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Motivation

Today: The Planner
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Motivation

Computing A Sequence of Actions

Previous lecture: How to transform a state into a successor state
by applying an action (γ(s,a) = s′)
Today: Compute a plan – a sequence of action applications to
transform an initial state into a state fulfilling all objectives (goals)
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Motivation

Motivation

Nearly all planning procedures are search procedures
Different planning procedures have different search spaces

Two examples:

⇒ State-space planning
Each node represents a state of the world

A plan is a path through the space

⇒ Plan-space planning
Each node is a set of partially-instantiated operators, plus some
constraints

Impose more and more constraints, until we get a plan

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
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Motivation

Motivation

State-Space-Planning

Plan-Space-Planning
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Outlook

Outlook

Forward Search
Backward Search

Inverse State Transition
Lifting

Soundness, Completeness, Efficiency
Strips
Incompleteness of Linear Planning

Sussman Anomaly

Domain Specific Knowledge
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Forward Search

Forward-Search

Algorithm 1 Forward-search(O, s0,g)
s ← s0
π ← the empty plan
loop

if s satisfies g then return π
E ← {a|a is a ground instance of an operator in O, and precond(a) is true in s}
if E = ∅ then return failure
non-deterministically choose any action a ∈ E
s ← γ(s, a)
π ← π.a

end loop

Dana Nau: Lecture slides for Automated Planning
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Forward Search

Properties

Forward-search is sound
for any plan returned by any of its non-deterministic traces, this plan
is guaranteed to be a solution

Forward-search also is complete
if a solution exists then at least one of Forward-search’s
non-deterministic traces will return a solution.

Remarks on non-determinism:
In Algorithm 1 and further algorithms, no strategy for selecting an
action is fixed.
Non-deterministic selection as an abstract concept guarantees that
the “right” actions can be selected and in consequence that a plan
can be found if one exists.
In practice, a deterministic action selection strategy has to be
implemented. This strategy might be incomplete.

Dana Nau: Lecture slides for Automated Planning
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Forward Search

Deterministic Implementations

Some deterministic implementations
of forward search:

breadth-first search
depth-first search
best-first search (e.g., A*)
greedy search

Breadth-first and best-first search are sound and complete
But they usually aren’t practical because they require too much
memory
Memory requirement is exponential in the length of the solution

In practice, more likely to use depth-first search or greedy search
Worst-case memory requirement is linear in the length of the
solution
In general, sound but not complete
⇒ But classical planning has only finitely many states
⇒ Thus, can make depth-first search complete by doing loop-checking

Dana Nau: Lecture slides for Automated Planning
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Forward Search

Branching Factor of Forward Search

Forward search can have a very large branching factor
E.g., many applicable actions that don’t progress toward goal

Why this is bad:
Deterministic implementations can waste time trying lots of
irrelevant actions

Need a good heuristic function and/or pruning procedure
See section 4.5 (Domain-Specific State-Space Planning)
in Ghallab, Malik, Dana Nau, and Paolo Traverso. Automated planning: theory & practice. Elsevier, 2004.

and lecture on Heuristic Search Planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
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Backward Search

Backward Search

For forward search, we started at the initial state and computed
state transitions

new state = γ(s,a)
For backward search, we start at the goal and compute inverse
state transitions

new set of sub-goals = γ−1(g,a)

To define γ−1(g,a), must first define relevance:
An action a is relevant for a goal g if
⇒ a makes at least one of g’s literals true

 g ∩ effects(a) 6= ∅
⇒ a does not make any of g’s literals false

 g+ ∩ effects−(a) 6= ∅ and g− ∩ effects+(a) = ∅

Dana Nau: Lecture slides for Automated Planning
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Backward Search Inverse State Transition

Inverse State Transitions

If a is relevant for g, then
γ−1(g,a) = (g − effects(a)) ∪ precond(a)

Otherwise γ−1(g,a) is undefined

Example: suppose that
g = {on(b1,b2), on(b2,b3)}
a = stack(b1,b2)

What is γ−1(g,a)?

Dana Nau: Lecture slides for Automated Planning
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Backward Search Inverse State Transition

Backward-Search

Algorithm 2 Backward-search(O, s0,g)
π ← the empty plan
loop

if s0 satisfies g then return π
A← {a|a is a ground instance of an operator in O and γ−1(g, a) is defined}
if A = ∅ then return failure
non-deterministically choose any action a ∈ A
π ← a.π
g ← γ−1(g, a)

end loop

Dana Nau: Lecture slides for Automated Planning
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Backward Search Inverse State Transition

Efficiency of Backward Search

Backward search can also have a very large branching factor
E.g., an operator o that is relevant for g may have many ground
instances a1,a2, . . . ,an such that each ai ’s input state might be
unreachable from the initial state

As before, deterministic implementations can waste lots of time
trying all of them

Dana Nau: Lecture slides for Automated Planning
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Backward Planning

Remarks on Backward Planning

Forward search also called progression planning
Backwards search also called regression planning
Problem with backwards planning:
inconsistent states can be produced (see blocksworld example)
Compare Graphplan strategy:
build a Planning Graph by forwards search (polynomial effort) and
extract the plan from the graph backwards (exponential effort, as
usual for planning)
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Backward Planning

Backward Planning cont.

Axiom: ∀x , y on(x , y)→ ¬clear(y)
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Backward Planning Lifting

Lifting

Can reduce the branching factor of backward search if we partially
instantiate the operators

this is called lifting

Dana Nau: Lecture slides for Automated Planning
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Backward Planning Lifting

Lifted Backward Search

More complicated than Backward-search
Have to keep track of what substitutions were performed

But it has a much smaller branching factor
mgu = most general unifier (see later), e.g. for foo(x , y),
substitution θ = {x ← a1} results in equality between all effects of
foo(a1, y) and goal q(a1)

Algorithm 3 Lifted-backward-search(O, s0,g)
π ← the empty plan
loop

if s0 satisfies g then return π
A← {(o, θ)|o is a standardization of an operator in O,

θ is an mgu for an atom of g and an atom of effects+(o),
and γ−1(θ(g), θ(o)) is defined }

if A = ∅ then return failure
non-deterministically choose a pair (o, θ) ∈ A
π ← the concatenation of θ(o) and θ(π)
g ← γ−1θ(g), θ(o))

end loop
Dana Nau: Lecture slides for Automated Planning

Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License:http://creativecommons.org/licenses/by-nc-sa/2.0/
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Backward Planning Lifting

The Search Space is Still Too Large

Lifted-backward-search generates a smaller search space than
Backward-search, but it still can be quite large

Suppose actions a, b, and c are independent, action d must
precede all of them, and there’s no path from s0 to d ’s input state
We’ll try all possible orderings of a, b, and c before realizing there is
no solution
More about this in Chapter 5 (Plan-Space Planning)
in Ghallab, Malik, Dana Nau, and Paolo Traverso. Automated planning: theory & practice. Elsevier, 2004.

Dana Nau: Lecture slides for Automated Planning
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Strips

STRIPS

π ← the empty plan
do a modified backward search from g

instead of γ−1(s,a), each new set of sub-goals is just precond(a)
whenever you find an action that’s executable in the current state,
then go forward on the current search path as far as possible,
executing actions and appending them to π
repeat until all goals are satisfied

Dana Nau: Lecture slides for Automated Planning
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Strips

STRIPS

by Fikes & Nilsson (1971),
“Stanford Research Institute Problem Solver”
classical example:
moving boxes between rooms (“Strips World”)
Originally:
representation formalism (relying on CWA) and planning algorithm
today:
“STRIPS planning” refers to classical representation without
extensions and not to a specific algorithm
STRIPS algorithm:
a linear (and therefore incomplete) approach
compare to:
General Problem Solver (GPS), a cognitively motivated problem
solving algorithm which is also linear and therefore incomplete
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Strips

STRIPS Algorithm

Backward-search with a kind of hill climbing strategy
In each recursive call only such sub-goals are relevant which are
preconditions of the last operator added
Consequence:
considerable reduction of branching, but resulting in
incompleteness
Linear planning:
organizing sub-goals in a stack
Non-linear planning:
organizing sub-goals in a set, interleaving of goals
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Strips

STRIPS Algorithm

Algorithm 4 STRIPS (O, s, g)
π ← empty plan
loop

if s satisfies g then
return π

end if
A← {a|a is a ground instance of an operator in O, and a is relevant for g}
if A = ∅ then

return failure
end if
non-deterministically choose any action a ∈ A
π′ ← STRIPS(O, s, precond(a))
if π′ = failure then

return failure ;;if we get here, then π′ achieves precond(a) from s
end if
s ← γ(s, π′) ;;s now satisfies precond(a)
s ← γ(s, a)
π ← π.π′.a

end loop
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Incompleteness of Linear Planning Sussman Anomaly

Incompleteness of Linear Planning

The Sussman Anomaly
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Incompleteness of Linear Planning Sussman Anomaly

Sussman Anomaly

Linear planning corresponds to dealing with goals organized in a stack:

[on(A, B), on(B, C)]

try to satisfy goal on(A, B)
solve sub-goals [clear(A), clear(B)] 1

all sub-goals hold after puttable(C)
apply put(A, B)

goal on(A, B) is reached
try to satisfy goal on(B, C).

1We ignore the additional subgoal ontable(A) rsp. on(A, z) here.
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Incompleteness of Linear Planning Sussman Anomaly

Interleaving of Goals

Non-linear planning allows that a sequence of planning steps
dealing with one goal is interrupted to deal with another goal.
For the Sussman Anomaly, that means that after block C is put on
the table pursuing goal on(A, B), the planner switches to the goal
on(B, C).
Non-linear planning corresponds to dealing with goals organized
in a set.
The correct sequence of goals might not be found immediately
without backtracking.
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Incompleteness of Linear Planning Sussman Anomaly

Interleaving of Goals cont.

{on(A, B), on(B, C)}

try to satisfy goal on(A, B)
{clear(A), clear(B), on(A, B), on(B, C)}
clear(A) and clear(B) hold after puttable(C)

try to satisfy goal on(B, C)
apply put(B, C)

try to satisfy goal on(A, B)
apply put(A, B).
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Incompleteness of Linear Planning Sussman Anomaly

Rocket Domain

(Veloso)

Objects:
n boxes, Positions (Earth, Moon), one Rocket
Operators:
load/unload a box, move the Rocket
(oneway: only from earth to moon, no way back!)
Linear planning:
to reach the goal, that Box1 is on the Moon, load it, shoot the
Rocket, unload it, now no other Box can be transported!

U. Schmid (CogSys) Intelligent Agents last change: 15. Juni 2015 28 / 40



Incompleteness of Linear Planning Sussman Anomaly

The Register Assignment Problem

State-variable formulation:

Initial state:

Goal:

Operator:

{value(r1)=3, value(r2)=5, value(r3)=0}

{value(r1)=5, value(r2)=3}

assign(r,v,r’,v’)
precond: value(r )=v, value(r’)=v’
effects: value(r )=v’

STRIPS cannot solve this problem at all

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Use of Domain Specific Knowledge

The Sussman Anomaly can also be handled by the usage of
domain-specific knowledge
By Ghallab, Malik, Dana Nau, and Paolo Traverso. Automated planning: theory & practice. Elsevier, 2004.

Example: block stacking using forward search
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Domain Specific Knowledge

Quick Review of Blocks World

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

The Sussman Anomaly

Initial state goal

On this problem, STRIPS can’t produce an irredundant solution
Try it and see

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Domain-Specific Knowledge

A blocks-world planning problem P = (O, s0,g) is solvable if s0
and g satisfy some simple consistency conditions

g should not mention any blocks not mentioned in s0
a block cannot be on two other blocks at once
etc.
⇒ Can check these in time O(n log n)

If P is solvable, can easily construct a solution of length O(2m),
where m is the number of blocks

Move all blocks to the table, then build up stacks from the bottom
⇒ Can do this in time O(n)

With additional domain-specific knowledge can do even better . . .

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Additional Domain-Specific Knowledge

A block x needs to be moved if any of the following is true:
s contains ontable(x) and g contains on(x,y) - see a below
s contains on(x,y) and g contains ontable(x) - see d below
s contains on(x,y) and g contains on(x,z) for some y 6= z
⇒ see c below

s contains on(x,y) and y needs to be moved - see e below

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Domain-Specific Algorithm

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need to be moved

then move x to that place
else if there is a clear block x such that

x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Easily Solves the Sussman Anomaly

loop
if there is a clear block x such that

x needs to be moved and
x can be moved to a place where it won’t need to be moved

then move x to that place
else if there is a clear block x such that

x needs to be moved
then move x to the table

else if the goal is satisfied
then return the plan

else return failure
repeat

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Properties

The block-stacking algorithm:

Sound, complete, guaranteed to terminate

Runs in time O(n3)

⇒ Can be modified to run in time O(n)

Often finds optimal (shortest) solutions
But sometimes only near-optimal (Exercise 4.22 in the book)
⇒ PLAN LENGTH for the blocks world is NP- complete

Dana Nau: Lecture slides for Automated Planning
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Domain Specific Knowledge

Specific vs. General Approaches

In general, it is more useful to have a general purpose approach,
such as a domain-independent planner
However, if there is knowledge available for a domain, it should not
be ignored; but used to make the general approach more informed
and thereby ususally more efficient
One possibility to exploit knowledge in a more general way, is to
combine planning and machine learning

U. Schmid & E. Kitzelmann, Inductive Rule Learning on the Knowledge
Level, Cognitive Systems Research, 12(3), 237-248, 2011.

Applying the inductive programming system IGOR2 to learn Tower
building from solution examples.
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Domain Specific Knowledge

Learning A Solution Strategy for BlocksWorld

Tower (9 examples of towers with up to four blocks, 1.2 sec)
(10 corresponding examples for Clear and IsTower as BK)

Tower(O, S) = S if IsTower(O, S)
Tower(O, S) = put(O, Sub1(O, S),

Clear(O, Clear(Sub1(O, S),
Tower(Sub1(O, S), S)))) if not(IsTower(O, S))

Sub1(s(O), S) = O .
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Summary

Summary

Planning is search
Basic search techniques are forward (from initial state to a state
fulfilling the goals) and backward (from the goals to the initial
state)
For backward search an inverse state-transition operator has to be
defined
Algorithms need to be sound and complete, furthermore,
efficiency should be considered (branching factor during search!)
A classical planning algorithm is Strips
Strips is incomplete as demonstrated with the Sussman Anomaly
Incompleteness can be overcome by defining domain specific
algorithms
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