Motivation

- A big source of inefficiency in search algorithms is the *branching factor*
 - the number of children of each node
- E.g., a backward search may try lots of actions that can’t be reached from the initial state

Similarly, a forward search may generate lots of actions that do not reach to the goal
One way to reduce branching factor

- First create a relaxed problem
 - Remove some restrictions of the original problem
 - Want the relaxed problem to be easy to solve (polynomial time)
 - The solutions to the relaxed problem will include all solutions to the original problem

- Then do a modified version of the original search
 - Restrict its search space to include only those actions that occur in solutions to the relaxed problem
Outline

- The Graphplan algorithm
- Planning graphs
 - example
- Mutual exclusion
 - example (continued)
- Doing solution extraction
 - example (continued)
- Discussion
- Extract heuristic values from planning graph
- FF-plan
The Graphplan algorithm

Graphplan

procedure Graphplan:

- for $k = 0, 1, 2, \ldots$

 - *Graph expansion:*
 - create a "planning graph" that contains k "levels"
 - Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence

 - If it does, then
 - *do solution extraction:*
 - backward search, modified to consider only the actions in the planning graph
 - if we find a solution, then return it

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
The Planning Graph

- Search space for a relaxed version of the planning problem
- Alternating layers of ground literals and actions
 - Nodes at action-level i: actions that might be possible to execute at time i
 - Nodes at state-level i: literals that might possibly be true at time i
 - Edges: preconditions and effects
Due to Dan Weld (U. of Washington)

Suppose you want to prepare dinner as a surprise for your sweetheart (who is asleep)

\[s_0 = \{ \text{garbage, cleanHands, quiet} \} \]
\[g = \{ \text{dinner, present, } \neg \text{garbage} \} \]

<table>
<thead>
<tr>
<th>Action</th>
<th>Preconditions</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>cook()</td>
<td>cleanHands</td>
<td>dinner</td>
</tr>
<tr>
<td>wrap()</td>
<td>quiet</td>
<td>present</td>
</tr>
<tr>
<td>carry()</td>
<td>none</td>
<td>\neg \text{garbage}, \neg \text{cleanHands}</td>
</tr>
<tr>
<td>dolly()</td>
<td>none</td>
<td>\neg \text{garbage}, \neg \text{quiet}</td>
</tr>
</tbody>
</table>

Also have the maintenance action: one for each literal
Example (continued)

- **state-level 0:**
 \[\{ \text{all atoms in } s_0 \} \cup \{ \neg \text{negations of all atoms not in } s_0 \} \]

- **action-level 1:**
 \[\{ \text{all actions whose preconditions are satisfied and non-mutex in } s_0 \} \]

- **state-level 1:**
 \[\{ \text{all effects of all of the actions in action-level 1} \} \]

<table>
<thead>
<tr>
<th>Action</th>
<th>Preconditions</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>cook()</td>
<td>cleanHands</td>
<td>dinner</td>
</tr>
<tr>
<td>wrap()</td>
<td>quiet</td>
<td>present</td>
</tr>
<tr>
<td>carry()</td>
<td>none</td>
<td>(\neg)garbage, (\neg)cleanHands</td>
</tr>
<tr>
<td>dolly()</td>
<td>none</td>
<td>(\neg)garbage, (\neg)quiet</td>
</tr>
</tbody>
</table>

Also have the maintenance action

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Mutual Exclusion

Two actions at the same action-level are mutex if
- *Inconsistent effects*: an effect of one negates an effect of the other
- *Interference*: one deletes a precondition of the other
- *Competing needs*: they have mutually exclusive preconditions

Otherwise, they don't interfere with each other.
- Both may appear in a solution plan.

Two literals at the same state-level are mutex if
- *Inconsistent support*: one is the negation of the other, or all ways of achieving them are pairwise mutex.

Dana Nau: Lecture slides for *Automated Planning*
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Augment the graph to indicate mutexes

carry is mutex with the maintenance action for garbage (inconsistent effects)

dolly is mutex with wrap interference

∼quiet is mutex with present inconsistent support
each of cook and wrap is mutex with a maintenance operation

<table>
<thead>
<tr>
<th>Action</th>
<th>Preconditions</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>cook()</td>
<td>cleanHands</td>
<td>dinner</td>
</tr>
<tr>
<td>wrap()</td>
<td>quiet</td>
<td>present</td>
</tr>
<tr>
<td>carry()</td>
<td>none</td>
<td>¬garbage, ¬cleanHands</td>
</tr>
<tr>
<td>dolly()</td>
<td>none</td>
<td>¬garbage, ¬quiet</td>
</tr>
</tbody>
</table>

Also have the maintenance action

Dana Nau: Lecture slides for Automated Planning with contributions by Michael Siebers and Christian Reißner
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
Mutual exclusion

Example

Example (continued)

- Check to see whether there’s a possible solution
- Recall that the goal is
 - \(\{ \neg \text{garbage}, \text{dinner}, \text{present} \} \)
- Note that in state-level 1,
 - All of them are there
 - None are mutex with each other
- Thus, there’s a chance that a plan exists
- Try to find it
 - Solution extraction
Recall what the algorithm does

procedure Graphplan:
 for $k = 0, 1, 2, \ldots$
 \begin{itemize}
 \item Graph expansion:
 \begin{itemize}
 \item create a "planning graph" that contains k "levels"
 \end{itemize}
 \item Check whether the planning graph satisfies a necessary
 (but insufficient) condition for plan existence
 \item If it does, then
 \begin{itemize}
 \item do solution extraction:
 \begin{itemize}
 \item backward search, modified to consider only the actions in
 the planning graph
 \item if we find a solution, then return it
 \end{itemize}
 \end{itemize}
 \end{itemize}
Solution Extraction

procedure Solution-extraction\((g, i)\)

if \(i=0\) then return the solution

for each literal \(l\) in \(g\)

non-deterministically choose an action to use in state \(s_{i-1}\) to achieve \(l\)

if any pair of chosen actions are mutex

then backtrack

\(g' := \{\text{the preconditions of the chosen actions}\}\)

Solution-extraction\((g', i-1)\)

end Solution-extraction
Example (continued)

- Two sets of actions for the goals at state-level 1
- Neither of them works
 - Both sets contain actions that are mutex
Recall what the algorithm does

procedure Graphplan:

- for $k = 0, 1, 2, \ldots$ \Rightarrow create next level
 - Graph expansion:
 - create a "planning graph" that contains k "levels"
 - Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence
 - If it does, then
 - do solution extraction: \Rightarrow no solution found
 - backward search, modified to consider only the actions in the planning graph
 - if we find a solution, then return it
Example (continued)

- Go back and do more graph expansion
- Generate another action-level and another state-level

Dana Nau: Lecture slides for *Automated Planning* with contributions by Michael Siebers and Christian Reißner
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Solution extraction

Twelve combinations at level 4

- Three ways to achieve $\neg\text{garb}$
- Two ways to achieve dinner
- Two ways to achieve present

Dana Nau: Lecture slides for Automated Planning with contributions by Michael Siebers and Christian Reißner
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Several of the combinations look OK at level 2

Here’s one of them
Example (continued)

- Call Solution-Extraction recursively at level 2
- It succeeds
- Solution whose parallel length is 2

Dana Nau: Lecture slides for *Automated Planning* with contributions by Michael Siebers and Christian Reißner
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Properties of GraphPlan

- GraphPlan is sound and complete
 - If Graphplan returns a plan, then that plan is a solution to the planning problem
 - If there are solutions to the planning problem, then GraphPlan returns one of them

- The size of the planning graph GraphPlan generates is polynomial in the size of the planning problems

- The planning algorithm always terminates
 - There is a fix-point on the number of levels of the planning graphs such that the algorithm either generates a solution or returns failure

- GraphPlan is a **partial order** planner
 - Actions located at the same level which are not mutex are given as ”simultaneously”
 - A total order plan can be generated by constructing an arbitrary sequence from the parallel actions
History

- **GraphPlan** was the first planner that used planning-graph techniques.

- Before GraphPlan came out, most planning researchers were working on PSP-like planners (POP, SNLP, UCPOP, etc.).

- The size of the planning graph GraphPlan generates is polynomial in the size of the planning problems.

- GraphPlan caused a sensation because it was so much faster.

- Many subsequent planning systems have used ideas from it:
 - IPP, STAN, GraphHTN, SGP, Blackbox, Medic, TGP, LPG
 - Many of them are much faster than the original Graphplan.
Comparison with Plan-Space Planning

- **Advantage:**
 - The backward-search part of Graphplan - which is the hard part - will only look at the actions in the planning graph smaller search space than PSP; thus faster

- **Disadvantage:**
 - To generate the planning graph, Graphplan creates a huge number of ground atoms
 - Many of them may be irrelevant

- Can alleviate (but not eliminate) this problem by assigning data types to the variables and constants
 - Only instantiate variables to terms of the same data type

- For classical planning, the advantage outweighs the disadvantage
 - GraphPlan solves classical planning problems much faster than PSP
Getting Heuristic Values from a Planning Graph

- Planning graphs can be used to get heuristic values for heuristic search planning.
- Recall how GraphPlan works:

 Graph expansion: this takes polynomial time

 extend a ”planning graph” forward from the initial state until we have achieved a necessary (but insufficient) condition for plan existence

 Solution extraction: this takes exponential time

 search backward from the goal, looking for a correct plan if we find one, then return it

repeat
Using Planning Graphs to Compute h(s)

- In the graph, there are alternating layers of ground literals and actions.
- The number of "action" layers is a lower bound on the number of actions in the plan.
- Construct a planning graph, starting at \(s \).
- \(\Delta^g(s, p) = \) level of the first layer that "possibly achieves" \(p \).
- \(\Delta^g(s, g) \) is very close to \(\Delta_2(s, g) \):
 - \(\Delta_2(s, g) \) counts each action individually.
 - \(\Delta^g(s, g) \) groups together the independent actions in a layer.

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
The FastForward Planner

- Use a heuristic function similar to \(h(s) = \Delta^g(s, g) \)
 - Some ways to improve it (I’ll skip the details)
- Don’t want an A*-style search (takes too much memory)
- Instead, use a greedy procedure:

 until we have a solution, do

 expand the current state \(s \)

 \(s := \) the child of \(s \) for which \(h(s) \) is smallest

 (i.e., the child we think is closest to a solution)

- There are some ways to improve this (I’ll skip the details)
- Can’t guarantee how fast it will find a solution, or how good a solution it will find
 - However, it works pretty well on many problems

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
FastForward did quite well

In the this competition, all of the planning problems were classical problems

Two tracks:
- "Fully automated" and "hand-tailored" planners
- FastForward participated in the fully automated track
 - It got one of the two "outstanding performance" awards
- Large variance in how close its plans were to optimal
 - However, it found them very fast compared with the other fully-automated planners
Among the automated planners, *FastForward* was roughly in the middle. LPG (graphplan + local search) did much better, and got a ”distinguished performance of the first order” award.

It’s interesting to see how *FastForward* did in problems that went beyond classical planning:

- Numbers, optimization

Example: Satellite domain, numeric version

- A domain inspired by the Hubble space telescope (a lot simpler than the real domain, of course)
 - A satellite needs to take observations of stars
 - Gather as much data as possible before running out of fuel
- Any amount of data gathered is a solution
 - Thus, *FastForward* always returned the null plan

Dana Nau: Lecture slides for *Automated Planning*
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
2004 International Planning Competition

- *FastForward’s* author was one of the competition chairs
 - Thus FastForward did not participate
Summary

- Graphplan is an efficient algorithm for domain-independent planning
- Graphplan works in two steps: Graph expansion and solution extraction
- Introducing mutex relations helps to restrict search by eliminating not admissible combinations of literals
- Graphplan is a partial order planner: actions which are independent can be in parallel, a total order plan can be generated from the partial-order solution
- The introduction of Graphplan in 1997 was a break-through in planning research: A. Blum and M. Furst (1997). Fast Planning Through Planning Graph Analysis.
- Graphplan was inspired by dynamic programming algorithms, especially dealing with network flow problems
- Graphplan was followed by many new algorithms which either built on Graphplan or proposed applications of other efficient algorithms to planning (e.g., SAT-Planning)