
Intelligent Agents
Search Algorithms

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

last change: July 9, 2015

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 1 / 50

Search Algorithms

Problem solving, planning (and most other areas of AI) depend on
intelligent search

Remember: typically state-spaces are much too large to apply
standard graph search algorithms (e.g. the Dijkstra algorithm)

Search for a (shortest) path from an initial state to a state which
fulfills all goals typically relies on a variant of depth-first search where
only a small part of states are explored.

A good heuristics can reduce search effort dramatically. However, the
heuristics must be carefully designed in a way that (1) the (shortest)
solution has a chance to be found (completeness) and that (2) the
result is indeed an admissible solution (soundness).

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 2 / 50

Outline

Outline

Introduction of running example

Search Tree

Uniformed Systematic Search
Depth-First Search (DFS)
Breadth-First Search (BFS)

Complexity of Blocks-World

Cost-based Optimal Search
Uniform Cost Search

Cost Estimation (Heuristic Function)

Heuristic Search Algorithms
Hill Climbing (Depth-First, Greedy)
Branch and Bound Algorithms (BFS-based)

Best First Search
A*

Designing Heuristic Functions

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 3 / 50

Repetition: Problem, State Space, Search Tree

Running Example

In the following: We are not concerned how a single state
transformation is calculated (see state-space planning)

We represent problems via graphs with abstract states (nodes) and
abstract actions (arcs).

If we label arcs with numbers, the numbers represent costs of the
different actions (time, resources).

Illustration: Navigation problem with states as cities and arcs as
direct connections; Blocksworld problem with states as constellations
of blocks and arcs as put/puttable operators (might have different
costs for different blocks)

Please note: In general, such a graph (i.e., the state-space) is not
given explicitly!

A part of the problem graph is constructed during search (the states
which we explore) in form of a search tree.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 4 / 50

Repetition: Problem, State Space, Search Tree

Example Search Tree

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 5 / 50

Repetition: Problem, State Space, Search Tree

Search Algorithms

There exist different search strategies:
Basic, uninformed (“blind”) methods:
random search, systematic strategies (depth-first, breadth-first)
Search algorithms for operators with different costs
Heuristic search:
use assumptions to guide the selection of the next candidate operator

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 6 / 50

Repetition: Problem, State Space, Search Tree

Search Tree

During search for a solution, starting from an initial state, a search tree is
generated.

Root: initial state
Each path from the root to a leaf: (partial) solution
Intermediate nodes: intermediate states
Leafs: Final states or dead ends

If the same state appears more than once on a path, we have a cycle.
Without cycle-check search might not terminate! (infinite search tree)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 7 / 50

Repetition: Problem, State Space, Search Tree

Overall Search Strategy

As long as no final state is reached or there are still reachable, yet
unexplored states:

Collect all operators which can be applied in the current state
(Match state with application conditions)

Select on applicable operator.
In our example: alphabetic order of the labels of the resulting node.
In general: give a preference order

Apply the operator, generating a successor state

Remark:

⇒ The Match-Select-Apply Cycle is the core of “production systems”
(see human problem solving)

⇒ Select is realized with respect to the different search algorithms

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 8 / 50

Uniformed Systematic Search Depth-First Search

Depth-First Search

Construct one path from initial to final state.

Backtracking:
Go back to predecessor state and try to generate another successor state
(if none exists, backtrack again etc.), if:

the reached state is a dead-end, or
the reached state was already reached before (cycle)

Data structure to store the already explored states:
Stack; depth-first is based on a “last in first out” (LIFO) strategy

Cycle check: does the state already occur in the path.

Result: in general not the shortest path (but the first path)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 9 / 50

Uniformed Systematic Search Depth-First Search

Effort of Depth-First Search

In the best-case, depth-first search finds a solution in linear time
O(d), for d as average depth of the search tree: Solution can be
found on a path of depth d and the first path is already a solution.

In the worst-case, the complete search-tree must be generated: The
problem has only one possible solution and this path is created as the
last one during search; or the problem has no solution and the
complete state-space must be explored.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 10 / 50

Uniformed Systematic Search Depth-First Search

Remark: Depth-First Search

The most parsimonious way to store the (partial) solution path is to
push always only the current state on the stack.
Problem: additional infrastructure for backtracking
(remember which operators were already applied to a fixed state)

In the following: push always the partial solution path to the stack.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 11 / 50

Uniformed Systematic Search Depth-First Search

Depth-First Algorithm

Winston, 1992
To conduct a depth-first search,

Form a one-element stack consisting of a zero-length path that contains only the
root node.

Until the top-most path in the stack terminates at the goal node or the stack is

empty,

Pop the first path from the stack; create new paths by extending the
first path to all neighbors of the terminal node.
Reject all new paths with loops.
Push the new paths, if any, on the stack.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 12 / 50

Uniformed Systematic Search Depth-First Search

Depth-First Example

((S))
((S A) (S B))
((S A B) (S A F) [(S A S)] (S B))
((S A B C) (S A B D) [(S A B S)] (S A F) (S B))
([(S A B C B)] (S A B C F) (S A B D) (S A F) (S B))

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 13 / 50

Uniformed Systematic Search Breadth-First Search

Breadth-First Search

The search tree is expanded level-wise.

No backtracking necessary.

Data structure to store the already explored states:
Queue breadth-first is based on a “first in first out” (FIFO) strategy

Cycle check:
for finite state-spaces not necessary for termination (but for efficiency)

Result: shortest solution path

Effort: If a solution can be first found on level d of the search tree
and for an average branching factor b: O(bd)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 14 / 50

Uniformed Systematic Search Breadth-First Search

Breadth-First Algorithm
Winston, 1992

To conduct a breadth-first search,

Form a one-element queue consisting of a zero-length path that contains only the
root node.

Until the first path in the queue terminates at the goal node or the queue is empty,

Remove the first path from the queue; create new paths by extending
the first path to all neighbors of the terminal node.
Reject all new paths with loops.
Add the new paths, if any, to the back of the queue.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 15 / 50

Uniformed Systematic Search Breadth-First Search

Breath-First Example

((S))
((S A) (S B))
((S B) (S A B) (S A F) [(S A S)])
((S A B) (S A F) (S B A) (S B C) (S B D) [(S B S)])
((S A F) (S B A) (S B C) (S B D) (S A B C) (S A B D) [(S A B S)])

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 16 / 50

Complexity of Blocks-World

Complexity of Blocksworld Problems

Remember: Problems can be characterized by their complexity, most problems

considered in AI are NP-hard.

blocks 1 2 3 4 5
states 1 3 13 73 501

approx. 1.0 × 100 3.0 × 100 1.3 × 101 7.3 × 101 5.0 × 102

blocks 6 7 8 9 10
states 4051 37633 394353 4596553 58941091

approx. 4.1 × 103 3.8 × 104 3.9 × 105 4.6 × 106 5.9 × 107

#blocks 11 12 13 14 15
states 824073141 12470162233 202976401213 3535017524403 65573803186921

approx. 8.2 × 108 1.3 × 1010 2.0 × 1011 3.5 × 1012 6.6 × 1013

Blocksworld problems are PSpace-complete:

even for a polynomial time algorithm, an exponential amount of memory is needed!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 17 / 50

Complexity of Blocks-World

Time and Memory Requirements

Depth Nodes Time Memory
0 1 1 ms 100 Byte
2 111 0.1 sec 11 Kilo Byte
4 11.111 11 sec 1 Mega Byte
6 106 18 min 111 Mega Byte
8 108 31 h 11 Giga Byte
10 1010 128 days 1 Tera Byte
12 1012 35 years 111 Tera Byte
14 1014 3500 years 11.111 Tera Byte

Breadth-first search with branching factor b = 10, 1000 nodes/sec, 100 bytes/node ↪→
Memory requirements are the bigger problem!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 18 / 50

Complexity of Blocks-World

Evaluation of DFS and BFS

Soundness: A node s is only expanded to such a node s ′ where (s, s ′) is an
arc in the state space (application of a legal operator whose preconditions
are fulfilled in s)

Termination: For finite sets of states guaranteed.

Completeness: If a finite length solution exists.

Optimality: Depth-first no, breadth-first yes

worst case O(bd) for both, average case better for depth-first
↪→ If you know that there exist many solutions, that the average solution length is

rather short and if the branching factor is rather high, use depth-first search, if you

are not interested in the optimal but just in some admissible solution.

Prolog is based on a depth-first search-strategy.

Typical planning algorithms are depth-first.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 19 / 50

Cost-based Optimal Search Uniform Cost Search

Uniform Cost Search

Variation of breadth-first search for operators with different costs.

Path-cost function g(n): summation of all costs on a path from the root
node to the current node n.
Remark: Please note that g(n) denotes the accumulated costs for one specific

path from the root to node n:
∑n

i=0 c(i , i + 1) if nodes i and i + 1 are on the

selected path.

Costs must be positive, such that g(n) < g(successor(n)).
Remark: This restriction is stronger then necessary. To omit non-termination
when searching for an optimal solution it is enough to forbid negative cycles.

Always sort the paths in ascending order of costs.

If all operators have equal costs, uniform cost search behaves exactly like
breadth-first search.

Uniform cost search is closely related to branch-and-bound algorithms
(cf. operations research).

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 20 / 50

Cost-based Optimal Search Uniform Cost Search

Uniform Cost Algorithm

To conduct a uniform cost search,

Form a one-element queue consisting of a zero-length path that contains only the
root node.

Until the first path in the queue terminates at the goal node or the queue is empty,

Remove the first path from the queue; create new paths by extending
the first path to all neighbors of the terminal node.
Reject all new paths with loops.
Add the new paths, if any, to the queue and sort the queue with
respect to costs.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 21 / 50

Cost-based Optimal Search Uniform Cost Search

Uniform Cost Example

(omitting cycles)
((S).0)
((S A).3 (S B).4)
((S A B).5 (S A F).6 (S B).4)
sort
((S B).4 (S A B).5 (S A F).6)
((S B A).6 (S B C).5 (S B D).6 (S A B).5 (S A F).6)
sort
((S A B).5 (S B C).5 (S A F).6 (S B A).6 (S B D).6)
((S A B C).6 (S A B D).7 (S B C).5 (S A F).6 (S B A).6 (S B D).6)
sort
((S B C).5 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)

((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 22 / 50

Cost-based Optimal Search Uniform Cost Search

Uniform Cost Example cont.

((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)
sort
((S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
sort
((S A B C F).8 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
sort
((S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7 (S A B C F).8)

Note:

Termination if first path in the queue (i.e. shortest path) is solution, only then it is

guaranteed that the found solution is optimal!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 23 / 50

Cost-based Optimal Search Uniform Cost Search

Further Search Algorithms

Depth-limited search:
Impose a cut-off (e.g. n for searching a path of length n − 1), expand
nodes with max. depth first until cut-off depth is reached (LIFO
strategy, since variation of depth-first search).

Bidirectional search:
forward search from initial state & backward search from goal state,

stop when the two searches meet. Average effort O(b
d
2) if testing

whether the search fronts intersect has constant effort O(1).

In AI, the problem graph is typically not known. If the graph is
known, to find all optimal paths in a graph with labeled arcs,
standard graph algorithms can be used. E.g., the Dijkstra
algorithm, solving the single source shortest paths problem
(calculating the minimal spanning tree of a graph).

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 24 / 50

Heuristic Search: Cost and Cost Estimation

Cost and Cost Estimation

“Real” cost is known for each operator.

Accumulated cost g(n) for a leaf node n on a partially expanded path
can be calculated.
For problems where each operator has the same cost or where no
information about costs is available, all operator applications have
equal cost values. For cost values of 1, accumulated costs g(n) are
equal to path-length d .

Sometimes available:
Heuristics for estimating the remaining costs to reach the final state.

ĥ(n): estimated costs to reach a goal state from node n
“bad” heuristics can misguide search!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 25 / 50

Heuristic Search: Cost and Cost Estimation

Cost and Cost Estimation cont.

Evaluation Function: f̂ (n) = g(n) + ĥ(n)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 26 / 50

Heuristic Search: Cost and Cost Estimation

Cost and Cost Estimation cont.

“True costs” of an optimal path from an initial state s to a final
state: f (s).

For a node n on this path, f can be decomposed in the already
performed steps with cost g(n) and the yet to perform steps with true
cost h(n).

ĥ(n) can be an estimation which is greater or smaller than the true
costs.

If we have no heuristics, ĥ(n) can be set to the “trivial lower bound”
ĥ(n) = 0 for each node n.

If ĥ(n) is a non-trivial lower bound, the optimal solution can be found
in efficient time (see A*).

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 27 / 50

Heuristic Search Algorithms

Heuristic Search Algorithms

Hill Climbing: greedy-Algorithm, based on depth-first search, uses
only ĥ(n) (not g(n))

Best First Search based on breadth-first search, uses only ĥ(n)

A* based on breadth-first search (efficient branch-and bound
algorithm), used evaluation function f ∗(n) = g(n) + h∗(n) where
h∗(n) is a lower bound estimation of the true costs for reaching a final
state from node n.

Design of a search algorithm:

based on depth- or breadth-first strategy

use only g(n), use only ĥ(n), use both (f̂ (n))

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 28 / 50

Heuristic Search Algorithms

Example Search Tree

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 29 / 50

Heuristic Search Algorithms Hill Climbing Algorithm

Hill Climbing Algorithm

Winston, 1992 To conduct a hill climbing search,

Form a one-element stack consisting of a zero-length path that contains only the root
node.

Until the top-most path in the stack terminates at the goal node or the stack is empty,

Pop the first path from the stack; create new paths by extending the
first path to all neighbors of the terminal node.
Reject all new paths with loops.
Sort the new paths, if any, by the estimated distances between their
terminal nodes and the goal.
Push the new paths, if any, on the stack.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 30 / 50

Heuristic Search Algorithms Hill Climbing Algorithm

Hill Climbing Example

((S).5)
((S B).2 (S A).3)
((S B C).2 (S B A).3 (S B D).4 [(S B S).5] (S A).3)
([(S B C B).2] (S B C F).0 (S B A).3 (S B D).4 (S A).3)

The heuristics was not optimal. If we look at the true costs (S A F) is the best solution!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 31 / 50

Heuristic Search Algorithms Hill Climbing Algorithm

Problems of Hill Climbing

Hill climbing is a discrete variant of gradient descend methods
(as used for example in back propagation).

Hill climbing is a local/greedy algorithm:
Only the current node is considered.

For problems which are greedy solvable (local optimal solution =
global optimal solution) it is guaranteed that an optimal solution can
be found.
Otherwise: danger of local minima/maxima
(if ĥ is a cost estimation: local minima!)

Further problems:
plateaus (evaluation is the same for each alternative),
ridges (evaluation gets worse for all alternatives)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 32 / 50

Heuristic Search Algorithms Hill Climbing Algorithm

Problems of Hill Climbing cont.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 33 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Best First Search Algorithm

Winston, 1992 To conduct a best first search,

Form a one-element queue consisting of a zero-length path that contains only the root
node.

Until the first path in the queue terminates at the goal node or the queue is empty,

Remove the first path from the queue; create new paths by extending
the first path to all neighbors of the terminal node.
Reject all new paths with loops.
Add the new paths, if any, to the queue.
Sort entire queue by the estimated distances between their terminal
nodes and the goal.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 34 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Best First Example

((S).6)
((S B).2 (S A).3)
((S A).3 (S B A).3 (S B C).4 (S B D).5 [(S B S).6])
((S A F).0 (S A B).2 (S B A).3 (S B C).4 (S B D).5 [(S A S).6])

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 35 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Best First Search Remarks

Best First Search is not a local strategy:
at each step the current best node is expanded, regardless on which
partial path it is.

It is probable but not sure that Best First Search finds an optimal
solution.
(depending on the quality of the heuristic function)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 36 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Optimal Search

Inefficient, blind method: ‘British Museum Algorithm’

Generate all solution paths and select the best.
Generate-and-test algorithm, effort O(db)

Breadth-First search (for no/uniform costs) and Uniform Cost Search
(for operators with different costs; Branch-and-Bound) find the
optimal solution, but with a high effort

A* (Nilsson, 1971) is the most efficient branch-and-bound algorithm!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 37 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Reminder: Uniform Cost Search

The complete queue is sorted by accumulated costs g(n) with the
path with the best (lowest) cost in front.
Termination: If the first path in the queue is a solution.
Why not terminate if the queue contains a path to the solution on an
arbitrary position?
Because there are partially expanded paths which have lower costs
than the solution. These paths are candidates for leading to a
solution with lower costs!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 38 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

The Idea of A*

Extend uniform cost search such, that not only the accumulated costs
g(n) but additionally an estimate for the remaining costs ĥ(n) is used.
ĥ is defined such that it is a non-trivial lower bound estimate of the
true costs for the remaining path (h∗).
That is, use evaluation function f ∗(n) = g(n) + h∗(n).

Additionally use the principle of ‘dynamic programming’ (Bellman &
Dreyfus, 1962): If several partial paths end in the same node, only
keep the best of these paths.

17+4

7 + 11

5 + 6

g(n) + h*(n)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 39 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

A* Algorithm

Winston, 1992 To conduct a A* search,

Form a one-element queue consisting of a zero-length path that contains only the root
node.

Until the first path in the queue terminates at the goal node or the queue is empty,

Remove the first path from the queue; create new paths by ext. the
first path to all neighbors of the terminal node.
Reject all new paths with loops.
Add the remaining new paths, if any, to the queue.
If two or more paths reach a common node, delete all those paths
except the one that reaches the common node with the minimum cost.
Sort entire queue by the sum of the path length and a lower-bound
estimate of the cost remaining, with least-cost paths in front.

If the goal node is found, announce success; otherwise announce failure.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 40 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

A* Example

((S).0 + 5)
((S A).3 + 2 (S B).4 + 2)

([(S A S).11] (S A B).

g︷ ︸︸ ︷
3 + 2 +2 (S A F).3 + 3 + 0 (S B).6)

because of (S A B).7 and (S B).6: delete (S A B)
((S A F).6 (S B).6)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 41 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Admissibility of A*

Theorem: If ĥ(n) ≤ h(n) for all nodes n and if all costs are greater than some
small positive number δ, then A* always returns an optimal solution if a solution
exists (is “admissible”).

Proof: in Nilsson (1971); we give the idea of the proof

Remember, that f (n) = g(n) + h(n) denotes the “true costs”, that is,
the accumulated costs g(n) for node n and the “true costs” h(n) for
the optimal path from n to a final state.
Every algorithm A working with an evaluation function
f̂ (n) = g(n) + ĥ(n) for which holds that ĥ(n) is smaller or equal than
the true remaining costs (including the trivial estimate ĥ(n) = 0 for all
n) is guaranteed to return an optimal solution:

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 42 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Admissibility of A* cont

Each steps heightens the “security” of estimate f̂ because the influence of
accumulated costs grows over the influence of the estimation for the remaining
costs.

If a path terminates in a final states, only the accumulated costs from the initial to
the final state are considered. This path is only returned as solution if it is first in
the queue.

If ĥ would be an over-estimation, there still could be a partial path in the queue for
which holds that f̂ (n) > f (n).

If ĥ is always an under-estimation and if all costs are positive, it always holds that
f̂ (n) ≤ f (n). Therefore, if a solution path is in front of the queue, all other
(partial) paths must have costs which are equal or higher.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 43 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

A* Illustration

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 44 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Optimality of A*

“Optimality” means here: there cannot exist a more efficient
algorithm.
Compare the example for uniform cost search and A*: both strategies
find the optimal solution but A* needs to explore a much smaller part
of the search tree!
Why?
Using a non-trivial lower bound estimate for the remaining costs don’t
direct search in a wrong direction!
The somewhat lengthy proof is based on contradiction:
Assume that A* expands a node n which is not expanded by another
admissible algorithm A.

0 ≤ h∗
1(n) ≤ h∗

2(n) ≤ ... ≤ h∗
n(n) = h(n)

the tighter the lower bound, the more “well-informed” is the algorithm!

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 45 / 50

Heuristic Search Algorithms Branch and Bound Algorithms

Optimality of A* cont.

Alg. A does not expand n if it “knows” that any path to a goal through node n would
have a cost larger or equal to the cost on an optimal path from initial node s to a goal,
that is f (n) ≥ f (s).
By rewriting f (n) = g(n) + h(n) we obtain h(n) = f (n) − g(n).
Because of f (n) ≥ f (s) it holds that h(n) ≥ f (s) − g(n).
If A has this information it must use a “very well informed” heuristics such that
ĥ(n) = f (s) − g(n)!
For A* we know that f ∗ is constructed such that holds f ∗(n) ≤ f (s), because the
heuristics is an under-estimation.
Therefore it holds that g(n) + h∗(n) ≤ f (s)
and by rewriting that h∗(n) ≤ f (s) − g(n).
Now we see that A used information permitting a tighter lower bound estimation of h
than A*. It follows that the quality of the lower bound estimate determines the number of
nodes which are expanded.

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 46 / 50

Designing Heuristic Functions

How to design a Heuristic Function?

Often, it is not very easy to come up with a good heuristics.

For navigation problems:
use Euclidean distance between cities as lower bound estimate.

For “puzzles”:
analyse the problem and think of a “suitable” rule. E.g.: Number of
discs which are already placed correctly for Tower of Hanoi

Chess programs (Deep Blue, Deep Fritz) rely on very carefully crafted
evaluation functions. The “intelligence” of the system sits in this
function and this function was developed by human intelligence
(e.g. the grand master of chess Joel Benjamin, who contributed
strongly to the evaluation function of Deep Blue).

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 47 / 50

Designing Heuristic Functions

Example: 8-Puzzle

admissible heuristics h∗ for the 8-puzzle

h∗
1: total number of misplaced tiles

h∗
2: minimal number of moves of each tile to its correct location, i.e.

total Manhattan distance

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 48 / 50

Designing Heuristic Functions

Excursus: Minkowski-Metric

d(~v1, ~v2) = k

√√√√ n∑
i=1

|v1i − v2i |k

Distance d : in general between to feature vectors in n dimensional-space.
For 8-Puzzle: 2 Dimensions (x-position and y -position).

Minkowski parameter k: determines the metric

k = 2: the well known Euklidian distance
√

(~v1 − ~v2)2 (direct line
between two points)
k = 1: City-block or Manhattan distance (summation of the differences
of each feature)
k →∞: Supremum or dominance distance (only the feature with the
largest difference is taken into account)

Psychological investigations about metrics used by humans if they judge similarities (K.-F. Wender)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 49 / 50

Designing Heuristic Functions

Summary: Search Algorithms

Search algorithms are fundamental for many areas of computer science in general and AI.
Many AI technologies are based on logic and search.
Depth-first variants are in average more efficient than breadth-first variants, but there is
no guarantee that an optimal solution can be found.
Heuristic variant of depth-first search: Hill-Climbing/greedy search
Heuristic variant of breadth-first search: Best First search

Breadth-first variants with costs are called branch-and-bound-algorithms: branch from a

node to all successors, bound (do not follow) unpromising paths

Uniform-cost search: non-heuristic algorithm, only uses costs g(n)
A*: uses an admissible heuristic 0 ≤ h∗(n) ≤ h(n)
it gains its efficiency (exploring as small a part of the search tree as
possible) by: dynamic programming and using a heuristic which is as
well-informed as possible (tight lower bound)

U. Schmid (CogSys) Intelligent Agents last change: July 9, 2015 50 / 50

	Outline
	Repetition: Problem, State Space, Search Tree
	Uniformed Systematic Search
	Depth-First Search
	Breadth-First Search

	Complexity of Blocks-World
	Cost-based Optimal Search
	Uniform Cost Search

	Heuristic Search: Cost and Cost Estimation
	Heuristic Search Algorithms
	Hill Climbing Algorithm
	Branch and Bound Algorithms

	Designing Heuristic Functions

