Intelligent Agents
State-Space Planning

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

last change: 15. Juni 2015
Today: The Planner

- Planning problem
- Description of \(\Sigma \)
- Initial state
- Objectives
- Execution status
- Planner
- Plans
- Controller
- Actions
- Observations
- System \(\Sigma \)
- Events

Omit unless planning is online
Computing A Sequence of Actions

- Previous lecture: How to transform a state into a successor state by applying an action \(\gamma(s, a) = s' \)
- Today: Compute a plan – a sequence of action applications to transform an initial state into a state fulfilling all objectives (goals)
Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
 - Two examples:
 - **State-space planning**
 - Each node represents a state of the world
 - A plan is a path through the space
 - **Plan-space planning**
 - Each node is a set of partially-instantiated operators, plus some constraints
 - Impose more and more constraints, until we get a plan
Motivation

State-Space-Planning

Plan-Space-Planning
Outlook

- Forward Search
- Backward Search
 - Inverse State Transition
 - Lifting
- Soundness, Completeness, Efficiency
- Strips
- Incompleteness of Linear Planning
 - Sussman Anomaly
- Domain Specific Knowledge
Algorithm 1 Forward-search(O, s_0, g)

\[
\begin{align*}
 s &\leftarrow s_0 \\
 \pi &\leftarrow \text{the empty plan} \\
 \text{loop} & \\
 \quad \text{if } s \text{ satisfies } g \text{ then return } \pi \\
 \quad E &\leftarrow \{ a | a \text{ is a ground instance of an operator in } O, \text{ and } \text{precond}(a) \text{ is true in } s \} \\
 \quad \text{if } E = \emptyset \text{ then return failure} \\
 \quad \text{non-deterministically choose any action } a \in E \\
 \quad s &\leftarrow \gamma(s, a) \\
 \quad \pi &\leftarrow \pi . a \\
 \text{end loop}
\end{align*}
\]
Properties

- **Forward-search is sound**
 - for any plan returned by any of its non-deterministic traces, this plan is guaranteed to be a solution

- **Forward-search also is complete**
 - if a solution exists then at least one of Forward-search’s non-deterministic traces will return a solution.

- **Remarks on non-determinism:**
 - In Algorithm 1 and further algorithms, no strategy for selecting an action is fixed.
 - Non-deterministic selection as an abstract concept guarantees that the “right” actions can be selected and in consequence that a plan can be found if one exists.
 - In practice, a deterministic action selection strategy has to be implemented. This strategy might be incomplete.
Some deterministic implementations of forward search:
- breadth-first search
- depth-first search
- best-first search (e.g., A*)
- greedy search

Breadth-first and best-first search are sound and complete
- But they usually aren’t practical because they require too much memory
- Memory requirement is exponential in the length of the solution

In practice, more likely to use depth-first search or greedy search
- Worst-case memory requirement is linear in the length of the solution
- In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking
Forward search can have a very large branching factor
- E.g., many applicable actions that don’t progress toward goal

Why this is bad:
- Deterministic implementations can waste time trying lots of irrelevant actions

Need a good heuristic function and/or pruning procedure
- and lecture on Heuristic Search Planning

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Backward Search

For forward search, we started at the initial state and computed state transitions
- new state \(= \gamma(s, a) \)

For backward search, we start at the goal and compute inverse state transitions
- new set of sub-goals \(= \gamma^{-1}(g, a) \)

To define \(\gamma^{-1}(g, a) \), must first define relevance:
- An action \(a \) is relevant for a goal \(g \) if
 \(\Rightarrow a \) makes at least one of \(g \)'s literals true
 \(\Leftarrow g \cap \text{effects}(a) \neq \emptyset \)
 \(\Rightarrow a \) does not make any of \(g \)'s literals false
 \(\Leftarrow g^+ \cap \text{effects}^- (a) \neq \emptyset \) and \(g^- \cap \text{effects}^+ (a) = \emptyset \)
Inverse State Transitions

- If a is relevant for g, then
 \[\gamma^{-1}(g, a) = (g - \text{effects}(a)) \cup \text{precond}(a) \]
- Otherwise $\gamma^{-1}(g, a)$ is undefined

- Example: suppose that
 \[
 g = \{\text{on(b1,b2), on(b2,b3)}\}
 \]
 \[
 a = \text{stack(b1,b2)}
 \]
- What is $\gamma^{-1}(g, a)$?
Algorithm 2 Backward-search\((O, s_0, g)\)

\[
\pi \leftarrow \text{the empty plan}
\]

\[
\text{loop}
\]

\[
\text{if } s_0 \text{ satisfies } g \text{ then return } \pi
\]

\[
A \leftarrow \{a | a \text{ is a ground instance of an operator in } O \text{ and } \gamma^{-1}(g, a) \text{ is defined}\}
\]

\[
\text{if } A = \emptyset \text{ then return failure}
\]

\[
\text{non-deterministically choose any action } a \in A
\]

\[
\pi \leftarrow a.\pi
\]

\[
g \leftarrow \gamma^{-1}(g, a)
\]

\[
\text{end loop}
\]
Efficiency of Backward Search

- Backward search can *also* have a very large branching factor
 - E.g., an operator o that is relevant for g may have many ground instances a_1, a_2, \ldots, a_n such that each a_i’s input state might be unreachable from the initial state

- As before, deterministic implementations can waste lots of time trying all of them
Remarks on Backward Planning

- Forward search also called *progression* planning
- Backwards search also called *regression* planning
- Problem with backwards planning: inconsistent states can be produced (see blocksworld example)
- Compare Graphplan strategy: build a Planning Graph by forwards search (polynomial effort) and extract the plan from the graph backwards (exponential effort, as usual for planning)
Axiom: $\forall x, y \ on(x, y) \rightarrow \neg clear(y)$
Lifting

Can reduce the branching factor of backward search if we partially instantiate the operators

- this is called *lifting*
Lifted Backward Search

- More complicated than Backward-search
 - Have to keep track of what substitutions were performed
- But it has a much smaller branching factor
- $\text{mgu} =$ most general unifier (see later), e.g. for $\text{foo}(x, y)$,
 substitution $\theta = \{x \leftarrow a_1\}$ results in equality between all effects of
 $\text{foo}(a_1, y)$ and goal $q(a_1)$

Algorithm 3 Lifted-backward-search(O, s_0, g)

\[
\begin{align*}
\pi & \leftarrow \text{the empty plan} \\
\text{loop} & \\
& \text{if } s_0 \text{ satisfies } g \text{ then return } \pi \\
& A \leftarrow \{(o, \theta) | o \text{ is a standardization of an operator in } O, \\
& \quad \theta \text{ is an mgu for an atom of } g \text{ and an atom of } \text{effects}^+(o), \\
& \quad \text{and } \gamma^{-1}(\theta(g), \theta(o)) \text{ is defined } \}
\end{align*}
\]

- if $A = \emptyset$ then return failure
- non-deterministically choose a pair $(o, \theta) \in A$
- $\pi \leftarrow$ the concatenation of $\theta(o)$ and $\theta(\pi)$
- $g \leftarrow \gamma^{-1}(\theta(g), \theta(o))$

end loop
The Search Space is Still Too Large

- Lifted-backward-search generates a smaller search space than Backward-search, but it still can be quite large.
 - Suppose actions a, b, and c are independent, action d must precede all of them, and there's no path from s_0 to d's input state.
 - We'll try all possible orderings of a, b, and c before realizing there is no solution.
- More about this in Chapter 5 (Plan-Space Planning)

STRAIPS

- \(\pi \leftarrow \) the empty plan
- do a modified backward search from \(g \)
 - instead of \(\gamma^{-1}(s, a) \), each new set of sub-goals is just \(\text{precond}(a) \)
 - whenever you find an action that’s executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to \(\pi \)
- repeat until all goals are satisfied

\[
\begin{align*}
\pi &= \langle a_6, a_4 \rangle \\
s &= \gamma(\gamma(s_0, a_6), a_4)
\end{align*}
\]
STRIPS

- classical example: moving boxes between rooms ("Strips World")
- Originally: representation formalism (relying on CWA) and planning algorithm
today: “STRIPS planning” refers to classical representation without extensions and not to a specific algorithm
- STRIPS algorithm: a linear (and therefore incomplete) approach
- compare to: General Problem Solver (GPS), a cognitively motivated problem solving algorithm which is also linear and therefore incomplete
STRIPS Algorithm

- Backward-search with a kind of hill climbing strategy
- In each recursive call only such sub-goals are relevant which are preconditions of the last operator added
- Consequence: considerable reduction of branching, but resulting in incompleteness
- Linear planning: organizing sub-goals in a stack
- Non-linear planning: organizing sub-goals in a set, interleaving of goals
Algorithm 4 STRIPS (O, s, g)

\[
\pi \leftarrow \text{empty plan} \\
\text{loop} \\
\quad \text{if } s \text{ satisfies } g \text{ then} \\
\quad \quad \text{return } \pi \\
\quad \text{end if} \\
A \leftarrow \{a | a \text{ is a ground instance of an operator in } O, \text{ and } a \text{ is relevant for } g\} \\
\text{if } A = \emptyset \text{ then} \\
\quad \text{return failure} \\
\text{end if} \\
\text{non-deterministically choose any action } a \in A \\
\pi' \leftarrow \text{STRIPS}(O, s, \text{precond}(a)) \\
\text{if } \pi' = \text{failure} \text{ then} \\
\quad \text{return failure} \quad ;;\text{if we get here, then } \pi' \text{ achieves } \text{precond}(a) \text{ from } s \\
\text{end if} \\
s \leftarrow \gamma(s, \pi') \\
s \leftarrow \gamma(s, a) \\
\pi \leftarrow \pi.\pi'.a \\
\text{end loop}
\]
Incompleteness of Linear Planning

The Sussman Anomaly

Initial State

Goal:

on(A, B) and on(B, C)

on(B, C) on(A, B)

on(B, C) on(A, B)

on(B, C) on(A, B)
Linear planning corresponds to dealing with goals organized in a stack:

\[\text{[on}(A, B), \text{on}(B, C)]\]

try to satisfy goal \text{on}(A, B)
solve sub-goals \text{[clear}(A), \text{clear}(B)]\]
all sub-goals hold after \text{puttable}(C)
apply \text{put}(A, B)
goal \text{on}(A, B) is reached
try to satisfy goal \text{on}(B, C).

\footnote{We ignore the additional subgoal \text{ontable}(A) \text{ resp. on}(A, z) here.}
Interleaving of Goals

- Non-linear planning allows that a sequence of planning steps dealing with one goal is interrupted to deal with another goal.
- For the Sussman Anomaly, that means that after block C is put on the table pursuing goal $\text{on}(A, B)$, the planner switches to the goal $\text{on}(B, C)$.
- Non-linear planning corresponds to dealing with goals organized in a set.
- The correct sequence of goals might not be found immediately without backtracking.
Interleaving of Goals cont.

\{on(A, B), on(B, C)\}

try to satisfy goal \(on(A, B)\)
\{\text{clear}(A), \text{clear}(B), on(A, B), on(B, C)\}
\text{clear}(A) \text{ and } \text{clear}(B) \text{ hold after } \text{puttable}(C)

try to satisfy goal \(on(B, C)\)
apply \(put(B, C)\)

try to satisfy goal \(on(A, B)\)
apply \(put(A, B)\).
Rocket Domain

(Veloso)

- **Objects:**
 - n boxes, Positions (Earth, Moon), one Rocket

- **Operators:**
 - load/unload a box, move the Rocket
 - (oneway: only from earth to moon, no way back!)

- **Linear planning:**
 - to reach the goal, that Box1 is on the Moon, load it, shoot the Rocket, unload it, now no other Box can be transported!
The Register Assignment Problem

- State-variable formulation:

 Initial state: \(\{ \text{value(r1)=3, value(r2)=5, value(r3)=0} \} \)

 Goal: \(\{ \text{value(r1)=5, value(r2)=3} \} \)

 Operator: \(\text{assign(r,v,r',v')} \)

 precond: \(\text{value(r)=v, value(r')=v'} \)

 effects: \(\text{value(r)=v'} \)

- STRIPS cannot solve this problem at all
Domain Specific Knowledge

Use of Domain Specific Knowledge

- The Sussman Anomaly can also be handled by the usage of domain-specific knowledge

- Example: block stacking using forward search
Quick Review of Blocks World

\textbf{unstack}(x,y)
Pre: \textit{on}(x,y), \textit{clear}(x), \textit{handempty}
Eff: \neg\textit{on}(x,y), \neg\textit{clear}(x), \neg\textit{handempty},
\textit{holding}(x), \textit{clear}(y)

\textbf{stack}(x,y)
Pre: \textit{holding}(x), \textit{clear}(y)
Eff: \neg\textit{holding}(x), \neg\textit{clear}(y),
\textit{on}(x,y), \textit{clear}(x), \textit{handempty}

\textbf{pickup}(x)
Pre: \textit{ontable}(x), \textit{clear}(x), \textit{handempty}
Eff: \neg\textit{ontable}(x), \neg\textit{clear}(x), \neg\textit{handempty}, \textit{holding}(x)

\textbf{putdown}(x)
Pre: \textit{holding}(x)
Eff: \neg\textit{holding}(x), \textit{ontable}(x), \textit{clear}(?x), \textit{handempty}
The Sussman Anomaly

- On this problem, STRIPS can’t produce an irredundant solution
- Try it and see
A blocks-world planning problem $P = (O, s_0, g)$ is solvable if s_0 and g satisfy some simple consistency conditions:

- g should not mention any blocks not mentioned in s_0
- A block cannot be on two other blocks at once
- Etc.

⇒ Can check these in time $O(n \log n)$

If P is solvable, can easily construct a solution of length $O(2m)$, where m is the number of blocks:

- Move all blocks to the table, then build up stacks from the bottom

⇒ Can do this in time $O(n)$

With additional domain-specific knowledge can do even better . . .
A block x needs to be moved if any of the following is true:

- s contains $\text{ontable}(x)$ and g contains $\text{on}(x,y)$ - see a below
- s contains $\text{on}(x,y)$ and g contains $\text{ontable}(x)$ - see d below
- s contains $\text{on}(x,y)$ and g contains $\text{on}(x,z)$ for some $y \neq z$
 \[\Rightarrow \] see c below
- s contains $\text{on}(x,y)$ and y needs to be moved - see e below
Domain-Specific Algorithm

```
loop
    if there is a clear block \( x \) such that
        \( x \) needs to be moved \textbf{and}
        \( x \) can be moved to a place where it won’t need to be moved
    then move \( x \) to that place
    else if there is a clear block \( x \) such that
        \( x \) needs to be moved
    then move \( x \) to the table
    else if the goal is satisfied
    then return the plan
    else return failure

repeat
```
Domain Specific Knowledge

Easily Solves the Sussman Anomaly

loop

if there is a clear block x such that
 x needs to be moved and
 x can be moved to a place where it won’t need to be moved
then move x to that place
else if there is a clear block x such that
 x needs to be moved
then move x to the table
else if the goal is satisfied
then return the plan
else return failure

repeat
Properties

- The block-stacking algorithm:
 - Sound, complete, guaranteed to terminate
 - Runs in time $O(n^3)$
 - Can be modified to run in time $O(n)$
 - Often finds optimal (shortest) solutions
 - But sometimes only near-optimal (Exercise 4.22 in the book)
 - PLAN LENGTH for the blocks world is NP-complete
Specific vs. General Approaches

- In general, it is more useful to have a general purpose approach, such as a domain-independent planner.
- However, if there is knowledge available for a domain, it should not be ignored; but used to make the general approach more informed and thereby usually more efficient.
- One possibility to exploit knowledge in a more general way, is to combine planning and machine learning.

Applying the inductive programming system IGOR2 to learn Tower building from solution examples.
Learning A Solution Strategy for BlocksWorld

Tower (9 examples of towers with up to four blocks, 1.2 sec)
(10 corresponding examples for Clear and IsTower as BK)

\[
\text{Tower}(O, S) = S \quad \text{if } \text{IsTower}(O, S)
\]

\[
\text{Tower}(O, S) = \text{put}(O, \text{Sub1}(O, S),
 \text{Clear}(O, \text{Clear}(\text{Sub1}(O, S),
 \text{Tower}(\text{Sub1}(O, S), S)))) \quad \text{if not(\text{IsTower}(O, S))}
\]

\[
\text{Sub1}(s(O), S) = O .
\]
Planning is search

Basic search techniques are forward (from initial state to a state fulfilling the goals) and backward (from the goals to the initial state)

For backward search an inverse state-transition operator has to be defined

Algorithms need to be sound and complete, furthermore, efficiency should be considered (branching factor during search!)

A classical planning algorithm is Strips

Strips is incomplete as demonstrated with the Sussman Anomaly

Incompleteness can be overcome by defining domain specific algorithms