Intelligent Agents Heuristic Search Planning

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

last change: June 15, 2015

Heuristic Search and Domain-Independent Planning

- Heuristics can reduce search effort dramatically because estimates about success/costs of partial solution paths can restrict (bound) search
- Typically, heuristic functions are pre-defined by a human expert
- In domain-independent planning, search is independent of domain knowledge, that is, knowledge about the distance of a state to the goal is not available to guide search
- How can heuristics be generated automatically for domain-independent planning?
- Hector Geffner proposed a method to estimate a heuristics and thereby made efficient search techniques which exploit heuristics available to planning (1998 planning competition, HSP) see Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, /129/(1), 5-33.

Outline

- Recapitulation
 - Planning as search
 - Node selection heuristics and A*
- Heuristic functions for planning
- Problem relaxation
- Hector Geffner's HSP planning approach
- Informedness and Admissibility

Planning as Non-deterministic Search

```
Abstract-search(u)

if Terminal(u) then return (u)

u \leftarrow \text{Refine } (u) ;; refinement step

B \leftarrow \text{Branch } (u) ;; branching step

B' \leftarrow \text{Prune } (B) ;; pruning step

if B' = \emptyset then return (failure)

non-deterministically choose v \in B'

return (Abstract-search(v))
```

Dana Nau: Lecture slides for Automated Planning

Making it Deterministic

```
Depth-first-search(u)
       if Terminal(u) then return (u)
       u \leftarrow \text{Refine } (u)
                                                  refinement step
       B \leftarrow \text{Branch } (u)
                                                 branching step
       C \leftarrow \text{Prune}(B)
                                                 pruning step
       while C \neq \emptyset do
               v \leftarrow \mathsf{Select}(C)
                                                 node-selection step
              C \leftarrow C - \{v\}
              \pi \leftarrow \text{Depth-first-search}(v)
              if \pi \neq failure then return (\pi)
       return (failure)
end
```

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

Node-Selection Heuristic

- Suppose were searching a **tree** in which each edge (s,s') has a cost c(s,s')
 - \diamond If p is a path, let c(p) = sum of the edge costs
 - ♦ For classical planning, this is the length of p
- For every state s, let
 - \diamond $g(s) = \cos t$ of the path from s_0 to s
 - $h^*(s) = \text{least cost of all paths from s to goal nodes}$
 - $f^*(s) = g(s) + h^*(s) =$ least cost of all paths from s_0 to goal nodes that go through s
- Suppose h(s) is an estimate of $h^*(s)$
 - \diamond Let f(s) = g(s) + h(s) \triangleright f(s) is an estimate of $f^*(s)$
 - \diamond h is admissible if for every state s, $0 < h(s) < h^*(s)$
 - \diamond If h is admissible then f is a lower bound on f^*

Be aware of the notation difference: here h^* is the known optimal least costs from a node n to the goal and h is the estimate

Dana Nau: Lecture slides for Automated Planning Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

The A* Algorithm

A* on trees:

loop

choose the leaf node s such that f(s) is smallest if s is a solution then return it and exit expand it (generate its children)

- On graphs, A* is more complicated
 - additional machinery to deal with multiple paths to the same node
- If a solution exists (and certain other conditions are satisfied), then:
 - \diamond If h(s) is admissible, then A* is guaranteed to find an optimal solution
 - ♦ The more "informed" the heuristic is (i.e., the closer it is to h*), the smaller the number of nodes A* expands
 - \diamond If h(s) is within c of being admissible, then A^* is guaranteed to find a solution that's within c of optimal

Dana Nau: Lecture slides for Automated Planning

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ License: http://creativecommons.org/licenses/by-nc-sa/2.0/$

Heuristic Functions for Planning

- $\Delta^*(s,p)$: minimum distance from state s to a state that contains p
- $\Delta^*(s, s')$: minimum distance from state s to a state that contains all of the literals in s'
 - \diamond Hence $h^*(s) = \Delta^*(s,g)$ is the minimum distance from s to the goal
- For $i = 0, 1, 2, \cdots$ we will define the following functions:
 - $\diamond \ \Delta_i(s,p)$: an estimate of $\Delta^*(s,p)$
 - $\diamond \ \Delta_i(s,s')$: an estimate of $\Delta^*(s,s')$
 - $h_i(s) = \Delta_i(s, g)$, where g is the goal
- Estimating the heuristics is based on relaxation of the problem
- Ignoring negative preconditions and effects allows for very fast progression from initial state to goals

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/bv-nc-sa/2.0/

Heuristic Functions for Planning

- $\Delta_0(s, s')$ = what we get if we pretend that
 - Negative preconditions and effects don't exist
 - \diamond The cost of achieving a set of preconditions $\{p_1, \dots, p_n\}$ is the sum of the costs of achieving each p_i separately

$$\Delta_0(s,p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \mathsf{effects}^+(a) \\ \mathit{min}_a\{1 + \Delta_0(s, \mathsf{precond}^+(a)) | p \in \mathsf{effects}^+(a)\}, & \text{otherwise} \end{cases}$$

$$\Delta_0(s,g) = egin{cases} 0, & ext{if } g \subseteq s \ \sum_{p \in g} \Delta_0(s,p), & ext{otherwise} \end{cases}$$

- $\Delta_0(s, s')$ is not admissible, but we don't necessarily care
- Usually we'll want to do a depth-first search, not an A* search
 - This already sacrifices admissibility (because DFS does not guarantee optimal solutions)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Computing Δ_0

```
Delta(s)
foreach p do
       if p \in s then
             \Delta_0(s,p) \leftarrow 0
       else
             \Delta_0(s,p) \leftarrow \infty
       end
end
U \leftarrow s;
repeat
       A \leftarrow \{a | \operatorname{precond}(a) \subset U\}:
       foreach a \in A do
             U \leftarrow U \cup \text{effects}^+(a);
             foreach p \in effects^+(a) do
                   \Delta_0(s,p) \leftarrow \min\{\Delta_0(s,p), 1 + \sum_{q \in \text{precond}(s)} \Delta_0(s,q)\};
              end
       end
```

until no change occurs in the above updates;

Slightly modified from Dana Nau

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

Heuristic Forward Search

```
Heuristic-forward-search(\pi, s, g, A)
        if s satisfies g then return \pi
        options \leftarrow \{a \in A \mid a \text{ applicable to } s\}
        for each a \in options do \Delta_0(\gamma(s, a))
        while options \neq \emptyset do
            a \leftarrow \operatorname{argmin} \{ \Delta_0(\gamma(s, a), g) \mid a \in options \}
            options \leftarrow options - \{a\}
            \pi' \leftarrow \text{Heuristic-forward-search}(\pi.a, \gamma(s, a), g, A)
            if \pi' \neq \text{failure then return}(\pi')
        return(failure)
end
```

- This is depth-first search, so admissibility is irrelevant
- This is roughly how the HSP planner works
 - ♦ First successful use of an A*-style heuristic in classical planning

Dana Nau: Lecture slides for Automated Planning

Heuristic Backward Search

HSP can also search backward

```
Backward-search(\pi, s_0, g, A)

if s_0 satisfies g then return \pi

options \leftarrow \{a \in A \mid a \text{ relevant for } g\}

while options \neq \emptyset do

a \leftarrow \operatorname{argmin}\{\Delta_0(s_0, \gamma^{-1}(g, a)) \mid a \in options\}

options \leftarrow options - \{a\}

\pi' \leftarrow \operatorname{Backward-search}(a.\pi, s_0, \gamma^{-1}(g, a), A)

if \pi' \neq \operatorname{failure} then \operatorname{return}(\pi')

\operatorname{return}(\operatorname{failure})

end
```

Dana Nau: Lecture slides for Automated Planning

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ License: http://creativecommons.org/licenses/by-nc-sa/2.0/$

An Admissible Heuristic

$$\Delta_1(s,p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\ \min_a \{1 + \Delta_1(s, \operatorname{precond}^+(a)) | p \in \text{effects}^+(a) \}, & \text{otherwise} \end{cases}$$

$$\Delta_1(s,g) = egin{cases} 0, & ext{if } g \subseteq s \ max_{p \in g}\{\Delta_1(s,p)\}, & ext{otherwise} \end{cases}$$

- $\Delta_1(s,s')$ = what we get if we pretend that
 - Negative preconditions and effects don't exist
 - \diamond The cost of achieving a set of preconditions $\{p_1, \ldots, p_n\}$ is the max of the costs of achieving each p_i separately
- This heuristic is admissible; thus it could be used with A*
 - It is not very informed

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/

A More Informed Heuristic

- Δ_2 : instead of computing the minimum distance to each p in g, compute the minimum distance to each pair $\{p, q\}$ in g:
 - Analogy to GraphPlan's mutex conditions

$$\Delta_2(s,p) = \begin{cases} 0, & \text{if } p \in s \\ \infty, & \text{if } p \notin s \text{ and } \forall a \in A, p \notin \text{effects}^+(a) \\ \min_a \{1 + \Delta_2(s, \operatorname{precond}^+(a)) | p \in \operatorname{effects}^+(a) \}, & \text{otherwise} \end{cases}$$

$$\Delta_2(s,\{p,q\}) = \min \left\{ \begin{aligned} &\min_a \{1 + \Delta_2(s,\mathsf{precond}^+(a)) | \{p,q\} \subseteq \mathsf{effects}^+(a)\} \\ &\min_a \{1 + \Delta_2(s,\{q\} \cup \mathsf{precond}^+(a)) | p \in \mathsf{effects}^+(a)\} \\ &\min_a \{1 + \Delta_2(s,\{p\} \cup \mathsf{precond}^+(a)) | q \in \mathsf{effects}^+(a)\} \end{aligned} \right\}$$

$$\Delta_2(s,g) = egin{cases} 0, & ext{if } g \subseteq s \ max_{p \in g}\{\Delta_2(s,p) | \{p,q\} \subseteq g\}, & ext{otherwise} \end{cases}$$

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

More Generally, ...

Recall that $\Delta^*(s,g)$ is the true minimal distance from a state s to a goal g. Δ^* can be computed (albeit at great computational cost) according to the following equations:

$$\Delta^*(s,g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \infty, & \text{if } \forall a \in A, a \text{ is not relevant for } g, \text{ and } \\ \min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) | \text{arelevant for } g\}, & \text{otherwise} \end{cases}$$

- ullet From this, can define $\Delta_k(s,g)=\max$ distance to each k-tuple $\{p_1,p_2,\ldots,p_k\}$ in g
 - Analogy to k-ary mutex conditions

$$\Delta_k(s,g) = \begin{cases} 0, & \text{if } g \subseteq s, \\ \infty, & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\ \min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) | \text{arelevant for } g\} & \text{if } |g| \leq k, \\ \max_{g'} \{\Delta_k(s, g') | g' \subseteq g \text{ and } |g'| = k\}, & \text{otherwise} \end{cases}$$

Dana Nau: Lecture slides for Automated Planning

 $Licensed\ under\ the\ Creative\ Commons. Attribution-NonCommercial-Share Alike\ License: http://creativecommons.org/licenses/by-nc-sa/2.0/$

Summary

domain-independent planning

• Efficient search based on a heuristic function can be applied to

- By relaxation, a (possible non-admissible) heuristic can be estimated
- Calculation of the heuristics Δ is based on a polynomial time algorithm (dynamic programming, using memoization)
- More informed heuristics are more expensive to calculate