
Intelligent Agents
Heuristic Search Planning

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

last change: June 15, 2015

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 1 / 16

Motivation

Heuristic Search and Domain-Independent Planning

Heuristics can reduce search effort dramatically because estimates
about success/costs of partial solution paths can restrict (bound)
search

Typically, heuristic functions are pre-defined by a human expert

In domain-independent planning, search is independent of domain
knowledge, that is, knowledge about the distance of a state to the
goal is not available to guide search

How can heuristics be generated automatically for
domain-independent planning?

Hector Geffner proposed a method to estimate a heuristics and
thereby made efficient search techniques which exploit heuristics
available to planning (1998 planning competition, HSP) see Bonet, B., &

Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, /129/(1), 5-33.

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 2 / 16

Outline

Outline

Recapitulation

Planning as search
Node selection heuristics and A*

Heuristic functions for planning

Problem relaxation

Hector Geffner’s HSP planning approach

Informedness and Admissibility

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 3 / 16

Planning as Search

Planning as Non-deterministic Search

Abstract-search(u)
if Terminal(u) then return (u)
u ← Refine (u) ;; refinement step
B ← Branch (u) ;; branching step
B ′ ← Prune (B) ;; pruning step
if B ′ = ∅ then return (failure)

non-deterministically choose v ∈ B ′

return (Abstract-search(v))

end

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 4 / 16

Planning as Search

Making it Deterministic

Depth-first-search(u)

if Terminal(u) then return (u)
u ← Refine (u) ;; refinement step
B ← Branch (u) ;; branching step
C ← Prune (B) ;; pruning step
while C 6= ∅ do

v ← Select(C) ;; node-selection step

C ← C − {v}
π ← Depth-first-search(v)
if π 6= failure then return (π)

return (failure)

end

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 5 / 16

Node-selection heuristics and A*

Node-Selection Heuristic

Suppose were searching a tree in which each edge (s,s’) has a cost c(s,s’)

� If p is a path, let c(p) = sum of the edge costs
� For classical planning, this is the length of p

For every state s, let

� g(s) = cost of the path from s0 to s
� h∗(s) = least cost of all paths from s to goal nodes
� f ∗(s) = g(s) + h∗(s) = least cost of all paths

from s0 to goal nodes that go through s

Suppose h(s) is an estimate of h∗(s)

� Let f (s) = g(s) + h(s)

B f (s) is an estimate of f ∗(s)

� h is admissible if for every state s, 0 ≤ h(s) ≤ h∗(s)
� If h is admissible then f is a lower bound on f ∗

Be aware of the notation difference: here h∗ is the known optimal least
costs from a node n to the goal and h is the estimate
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 6 / 16

Node-selection heuristics and A*

The A∗ Algorithm

A∗ on trees:

loop

choose the leaf node s such that f(s) is
smallest if s is a solution then return it
and exit expand it (generate its children)

On graphs, A∗ is more complicated

� additional machinery to deal
with multiple paths to the same node

If a solution exists (and certain other
conditions are satisfied), then:

� If h(s) is admissible, then A∗ is guaranteed to find an optimal solution
� The more ”informed” the heuristic is (i.e., the closer it is to h∗), the smaller the

number of nodes A∗ expands
� If h(s) is within c of being admissible, then A∗ is guaranteed to find a solution

that’s within c of optimal

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 7 / 16

Heuristic functions for planning

Heuristic Functions for Planning

∆∗(s, p): minimum distance from state s to a state that contains p

∆∗(s, s ′): minimum distance from state s to a state that contains all
of the literals in s ′

� Hence h∗(s) = ∆∗(s, g) is the minimum distance from s to the goal

For i = 0, 1, 2, · · · we will define the following functions:

� ∆i (s, p): an estimate of ∆∗(s, p)
� ∆i (s, s ′): an estimate of ∆∗(s, s ′)
� hi (s) = ∆i (s, g), where g is the goal

Estimating the heuristics is based on relaxation of the problem

Ignoring negative preconditions and effects allows for very fast
progression from initial state to goals

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 8 / 16

Heuristic functions for planning

Heuristic Functions for Planning

∆0(s, s ′) = what we get if we pretend that

� Negative preconditions and effects don’t exist
� The cost of achieving a set of preconditions {p1, · · · , pn} is the sum of

the costs of achieving each pi separately

∆0(s, p) =


0, if p ∈ s

∞, if p /∈ s and ∀a ∈ A, p /∈ effects+(a)

mina{1 + ∆0(s, precond+(a))|p ∈ effects+(a)}, otherwise

∆0(s, g) =

{
0, if g ⊆ s∑

p∈g ∆0(s, p), otherwise

∆0(s, s ′) is not admissible, but we don’t necessarily care

Usually we’ll want to do a depth-first search, not an A∗ search

� This already sacrifices admissibility (because DFS does not guarantee
optimal solutions)

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 9 / 16

Heuristic functions for planning

Computing ∆0

Delta(s)

foreach p do
if p ∈ s then

∆0(s, p)← 0
else

∆0(s, p)←∞
end

end
U ← s;

repeat
A← {a|precond(a) ⊂ U};
foreach a ∈ A do

U ← U ∪ effects+(a);

foreach p ∈ effects+(a) do
∆0(s, p)← min{∆0(s, p), 1 +

∑
q∈precond(a) ∆0(s, q)};

end

end

until no change occurs in the above updates;

Slightly modified from Dana Nau

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 10 / 16

Using heuristics in forwards and backwards search

Heuristic Forward Search

Heuristic-forward-search(π, s, g ,A)

if s satisfies g then return π
options ← {a ∈ A | a applicable to s}
for each a ∈ options do ∆0(γ(s, a))
while options 6= ∅ do

a← argmin{∆0(γ(s, a), g) | a ∈ options}
options ← options − {a}
π′ ← Heuristic-forward-search(π.a, γ(s, a), g ,A)
if π′ 6= failure then return(π′)

return(failure)

end

This is depth-first search, so admissibility is irrelevant

This is roughly how the HSP planner works
� First successful use of an A∗-style heuristic in classical planning

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 11 / 16

Using heuristics in forwards and backwards search

Heuristic Backward Search

HSP can also search backward

Backward-search(π, s0, g ,A)

if s0 satisfies g then return π
options ← {a ∈ A | a relevant for g}
while options 6= ∅ do

a← argmin{∆0(s0, γ
−1(g , a)) | a ∈ options}

options ← options − {a}
π′ ← Backward-search(a.π, s0, γ

−1(g , a),A)
if π′ 6= failure then return(π′)

return(failure)

end

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 12 / 16

Admissible heuristics

An Admissible Heuristic

∆1(s, p) =


0, if p ∈ s

∞, if p /∈ s and ∀a ∈ A, p /∈ effects+(a)

mina{1 + ∆1(s, precond+(a))|p ∈ effects+(a)}, otherwise

∆1(s, g) =

{
0, if g ⊆ s

maxp∈g{∆1(s, p)}, otherwise

∆1(s, s ′) = what we get if we pretend that

� Negative preconditions and effects don’t exist
� The cost of achieving a set of preconditions {p1, . . . , pn} is the max of

the costs of achieving each pi separately

This heuristic is admissible; thus it could be used with A∗

� It is not very informed

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 13 / 16

Admissible heuristics

A More Informed Heuristic

∆2: instead of computing the minimum distance to each p in g ,
compute the minimum distance to each pair {p, q} in g :
� Analogy to GraphPlan’s mutex conditions

∆2(s, p) =


0, if p ∈ s

∞, if p /∈ s and ∀a ∈ A, p /∈ effects+(a)

mina{1 + ∆2(s, precond+(a))|p ∈ effects+(a)}, otherwise

∆2(s, {p, q}) = min


mina{1 + ∆2(s,precond+(a))|{p, q} ⊆effects+(a)}
mina{1 + ∆2(s, {q}∪precond+(a))|p ∈effects+(a)}
mina{1 + ∆2(s, {p}∪precond+(a))|q ∈effects+(a)}


∆2(s, g) =

{
0, if g ⊆ s

maxp∈g{∆2(s, p)|{p, q} ⊆ g}, otherwise

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 14 / 16

Admissible heuristics

More Generally, ...

Recall that ∆∗(s, g) is the true minimal distance from a state s to a goal g . ∆∗ can be
computed (albeit at great computational cost) according to the following equations:

∆∗(s, g) =


0, if g ⊆ s,

∞, if ∀a ∈ A, a is not relevant for g , and

mina{1 + ∆∗(s, γ−1(g , a))|arelevant for g}, otherwise

From this, can define ∆k (s, g) = max distance to each k-tuple {p1, p2, . . . , pk} in g

� Analogy to k-ary mutex conditions

∆k (s, g) =


0, if g ⊆ s,

∞, if ∀a ∈ A, a is not relevant for g ,

mina{1 + ∆∗(s, γ−1(g , a))|arelevant for g} if |g | ≤ k,

maxg ′{∆k (s, g ′)|g ′ ⊆ g and |g ′| = k}, otherwise

Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 15 / 16

Admissible heuristics

Summary

Efficient search based on a heuristic function can be applied to
domain-independent planning

By relaxation, a (possible non-admissible) heuristic can be estimated

Calculation of the heuristics ∆ is based on a polynomial time
algorithm (dynamic programming, using memoization)

More informed heuristics are more expensive to calculate

U. Schmid (CogSys) Intelligent Agents last change: June 15, 2015 16 / 16

	Motivation
	Outline
	Planning as Search
	Node-selection heuristics and A*
	Heuristic functions for planning
	Using heuristics in forwards and backwards search
	Admissible heuristics

