Intelligent Agents
Heuristic Search Planning

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

last change: June 29, 2010
Planning as Search

- Planning is an abstract search problem

Abstract-search(u)

- if $\text{Terminal}(u)$ then return(u)
- $u \leftarrow \text{Refine}(u)$
- $B \leftarrow \text{Branch}(u)$
- $C \leftarrow \text{Prune}(B)$
- if $C = \emptyset$ then return(failure)
- (nondeterministically) choose $v \in C$
- return(Abstract-search(v))
In state-based planning (STRIPS) \(u \) is a sequence of actions

- Every solution reachable from \(u \) contains this sequence as prefix (forward search) or as suffix (backward search)
- \(u \) is a partial plan
In Graphplan u is a subgraph of a planning graph, that is a sequence of sets of actions together with constraints (for preconditions, effects, mutex)

- Each solution reachable from u contains actions in u corresponding to the solved levels and at least one action from each level of the subgraph has not yet been solved in u.
- Not every action in u will appear in the solution plan (several actions may achieve a goal but perhaps only one of them will be needed in the solution plan).
Abstract-Search

- Refinement: Modifying the collection of actions or constraints in u
- Branch: generating children of u
- Prune: removing some nodes which seem unpromising for search (e.g. an already visited node, or a domain-specific reason)
- Choose: instead of nondeterministic selection often depth-first search with some Select-function is used
Selection of Nodes

- *Select* is realized using a heuristic function!
- Heuristic: ranking nodes in order of their relative desirability
- in A^*: hand-crafted, in planning automatically derived from planning problem
- \rightarrow design principle: relaxation
- Since heuristics: no guarantee to be the best choice
Relaxation

- $Select(C) = \arg\min\{ h(u) | u \in C \}$
- Relaxation: simplifying assumptions, relaxing constraints
- Obtaining h by solving the relaxed problem
- The closer the relaxed problem is to the real one
 - the better is the heuristic
 - the more effort it takes to calculate the heuristics
- For search for optimal solutions: admissible heuristics necessary
State Reachability Relaxation

- Asses how close an action may bring us to the goal
- \(\text{Res}(s, a) = s \setminus \text{DEL}(a) \cup \text{ADD}(a) \) if \(\text{PRE}(a) \subseteq s \)
- Relaxation: neglect \(\text{DEL}(a) \)
- Simplified \(\text{Res}(s, a) \): monotonic increase in number of propositions from \(s \) to \(\text{Res}(s, a) \)

Let \(s \in S \) be a state, \(p \) a proposition, and \(g \) a set of propositions

- The minimum distance from \(s \) to \(p \), \(\Delta^*(s, p) \) is the minimum number of actions to reach from \(s \) a state containing \(p \).
- The minimum distance from \(s \) to \(g \), \(\Delta^*(s, g) \) is the minimum number of actions to reach from \(s \) a state containing all propositions \(g \).
Ignoring DEL-Effects

- Estimate Δ_0: ignoring DEL, estimate distance to g as sum of the distances to all propositions in g
 - $\Delta_0(s, p) = 0$ if $p \in s$
 - $\Delta_0(s, p) = \infty$ if $\forall a \in A, p \notin ADD(a)$
 - $\Delta_0(s, g) = 0$ if $g \subseteq s$
 - otherwise
 - $\Delta_0(s, p) = \min_a \{1 + \Delta_0(s, PRE(a))|p \in ADD(a)\}$
 - $\Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p)$

Heuristic function: $h_0(s) = \Delta_0(s, g)$ (where g is the set of top-level goals)
Computing the Heuristic

Delta(s)

- for each p do: if $p \in s$ then $\Delta_0(s, p) \leftarrow 0$ else $\Delta_0(s, p) \leftarrow \infty$
- $U \leftarrow \{s\}$
- iterate
 - for each a such that $\exists u \in U$ with $\text{PRE}(a) \subseteq u$ do
 - $U \leftarrow \{u\} \cup \text{ADD}(a)$
 - for each $p \in \text{ADD}(a)$ do
 - $\Delta_0(s, p) \leftarrow \min\{\Delta_0(s, p), 1 + \sum_{q \in \text{PRE}(a)} \Delta_0(s, q)\}$
- until no change occurs in the updates
Computing the Heuristic

- Computes a value for each p
- Similar to minimum-distance (single-source) graph-search algorithm
- Starting from s_0 it proceeds through each action whose preconditions are reached, until a fixed point is reached
- Action selection: $a \leftarrow \text{argmin}\{\Delta_0(\text{Res}(s, a), g)\}$
- Algorithm is polynomial in the number of propositions and actions
- For actions with different costs: replace 1 by the cost value of a
- Realized in the planner HSP (Geffner and colleagues)
Admissibility

- Heuristic h_0 is not admissible

Example: $PRE(a) \in s_0$, $ADD(a) = g$, $s_0 \cap g = \emptyset$
true distance to goal is 1

$$\Delta_0(s_0, g) = \sum_{p \in g} \Delta_0(s_0, p) = |g|$$

- Modification of Δ_0: instead of sum of the distances of the elements of g, take maximum of the distances

- Problem: not as informative as Δ_0 (considering only a single goal proposition)

- Further modifications: look at the maximum of reaching k-tuples of propositions of g
Planning in Real-World Domains

- Incomplete Information
 - Conformant planning: Create plans that work for all cases
 - Conditional planning: sense world during execution and decide which branch of the plan to follow
- Incorrect Information
 - Execution monitoring: check for unsatisfied preconditions
 - Re-planning
- Continuous planning: create new goals during acting in real time
- Multiagent planning
Including Knowledge

Using knowledge about the structure of the domain

- Hierarchical Planning (decomposition rules)
 cf. problem solving with AND-OR trees
- Domain axioms
- Domain specific search strategies

→ larger plans become feasible (necessary for many real world problems, e.g. Mars Mobile)

Alternative to knowledge engineering: Learning of planning strategies!
Further Topics

- Interleaving plan construction and plan execution
- Plan revision
- Planning with temporal/resource constraints
- Non-deterministic planning
- ...

U. Schmid (CogSys)