
Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 1

Chapter 9
Heuristics in Planning

Dana S. Nau

CMSC 722, AI Planning
University of Maryland, Spring 2008

Lecture slides for
Automated Planning: Theory and Practice

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 2

Planning as Nondeterministic Search

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 3

Making it Deterministic

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 4

Node-Selection Heuristic
●  Suppose we’re searching a tree in which each edge (s,s') has a cost c(s,s')

◆  If p is a path, let c(p) = sum of the edge costs
◆  For classical planning, this is the length of p

●  For every state s, let
◆  g(s) = cost of the path from s0 to s
◆  h*(s) = least cost of all paths from s to goal nodes
◆  f*(s) = g(s) + h*(s) = least cost of all paths

from s0 to goal nodes that go through s

●  Suppose h(s) is an estimate of h*(s)
◆  Let f(s) = g(s) + h(s)

»  f(s) is an estimate of f*(s)
◆  h is admissible if for every state s, 0 ≤ h(s) ≤ h*(s)
◆  If h is admissible then f is a lower bound on f*

g(s)

h*(s)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 5

The A* Algorithm
●  A* on trees:

 loop
choose the leaf node s such that f(s) is smallest
if s is a solution then return it and exit
expand it (generate its children)

●  On graphs, A* is more complicated
◆  additional machinery to deal with

multiple paths to the same node

●  If a solution exists (and certain other
conditions are satisfied), then:
◆  If h(s) is admissible, then A* is guaranteed to find an optimal solution
◆  The more “informed” the heuristic is (i.e., the closer it is to h*),

the smaller the number of nodes A* expands
◆  If h(s) is within c of being admissible, then A* is

guaranteed to find a solution that’s within c of optimal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 6

Heuristic Functions for Planning

●  Δ*(s,p): minimum distance from state s to a state that contains p
●  Δ*(s,s'): minimum distance from state s to a state that contains

all of the literals in s'
◆ Hence h*(s) = Δ*(s,g) is the minimum distance from s to the

goal
●  For i = 0, 1, 2, … we will define the following functions:

◆  Δi(s,p): an estimate of Δ*(s,p)
◆  Δi(s,s'): an estimate of Δ*(s,s')
◆ hi(s) = Δi(s,g), where g is the goal

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 7

Heuristic Functions for Planning
●  Δ0(s,s') = what we get if we pretend that

◆ Negative preconditions and effects don’t exist
◆ The cost of achieving a set of preconditions {p1, …, pn}

is the sum of the costs of achieving each pi separately

●  Δ0(s,s') is not admissible, but we don’t necessarily care
●  Usually we’ll want to do a depth-first search, not an A* search

◆ This already sacrifices admissibility

 0, if p ∈ s
 Δ0(s, p) = ∞, if p ∉ s and ∀a ∈ A, p ∉ effects+(a)
 mina {1 + Δ0(s,precond+(a)) | p ∈ effects+(a), otherwise

 Δ0(s, g) = 0, if g ⊆ s,
 ∑p∈g Δ1(s,p), otherwise

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 8

Computing Δ0
●  Given s, can compute Δ0(s,p) for every proposition p

◆  Forward search from s
◆ U is a set of sets of propositions

●  From this, can compute h0(s) = Δ0(s,g) = ∑p ∈ g Δ0(s,p)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 9

Heuristic Forward Search

●  This is depth-first search, so admissibility is irrelevant
●  This is roughly how the HSP planner works

◆ First successful use of an A*-style heuristic in classical planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 10

Heuristic Backward Search
●  HSP can also search backward

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 11

An Admissible Heuristic

●  Δ1(s, s') = what we get if we pretend that
◆ Negative preconditions and effects don’t exist
◆ The cost of achieving a set of preconditions {p1, …, pn}

is the max of the costs of achieving each pi separately
●  This heuristic is admissible; thus it could be used with A*

◆  It is not very informed

 0, if p ∈ s
 Δ1(s, p) = ∞, if p ∉ s and ∀a ∈ A, p ∉ effects+(a)
 mina {1 + Δ1(s,precond+(a)) | p ∈ effects+(a), otherwise

 Δ1(s, g) = 0, if g ⊆ s,
 maxp∈g Δ1(s,p), otherwise

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 12

A More Informed Heuristic
●  Δ2: instead of computing the minimum distance to each p in g, compute

the minimum distance to each pair {p,q} in g:
◆ Analogy to GraphPlan’s mutex conditions

 0, if p ∈ s
 Δ2(s, p) = ∞, if p ∉ s and ∀a ∈ A, p ∉ effects+(a)
 mina {1 + Δ2(s, precond+(a)) | p ∈ effects+(a), otherwise

 mina {1 + Δ2(s, precond+(a)) | {p,q} ⊆ effects+(a)}
 Δ2(s, {p,q}) = min mina {1 + Δ2(s,{q} ∪ precond+(a)) | p ∈ effects+(a)}
 mina {1 + Δ2(s,{p} ∪ precond+(a)) | q ∈ effects+(a)}

Δ2(s, g) = 0, if g ⊆ s,
 maxp,q Δ2(s,{p,q}) | {p,q} ⊆ g}, otherwise

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 13

More Generally, …

●  From this, can define Δk (s,g) = max distance to each k-tuple {p1,p2,…,pk} in g
◆  Analogy to k-ary mutex conditions

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 14

 0, if p ∈ s
 Δ2(s, p) = ∞, if p ∉ s and ∀a ∈ A, p ∉ effects+(a)
 mina {1 + Δ2(s, precond+(a)) | p ∈ effects+(a), otherwise

 mina {1 + Δ2(s, precond+(a)) | {p,q} ⊆ effects+(a)}
 Δ2(s, {p,q}) = min mina {1 + Δ2(s,{q} ∪ precond+(a)) | p ∈ effects+(a)}
 mina {1 + Δ2(s,{p} ∪ precond+(a)) | q ∈ effects+(a)}

Δ2(s, g) = 0, if g ⊆ s,
 maxp,q Δ2(s,{p,q}) | {p,q} ⊆ g}, otherwise

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 15

Complexity of Computing the Heuristic

●  Takes time Ω(nk)
●  If k ≥ max(|g|, max{|precond(a)| : a is an action})

then computing Δ(s,g) is as hard as solving the entire planning
problem

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 16

Getting Heuristic Values from
a Planning Graph

●  Recall how GraphPlan works:
loop

Graph expansion:
extend a “planning graph” forward from the initial state

until we have achieved a necessary (but insufficient) condition
for plan existence

Solution extraction:
search backward from the goal, looking for a correct plan
if we find one, then return it

repeat

this takes polynomial time

this takes exponential time

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 17

Using Planning Graphs to Compute h(s)
●  In the graph, there are alternating

layers of ground literals and actions
●  The number of “action” layers

is a lower bound on the number
of actions in the plan

●  Construct a planning graph,
starting at s

●  Δg(s,p) = level of the first layer
 that “possibly achieves” p

●  Δg(s,g) is very close to Δ2(s,g)
◆  Δ2(s,g) counts each action individually
◆  Δg(s,g) groups together the independent actions in a layer

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 18

The FastForward Planner

●  Use a heuristic function similar to h(s) = Δg(s,g)
◆ Some ways to improve it (I’ll skip the details)

●  Don’t want an A*-style search (takes too much memory)
●  Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
 (i.e., the child we think is closest to a solution)

●  There are some ways to improve this (I’ll skip the details)
●  Can’t guarantee how fast it will find a solution,

or how good a solution it will find
◆ However, it works pretty well on many problems

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 19

AIPS-2000 Planning Competition

●  FastForward did quite well
●  In the this competition, all of the planning problems were classical

problems
●  Two tracks:

◆ “Fully automated” and “hand-tailored” planners
◆ FastForward participated in the fully automated track

» It got one of the two “outstanding performance” awards
◆ Large variance in how close its plans were to optimal

» However, it found them very fast compared with the other
fully-automated planners

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 20

2002 International Planning Competition
●  Among the automated planners, FastForward was roughly in the middle
●  LPG (graphplan + local search) did much better, and got a “distinguished

performance of the first order” award

●  It’s interesting to see how FastForward did in problems that went beyond
classical planning

» Numbers, optimization
●  Example: Satellite domain, numeric version

◆  A domain inspired by the Hubble space telescope
(a lot simpler than the real domain, of course)

» A satellite needs to take observations of stars
» Gather as much data as possible

before running out of fuel
◆  Any amount of data gathered is a solution

» Thus, FastForward always returned the null plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 21

2004 International Planning Competition
●  FastForward’s author was one of the competition chairs

◆ Thus FastForward did not participate

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 22

Heuristics for
Plan-Space

Planning

●  For plan-space
planning,
refinement =
selecting the
next flaw to
work on

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 23

One Possible Heuristic
●  Fewest Alternatives First (FAF)

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 24

Do Others Work Better?
●  Sometimes yes, sometimes no
●  Limits to how good any flaw-selection heuristic can do

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 25

●  The search space is
an AND/OR tree

●  Deciding what flaw to work on next = serializing this tree (turning it into
a state-space tree)
◆  at each AND branch,

choose a child to
expand next, and
delay expanding
the other children

Serializing and AND/OR Tree

…
 …

…

Operator o1
 Operator on
…

Goal g1
 Goal g2
 Constrain 
variable v

Order 
tasks

Partial plan p

Partial plan p

Goal g1

Operator o1
 Operator on

Partial plan p1
 Partial plan pn

…
 …
Goal g2
 Constrain 
variable v

Order 
tasks

…
 …
Goal g2
 Constrain 
variable v

Order 
tasks

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 26

One Serialization

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 27

Another Serialization

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 28

Why Does This Matter?
●  Different refinement strategies produce different serializations

◆  the search spaces have different numbers of nodes
●  In the worst case, the planner will search the entire serialized search

space
●  The smaller the serialization, the more likely that the planner will

be efficient

●  One pretty good heuristic: fewest alternatives first

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 29

How Much Difference Can the Refinement
Strategy Make?

●  Case study: build an AND/OR graph from repeated occurrences of this pattern:

 b

●  Example:
◆  number of levels k = 3
◆  branching factor b = 2

●  Analysis:
◆  Total number of nodes in the AND/OR graph is n = Θ(bk)
◆  How many nodes in the best and worst serializations?

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/ 30

Case Study, Continued

●  The best serialization contains Θ(b2k) nodes
●  The worst serialization contains Θ(2kb2k) nodes

◆ The size differs by an exponential factor
◆ But both serializations are doubly exponentially large

●  To do better, need good node selection, branching, pruning

