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Planning as Nondeterministic Search 
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Making it Deterministic 
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Node-Selection Heuristic 
●  Suppose we’re searching a tree in which each edge (s,s') has a cost c(s,s') 

◆  If p is a path, let c(p) = sum of the edge costs 
◆  For classical planning, this is the length of p 

●  For every state s, let 
◆  g(s) = cost of the path from s0 to s 
◆  h*(s) = least cost of all paths from s to goal nodes 
◆  f*(s) = g(s) + h*(s) = least cost of all paths 

from s0 to goal nodes that go through s 

●  Suppose h(s) is an estimate of h*(s) 
◆  Let f(s) = g(s) + h(s) 

»  f(s) is an estimate of f*(s) 
◆  h is admissible if for every state s, 0 ≤ h(s) ≤ h*(s) 
◆  If h is admissible then f is a lower bound on f* 

g(s) 

h*(s) 
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The A* Algorithm 
●  A* on trees: 

    loop 
choose the leaf node s such that f(s) is smallest 
if s is a solution then return it and exit 
expand it (generate its children) 

●  On graphs, A* is more complicated 
◆  additional machinery to deal with 

multiple paths to the same node 

●  If a solution exists (and certain other 
conditions are satisfied), then: 
◆  If h(s) is admissible, then A* is guaranteed to find an optimal solution 
◆  The more “informed” the heuristic is (i.e., the closer it is to h*), 

the smaller the number of nodes A* expands 
◆  If h(s) is within c of being admissible, then A* is 

guaranteed to find a solution that’s within c of optimal 
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Heuristic Functions for Planning 

●   Δ*(s,p): minimum distance from state s to a state that contains p 
●   Δ*(s,s'): minimum distance from state s to a state that contains 

all of the literals in s' 
◆ Hence h*(s) = Δ*(s,g) is the minimum distance from s to the 

goal  
●  For i = 0, 1, 2, … we will define the following functions: 

◆   Δi(s,p): an estimate of Δ*(s,p) 
◆   Δi(s,s'): an estimate of Δ*(s,s') 
◆ hi(s) = Δi(s,g), where g is the goal  
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Heuristic Functions for Planning 
●   Δ0(s,s') = what we get if we pretend that 

◆ Negative preconditions and effects don’t exist 
◆ The cost of achieving a set of preconditions {p1, …, pn} 

is the sum of the costs of achieving each pi separately 

●   Δ0(s,s') is not admissible, but we don’t necessarily care 
●  Usually we’ll want to do a depth-first search, not an A* search 

◆ This already sacrifices admissibility 

         0,        if p ∈ s 
 Δ0(s, p) =    ∞,        if p ∉ s and ∀a ∈ A, p ∉ effects+(a) 
        mina {1 + Δ0(s,precond+(a)) | p ∈ effects+(a),  otherwise 

 Δ0(s, g) =    0,        if g ⊆ s,  
        ∑p∈g  Δ1(s,p),   otherwise 
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Computing Δ0 
●  Given s, can compute Δ0(s,p) for every proposition p 

◆  Forward search from s 
◆ U is a set of sets of propositions 

●  From this, can compute h0(s) = Δ0(s,g) = ∑p ∈ g Δ0(s,p) 
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Heuristic Forward Search 

●  This is depth-first search, so admissibility is irrelevant 
●  This is roughly how the HSP planner works 

◆ First successful use of an A*-style heuristic in classical planning  
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Heuristic Backward Search 
●  HSP can also search backward 
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An Admissible Heuristic 

●   Δ1(s, s') = what we get if we pretend that 
◆ Negative preconditions and effects don’t exist 
◆ The cost of achieving a set of preconditions {p1, …, pn} 

is the max of the costs of achieving each pi separately 
●  This heuristic is admissible; thus it could be used with A* 

◆  It is not very informed 

         0,           if p ∈ s 
 Δ1(s, p) =    ∞,           if p ∉ s and ∀a ∈ A, p ∉ effects+(a) 
        mina {1 + Δ1(s,precond+(a)) | p ∈ effects+(a),  otherwise 

 Δ1(s, g) =    0,           if g ⊆ s,  
        maxp∈g  Δ1(s,p),  otherwise 
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A More Informed Heuristic 
●  Δ2: instead of computing the minimum distance to each p in g, compute 

the minimum distance to each pair {p,q} in g: 
◆ Analogy to GraphPlan’s mutex conditions 

         0,  if p ∈ s 
 Δ2(s, p) =     ∞,  if p ∉ s and ∀a ∈ A, p ∉ effects+(a) 
        mina {1 + Δ2(s, precond+(a)) | p ∈ effects+(a),    otherwise 

         mina {1 + Δ2(s, precond+(a)) | {p,q} ⊆ effects+(a)} 
 Δ2(s, {p,q}) = min      mina {1 + Δ2(s,{q} ∪ precond+(a)) | p ∈ effects+(a)} 
         mina {1 + Δ2(s,{p} ∪ precond+(a)) | q ∈ effects+(a)} 

Δ2(s, g) =     0,     if g ⊆ s,  
       maxp,q  Δ2(s,{p,q}) | {p,q} ⊆ g}, otherwise 
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More Generally, … 

●    From this, can define Δk (s,g) = max distance to each k-tuple {p1,p2,…,pk} in g 
◆  Analogy to k-ary mutex conditions 
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         0,  if p ∈ s 
 Δ2(s, p) =    ∞,  if p ∉ s and ∀a ∈ A, p ∉ effects+(a) 
        mina {1 + Δ2(s, precond+(a)) | p ∈ effects+(a),    otherwise 

         mina {1 + Δ2(s, precond+(a)) | {p,q} ⊆ effects+(a)} 
 Δ2(s, {p,q}) = min      mina {1 + Δ2(s,{q} ∪ precond+(a)) | p ∈ effects+(a)} 
         mina {1 + Δ2(s,{p} ∪ precond+(a)) | q ∈ effects+(a)} 

Δ2(s, g) =   0,     if g ⊆ s,  
       maxp,q  Δ2(s,{p,q}) | {p,q} ⊆ g}, otherwise 
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Complexity of Computing the Heuristic 

●  Takes time Ω(nk) 
●  If k ≥ max(|g|, max{|precond(a)| : a is an action}) 

then computing  Δ(s,g) is as hard as solving the entire planning 
problem 
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Getting Heuristic Values from 
a Planning Graph 

●  Recall how GraphPlan works: 
loop 

Graph expansion: 
extend a “planning graph” forward from the initial state 

until we have achieved a necessary (but insufficient) condition 
for plan existence 

Solution extraction: 
search backward from the goal, looking for a correct plan 
if we find one, then return it 

repeat 

this takes polynomial time 

this takes exponential time 
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Using Planning Graphs to Compute h(s) 
●  In the graph, there are alternating 

layers of ground literals and actions 
●  The number of “action” layers 

is a lower bound on the number 
of actions in the plan 

●  Construct a planning graph, 
starting at s 

●   Δg(s,p) = level of the first layer 
                that “possibly achieves” p 

●   Δg(s,g) is very close to Δ2(s,g) 
◆   Δ2(s,g) counts each action individually 
◆   Δg(s,g) groups together the independent actions in a layer 
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The FastForward Planner 

●  Use a heuristic function similar to h(s) =  Δg(s,g) 
◆ Some ways to improve it (I’ll skip the details) 

●  Don’t want an A*-style search (takes too much memory) 
●  Instead, use a greedy procedure: 

until we have a solution, do 
expand the current state s 
s := the child of s for which h(s) is smallest 
 (i.e., the child we think is closest to a solution) 

●  There are some ways to improve this  (I’ll skip the details) 
●  Can’t guarantee how fast it will find a solution, 

or how good a solution it will find 
◆ However, it works pretty well on many problems 
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AIPS-2000 Planning Competition 

●  FastForward did quite well 
●  In the this competition, all of the planning problems were classical 

problems 
●  Two tracks: 

◆ “Fully automated” and “hand-tailored” planners 
◆ FastForward participated in the fully automated track 

» It got one of the two “outstanding performance” awards 
◆ Large variance in how close its plans were to optimal 

» However, it found them very fast compared with the other 
fully-automated planners 
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2002 International Planning Competition 
●  Among the automated planners, FastForward was roughly in the middle  
●  LPG (graphplan + local search) did much better, and got a “distinguished 

performance of the first order” award 

●  It’s interesting to see how FastForward did in problems that went beyond 
classical planning 

» Numbers, optimization 
●  Example:  Satellite domain, numeric version 

◆  A domain inspired by the Hubble space telescope 
(a lot simpler than the real domain, of course) 

» A satellite needs to take observations of stars 
» Gather as much data as possible 

before running out of fuel  
◆  Any amount of data gathered is a solution 

» Thus, FastForward always returned the null plan 
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2004 International Planning Competition 
●  FastForward’s author was one of the competition chairs 

◆ Thus FastForward did not participate 
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Heuristics for 
Plan-Space 

Planning 

●  For plan-space 
planning, 
refinement = 
selecting the 
next flaw to 
work on 
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One Possible Heuristic 
●  Fewest Alternatives First (FAF) 
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Do Others Work Better? 
●  Sometimes yes, sometimes no 
●  Limits to how good any flaw-selection heuristic can do 
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●  The search space is 
an AND/OR tree 

●  Deciding what flaw to work on next = serializing this tree (turning it into 
a state-space tree) 
◆  at each AND branch, 

choose a child to 
expand next, and 
delay expanding 
the other children 

Serializing and AND/OR Tree 
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One Serialization 
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Another Serialization 
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Why Does This Matter? 
●  Different refinement strategies produce different serializations 

◆  the search spaces have different numbers of nodes 
●  In the worst case, the planner will search the entire serialized search 

space 
●  The smaller the serialization, the more likely that the planner will 

be efficient  

●  One pretty good heuristic: fewest alternatives first 
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How Much Difference Can the Refinement 
Strategy Make? 

●  Case study:  build an AND/OR graph from repeated occurrences of this pattern: 

                b 

●  Example: 
◆  number of levels k = 3 
◆  branching factor b = 2 

●  Analysis: 
◆  Total number of nodes in the AND/OR graph is n = Θ(bk) 
◆  How many nodes in the best and worst serializations?  
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Case Study, Continued 

●  The best serialization contains Θ(b2k) nodes 
●  The worst serialization contains Θ(2kb2k) nodes 

◆ The size differs by an exponential factor 
◆ But both serializations are doubly exponentially large 

●  To do better, need good node selection, branching, pruning 


