a), otherwise

(min, {1 + A,(s, precond’(a)) | {p,q} C effects™(a)}
A(s, {p,q}) =min < min, {1 + A,(s,{g} U precond’(a)) | p € effects(a)} >
_min, {1 +Ay(s,{p} U precond’(a)) | g € effects™(a)}

A(s, g)=1| 0, ifgC s,
maXp,q A2(S’ {p’q}) | {paq} g g}a OtherWise

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

12

More Generally, ...

Recall that A*(s, g) is the true minimal distance from a state s to a goal
g. A* can be computed (albeit at great computational cost) according to
the following equations:

0 if g C s,

oo if Ya € A, a is not relevant for ¢, and

min, {1 + A*(s,7 !(g,a)) | a relevant for g}
otherwise.

A*(s,g) = (9.4)

® From this, can define A, (s,g) = max distance to each k-tuple {p,p,,....p;} In g

¢ Analogy to k-ary mutex conditions

(0 if g C s,
oo if Ya € A, a is not relevant for g,
ming {1 + A*(s,7 '(g,a)) | a relevant for g}
if [g] < &,
maxgy{Ar(s,¢') | ¢ C g and |¢'| = k}
\ otherwise.

(9.5)

(93

s

0, ifpEs
Ay(s, p) =< o, if p&sand Va € A, p & effects™(a)
_min, {1 +A,(s, precond™(a)) | p € effects"(a), otherwise

(min, {1 + A(s, precond’(a)) | {p,q} C effects*(a)}
A(s, {p,q}) =min < min, {1 + A,(s,{g} U precond’(a)) | p € effects™(a)}

>

| min, {1 +A,(s,{p} U precond’(a)) | g € eftects™(a)}

A(s, 2) =10, ifgCys,
max, . A(s,{p.q}) | {p.q} & g}, otherwise

(0 ifgCs,
oo if Ya € A, a is not relevant for g,
ming{1 + A*(s,7 (g,a)) | a relevant for g}
if |g] <k,
maxy{Ax(s,¢") | ¢ C g and |¢'| = k}
| otherwise.

Ak(.‘i, (]) — <

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

(9.]

14

Complexity of Computing the Heuristic

® Takes time Q(n")

® If £ > max(|g|, max{|precond(a)| : a is an action})
then computing A(s,g) 1s as hard as solving the entire planning

problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

15

Getting Heuristic Values from
a Planning Graph

® Recall how GraphPlan works:
loop
Graph expansion: this takes polynomial time

extend a “planning graph” forward from the initial state
until we have achieved a necessary (but insufficient) condition
for plan existence

Solution extraction: this takes exponential time

search backward from the goal, looking for a correct plan
if we find one, then return it

repeat

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Using Planning Graphs to Compute h(s)

® In the graph, there are alternating o
layers of ground literals and actions

i-1 [I+1

® ...0 ® -
® The number of “action” layers
1s a lower bound on the number ® P
of actions in the plan . @
® Construct a planning graph, —® -
starting at s @ .. o

® As(s,p) = level of the first layer
that “possibly achieves™ p

® As3(s,g) 1s very close to A,(s,2)
¢ A,(s,2) counts each action individually

¢ Ag(s,g) groups together the independent actions in a layer

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

17

The FastForward Planner

® Usec a heuristic function similar to 4(s) = AS(s,g) /\Q
¢ Some ways to improve it (I’ll skip the details) ®

® Don’t want an A*-style search (takes too much memory)

® Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
S := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)

® There are some ways to improve this (I’ll skip the details)

® Can’t guarantee how fast it will find a solution,
or how good a solution it will find

¢ However, 1t works pretty well on many problems

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

AIPS-2000 Planning Competition

® FastForward did quite well
® In the this competition, all of the planning problems were classical

problems

® Two tracks:
¢ “Fully automated” and ‘“hand-tailored” planners

¢ FastForward participated in the fully automated track
» It got one of the two “outstanding performance” awards
¢ Large variance in how close its plans were to optimal

» However, it found them very fast compared with the other
fully-automated planners

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

19

2002 International Planning Competition

® Among the automated planners, FastForward was roughly in the middle

® LPG (graphplan + local search) did much better, and got a “distinguished
performance of the first order” award

® It’s interesting to see how FastForward did in problems that went beyond
classical planning

» Numbers, optimization
® Example: Satellite domain, numeric version

¢ A domain inspired by the Hubble space telescope
(a lot simpler than the real domain, of course)

» A satellite needs to take observations of stars

» Gather as much data as possible
before running out of fuel

¢ Any amount of data gathered 1s a solution
» Thus, FastForward always returned the null plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

20

2004 International Planning Competition

® FastForward’s author was one of the competition chairs
¢ Thus FastForward did not participate

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

21

Abstract-search(u)

if Terminal(u) then return(u) Heuristics for
[u «— Refine(u) - refinement step] P|an-Space

B « Branch(u) .. branching step .

B" < Prune(B) .. pruning step Plannlng

if B" = () then return(failure)
nondeterministically choose v € B’

return(Abstract-search(v)) | partial plan |
mnestablished unestablished Hchon g .
feaws: . e threatens H's
precondition g, precondition g, iy
! precondition p

® For plan-space

. resolvers: resolvers: resolvers:
plannlng’ actio action
refinement = a iy a before b bt
selecting the
next flaw to partial partial partial partial parti
work on plan plan i, plan v, plan 1. plan

Dana Nau: Lecture slides for Auton ﬁ Z% ﬁ

Licensed under the Creative Commr

i

One Possible Heuristic

® Fewest Alternatives First (FAF)

I partial plan x

s mnestablished unestablished : h:::iz::qah‘g
' precondition g, precondition g, .y
, | | precondition p

resolvers: resolvers:

resolvers:
ACTLON

(.fz

actio

p b before a

: a before b

partial partial
plan 1t plan s,

partial partial partial
plan i, plan o, plan s,

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

Do Others Work Better?

® Sometimes yes, sometimes no

® Limits to how good any flaw-selection heuristic can do

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

24

Serializing and AND/OR Tree

® The search space 1s
an AND/OR tree

Partial plan p

.

Goal g, | | Goal g,

e

Operator o,

Operator o,,

"| variable v

Constrain

Order

"| tasks

® Deciding what flaw to work on next = serializing this tree (turning it into

a state-space tree)

¢ at each AND branch,

choose a child to
expand next, and
delay expanding
the other children

=

Goal g,

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Partial plan p

Goal g,

Operator o0,

Partial plan p,

Constrain
"| variable v

"| tasks

Operator o,
AN

Partial plan p,

ST

Order Goal g,

Constrain
| variable v

Order

"| tasks

25

aclion
{1y

One Serialization

a belore b

partial
plan m,,

partial
plan x|

partial plan x

aclion a,

partial
plan m,

action

acluon

dy

b belore a

partial
plan o,

acton

partial
plan o,

partial
plan gt |

partial
plan 5,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

partial
plan 7,

partial
plan T,

action iy

Another Serialization

partial plan

acuon a;

achion €,

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

partial artial artial
p p
plan i, plan m, plan T,
a before b hefore a belore h before a befor b hefore
a b ¢l h a
artial artial artal yarlial yartial Yartial
P P P ! I
planm,, | | planm,, plan i, plan 1y, plan sty plan m.,
aclign &, aclign a, actiqn e, aclign «, actign @, aclidn a,
partial partial partial partial partial partial
plan T planst,,, plan s, plan) S plan plan)

27

Why Does This Matter?

® Different refinement strategies produce different serializations
¢ the search spaces have different numbers of nodes

® In the worst case, the planner will search the entire serialized search
space

® The smaller the serialization, the more likely that the planner will
be efficient

® One pretty good heuristic: fewest alternatives first

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

How Much Difference Can the Refinement
Strategy Make?

® Case study: build an AND/OR graph from repeated occurrences of this pattern:

W_J
b
® Example: —
¢ number of levels k=3
a £ a

¢ branching factor b =2

® Analysis:
Total number of nodes in the AND/OR graph is n = O(b%)

¢ How many nodes in the best and worst serializations?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

29

Case Study, Continued

® The best serialization contains @(bzk) nodes
® The worst serialization contains @(2kb2k) nodes

¢ The size differs by an exponential factor

¢ But both serializations are doubly exponentially large
® To do better, need good node selection, branching, pruning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

30

