Lecture slides for Automated Planning: Theory and Practice

Chapter 9 Heuristics in Planning

Dana S. Nau

CMSC 722, AI Planning University of Maryland, Spring 2008

Planning as Nondeterministic Search

```
Abstract-search(u)

if Terminal(u) then return(u)

u \leftarrow \text{Refine}(u) ;; refinement step

B \leftarrow \text{Branch}(u) ;; branching step

B' \leftarrow \text{Prune}(B) ;; pruning step

if B' = \emptyset then return(failure)

nondeterministically choose v \in B'

return(Abstract-search(v))

end
```

Making it Deterministic

```
Depth-first-search(u)
    if Terminal(u) then return(u)
    u \leftarrow \mathsf{Refine}(u) ;; refinement step
    B \leftarrow \mathsf{Branch}(u) ;; branching step
    C \leftarrow \mathsf{Prune}(B) ;; pruning step
    while C \neq \emptyset do
       v \leftarrow \mathsf{Select}(C)
                                        node-selection step
        C \leftarrow C - \{v\}
        \pi \leftarrow \mathsf{Depth}\text{-}\mathsf{first}\text{-}\mathsf{search}(v)
        if \pi \neq \text{failure then return}(\pi)
    return(failure)
end
```

Node-Selection Heuristic

- Suppose we're searching a **tree** in which each edge (s,s') has a cost c(s,s')
 - If p is a path, let c(p) = sum of the edge costs
 - ◆ For classical planning, this is the length of *p*
- For every state *s*, let
 - $g(s) = \cos t$ of the path from s_0 to s
 - h*(s) = least cost of all paths from s to goal nodes
 - $f^*(s) = g(s) + h^*(s) = \text{least cost of all paths}$ from s_0 to goal nodes that go through s

- - » f(s) is an estimate of $f^*(s)$
- h is admissible if for every state s, $0 \le h(s) \le h^*(s)$
- ◆ If *h* is admissible then *f* is a lower bound on *f**

The A* Algorithm

• A* on trees:

loop

choose the leaf node s such that f(s) is smallest if s is a solution then return it and exit expand it (generate its children)

- On graphs, A* is more complicated
 - additional machinery to deal with multiple paths to the same node
- If a solution exists (and certain other conditions are satisfied), then:
 - If h(s) is admissible, then A* is guaranteed to find an optimal solution
 - The more "informed" the heuristic is (i.e., the closer it is to h^*), the smaller the number of nodes A^* expands
 - If h(s) is within c of being admissible, then A* is guaranteed to find a solution that's within c of optimal

Heuristic Functions for Planning

- $\Delta^*(s,p)$: minimum distance from state s to a state that contains p
- $\Delta^*(s,s')$: minimum distance from state s to a state that contains all of the literals in s'
 - Hence $h^*(s) = \Delta^*(s,g)$ is the minimum distance from s to the goal
- For i = 0, 1, 2, ... we will define the following functions:
 - $\Delta_i(s,p)$: an estimate of $\Delta^*(s,p)$
 - $\Delta_i(s,s')$: an estimate of $\Delta^*(s,s')$
 - $h_i(s) = \Delta_i(s,g)$, where g is the goal

Heuristic Functions for Planning

- $\Delta_0(s,s')$ = what we get if we pretend that
 - ◆ Negative preconditions and effects don't exist
 - ♦ The cost of achieving a set of preconditions $\{p_1, ..., p_n\}$ is the sum of the costs of achieving each p_i separately

$$\Delta_{0}(s, p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^{+}(a) \\ \min_{a} \left\{ 1 + \Delta_{0}(s, \text{precond}^{+}(a)) \mid p \in \text{effects}^{+}(a), \text{ otherwise} \right. \\ \Delta_{0}(s, g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \sum_{p \in g} \Delta_{1}(s, p), \text{ otherwise} \end{cases}$$

- $\Delta_0(s,s')$ is not admissible, but we don't necessarily care
- Usually we'll want to do a depth-first search, not an A* search
 - This already sacrifices admissibility

Computing Δ_0

- Given s, can compute $\Delta_0(s,p)$ for every proposition p
 - ◆ Forward search from *s*
 - ◆ *U* is a set of sets of propositions

```
Delta(s) for each p do: if p \in s then \Delta_0(s,p) \leftarrow 0, else \Delta_0(s,p) \leftarrow \infty U \leftarrow \{s\} iterate for each a such that \exists u \in U, \operatorname{precond}(a) \subseteq u do U \leftarrow \{u\} \cup \operatorname{effects}^+(a) for each p \in \operatorname{effects}^+(a) do \Delta_0(s,p) \leftarrow \min\{\Delta_0(s,p)\;,\; 1+\sum_{q\in\operatorname{precond}(a)}\Delta_0(s,q)\} until no change occurs in the above updates end
```

• From this, can compute $h_0(s) = \Delta_0(s,g) = \sum_{p \in g} \Delta_0(s,p)$

Heuristic Forward Search

```
Heuristic-forward-search(\pi, s, g, A) if s satisfies g then return \pi options \leftarrow \{a \in A \mid a \text{ applicable to } s\} for each a \in options do \text{Delta}(\gamma(s, a)) while options \neq \emptyset do a \leftarrow \operatorname{argmin}\{\Delta_0(\gamma(s, a), g) \mid a \in options\} options \leftarrow options - \{a\} \pi' \leftarrow \text{Heuristic-forward-search}(\pi.a, \gamma(s, a), g, A) if \pi' \neq \text{failure then return}(\pi') return(failure) end
```

- This is depth-first search, so admissibility is irrelevant
- This is roughly how the HSP planner works
 - ◆ First successful use of an A*-style heuristic in classical planning

Heuristic Backward Search

HSP can also search backward

```
Backward-search(\pi, s_0, g, A)

if s_0 satisfies g then return(\pi)

options \leftarrow \{a \in A \mid a \text{ relevant for } g\}

while options \neq \emptyset do

a \leftarrow \operatorname{argmin}\{\Delta_0(s_0, \gamma^{-1}(g, a)) \mid a \in options\}

options \leftarrow options - \{a\}

\pi' \leftarrow \operatorname{Backward-search}(a.\pi, s_0, \gamma^{-1}(g, a), A)

if \pi' \neq \operatorname{failure} then \operatorname{return}(\pi')

return failure
```

An Admissible Heuristic

$$\Delta_{1}(s, p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^{+}(a) \\ \min_{a} \left\{ 1 + \Delta_{1}(s, \text{precond}^{+}(a)) \mid p \in \text{effects}^{+}(a), \text{ otherwise} \right. \\ \Delta_{1}(s, g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \max_{p \in g} \Delta_{1}(s, p), \text{ otherwise} \end{cases}$$

- $\Delta_1(s, s')$ = what we get if we pretend that
 - Negative preconditions and effects don't exist
 - The cost of achieving a set of preconditions $\{p_1, ..., p_n\}$ is the max of the costs of achieving each p_i separately
- This heuristic is admissible; thus it could be used with A*
 - ◆ It is not very informed

A More Informed Heuristic

- Δ_2 : instead of computing the minimum distance to each p in g, compute the minimum distance to each pair $\{p,q\}$ in g:
 - Analogy to GraphPlan's mutex conditions

$$\Delta_2(s, p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\ \min_a \left\{ 1 + \Delta_2(s, \text{precond}^+(a)) \mid p \in \text{effects}^+(a), \text{ otherwise} \right. \end{cases}$$

$$\Delta_2(s, \{p,q\}) = \min \left\{ \begin{array}{l} \min_a \left\{ 1 + \Delta_2(s, \operatorname{precond^+}(a)) \mid \{p,q\} \subseteq \operatorname{effects^+}(a)\} \\ \min_a \left\{ 1 + \Delta_2(s, \{q\} \cup \operatorname{precond^+}(a)) \mid p \in \operatorname{effects^+}(a)\} \\ \min_a \left\{ 1 + \Delta_2(s, \{p\} \cup \operatorname{precond^+}(a)) \mid q \in \operatorname{effects^+}(a)\} \right\} \end{array} \right.$$

$$\Delta_2(s, g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \max_{p,q} \Delta_2(s, \{p,q\}) \mid \{p,q\} \subseteq g\}, & \text{otherwise} \end{cases}$$

More Generally, ...

Recall that $\Delta^*(s, g)$ is the true minimal distance from a state s to a goal g. Δ^* can be computed (albeit at great computational cost) according to the following equations:

$$\Delta^{\star}(s,g) = \begin{cases} 0 & \text{if } g \subseteq s, \\ \infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \text{ and} \\ \min_{a} \{1 + \Delta^{\star}(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} \\ & \text{otherwise.} \end{cases}$$
(9.4)

- From this, can define $\Delta_k(s,g) = \max \text{ distance to each } k\text{-tuple } \{p_1,p_2,\ldots,p_k\} \text{ in } g$
 - ◆ Analogy to *k*-ary mutex conditions

$$\Delta_{k}(s,g) = \begin{cases} 0 & \text{if } g \subseteq s, \\ \infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\ \min_{a} \{1 + \Delta^{\star}(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} \\ & \text{if } |g| \leq k, \\ \max_{g'} \{\Delta_{k}(s, g') \mid g' \subseteq g \text{ and } |g'| = k\} \\ & \text{otherwise.} \end{cases}$$
(9.5)

$$\Delta_2(s, p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\ \min_a \left\{ 1 + \Delta_2(s, \text{precond}^+(a)) \mid p \in \text{effects}^+(a), \text{ otherwise} \right. \end{cases}$$

$$\Delta_2(s, \{p,q\}) = \min \left\{ \begin{array}{l} \min_a \left\{ 1 + \Delta_2(s, \operatorname{precond}^+(a)) \mid \{p,q\} \subseteq \operatorname{effects}^+(a)\} \\ \min_a \left\{ 1 + \Delta_2(s, \{q\} \cup \operatorname{precond}^+(a)) \mid p \in \operatorname{effects}^+(a)\} \\ \min_a \left\{ 1 + \Delta_2(s, \{p\} \cup \operatorname{precond}^+(a)) \mid q \in \operatorname{effects}^+(a)\} \right\} \end{array} \right.$$

$$\Delta_2(s, g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \max_{p,q} \Delta_2(s, \{p,q\}) \mid \{p,q\} \subseteq g\}, & \text{otherwise} \end{cases}$$

$$\Delta_{k}(s,g) = \begin{cases} 0 & \text{if } g \subseteq s, \\ \infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\ \min_{a} \{1 + \Delta^{\star}(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} \\ & \text{if } |g| \leq k, \\ \max_{g'} \{\Delta_{k}(s, g') \mid g' \subseteq g \text{ and } |g'| = k\} \\ & \text{otherwise.} \end{cases}$$
(9.5)

Complexity of Computing the Heuristic

- Takes time $\Omega(n^k)$
- If $k \ge \max(|g|, \max\{|\operatorname{precond}(a)| : a \text{ is an action}\})$ then computing $\Delta(s,g)$ is as hard as solving the entire planning problem

Getting Heuristic Values from a Planning Graph

Recall how GraphPlan works:

loop

Graph expansion:

this takes polynomial time

extend a "planning graph" forward from the initial state until we have achieved a necessary (but insufficient) condition for plan existence

Solution extraction:

this takes exponential time

search backward from the goal, looking for a correct plan if we find one, then return it

repeat

Using Planning Graphs to Compute h(s)

- In the graph, there are alternating layers of ground literals and actions
- The number of "action" layers is a lower bound on the number of actions in the plan
- Construct a planning graph, starting at s
- $\Delta^g(s,p)$ = level of the first layer that "possibly achieves" p
- $\Delta^g(s,g)$ is very close to $\Delta_2(s,g)$
 - $\Delta_2(s,g)$ counts each action individually
 - $\Delta^{g}(s,g)$ groups together the independent actions in a layer

The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta^g(s,g)$
 - ◆ Some ways to improve it (I'll skip the details)
- Don't want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

until we have a solution, do
expand the current state s
s := the child of s for which h(s) is smallest
(i.e., the child we think is closest to a solution)

- Can't guarantee how fast it will find a solution, or how good a solution it will find
 - ◆ However, it works pretty well on many problems

AIPS-2000 Planning Competition

- FastForward did quite well
- In the this competition, all of the planning problems were classical problems
- Two tracks:
 - "Fully automated" and "hand-tailored" planners
 - ◆ FastForward participated in the fully automated track
 - » It got one of the two "outstanding performance" awards
 - ◆ Large variance in how close its plans were to optimal
 - » However, it found them very fast compared with the other fully-automated planners

2002 International Planning Competition

- Among the automated planners, FastForward was roughly in the middle
- LPG (graphplan + local search) did much better, and got a "distinguished performance of the first order" award
- It's interesting to see how FastForward did in problems that went beyond classical planning
 - » Numbers, optimization
- Example: Satellite domain, numeric version
 - ◆ A domain inspired by the Hubble space telescope (a lot simpler than the real domain, of course)
 - » A satellite needs to take observations of stars
 - » Gather as much data as possible before running out of fuel
 - Any amount of data gathered is a solution
 - » Thus, FastForward always returned the null plan

2004 International Planning Competition

- FastForward's author was one of the competition chairs
 - ◆ Thus FastForward did not participate

Abstract-search(u) if Terminal(u) then return(u) $u \leftarrow \mathsf{Refine}(u)$ refinement step $B \leftarrow \mathsf{Branch}(u)$ branching step $B' \leftarrow \mathsf{Prune}(B)$ pruning step if $B' = \emptyset$ then return(failure) nondeterministically choose $v \in B'$

Heuristics for Plan-Space **Planning**

For plan-space planning, refinement = selecting the next flaw to

end

return(Abstract-search(v))partial plan π action a unestablished unestablished threatens b's flaws: precondition g_1 precondition g_i precondition p resolvers: resolvers: resolvers: action action action action b1a before b an a_2 $a_{\scriptscriptstyle A}$ partial partial partial parti partial partial plan π_1 plan π_2 plan π_{s} plan plan π_4 plan π_{γ}

Dana Nau: Lecture slides for Autom Licensed under the Creative Comm

work on

One Possible Heuristic

• Fewest Alternatives First (FAF)

Do Others Work Better?

- Sometimes yes, sometimes no
- Limits to how good any flaw-selection heuristic can do

Serializing and AND/OR Tree

 The search space is an AND/OR tree

Deciding what flaw to work on next = serializing this tree (turning it into a state-space tree)

Partial plan p at each AND branch, choose a child to Goal g₁ expand next, and Operator o₁ Operator o_n delay expanding the other children Partial plan p₁ Partial plan p_n Constrain Order Order Constrain Goal g₂ Goal g₂ variable v tasks variable v tasks

Dana Nau: Lecture slides for Automated Planning

One Serialization

Another Serialization

Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient
- One pretty good heuristic: fewest alternatives first

How Much Difference Can the Refinement Strategy Make?

Case study: build an AND/OR graph from repeated occurrences of this pattern:

- Example:
 - number of levels k = 3
 - branching factor b = 2

- Analysis:
 - Total number of nodes in the AND/OR graph is $n = \Theta(b^k)$
 - How many nodes in the best and worst serializations?

Case Study, Continued

- The best serialization contains $\Theta(b^{2^k})$ nodes
- The worst serialization contains $\Theta(2^kb^{2^k})$ nodes
 - ◆ The size differs by an exponential factor
 - ◆ But both serializations are *doubly* exponentially large
- To do better, need good node selection, branching, pruning