Intelligent Agents
State-Space Planning

Ute Schmid

Cognitive Systems, Applied Computer Science, Bamberg University

Today: The Planner

Planning problem

Description of \(\Sigma \)

Initial state

Objectives

Execution status

Planner

Plans

Controller

Observations

Actions

System \(\Sigma \)

Events
Computing A Sequence of Actions

- Previous lecture: How to transform a state into a successor state by applying an action \(\gamma(s, a) = s' \)
- Today: Compute a plan – a sequence of action applications to transform an initial state into a state fulfilling all objectives (goals)
Motivation

- Nearly all planning procedures are search procedures
- Different planning procedures have different search spaces
 - Two examples:
 - **State-space planning**
 - Each node represents a state of the world
 - A plan is a path through the space
 - **Plan-space planning**
 - Each node is a set of partially-instantiated operators, plus some constraints
 - Impose more and more constraints, until we get a plan
Motivation

State-Space-Planning

Plan-Space-Planning
Outlook

- Forward Search
- Backward Search
 - Inverse State Transition
 - Lifting
- Soundness, Completeness, Efficiency
- Strips
- Incompleteness of Linear Planning
 - Sussman Anomaly
- Domain Specific Knowledge
Forward Search

Algorithm 1 Forward-search(O, s_0, g)

$s \leftarrow s_0$
$\pi \leftarrow$ the empty plan

loop
 if s satisfies g then return π
 $E \leftarrow \{a | a$ is a ground instance of an operator in O, and $\text{precond}(a)$ is true in $s\}$
 if $E = \emptyset$ then return failure
 non-deterministically choose any action $a \in E$
 $s \leftarrow \gamma(s, a)$
 $\pi \leftarrow \pi . a$

end loop

Dana Nau: Lecture slides for Automated Planning
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Properties

- Forward-search is *sound*
 - for any plan returned by any of its non-deterministic traces, this plan is guaranteed to be a solution
- Forward-search also is *complete*
 - if a solution exists then at least one of Forward-search’s non-deterministic traces will return a solution.

Remarks on non-determinism:
- In Algorithm 1 and further algorithms, no strategy for selecting an action is fixed.
- Non-deterministic selection as an abstract concept guarantees that the “right” actions can be selected and in consequence that a plan can be found if one exists.
- In practice, a deterministic action selection strategy has to be implemented. This strategy might be incomplete.
Some deterministic implementations of forward search:
- breadth-first search
- depth-first search
- best-first search (e.g., A*)
- greedy search

Breadth-first and best-first search are sound and complete
- But they usually aren’t practical because they require too much memory
- Memory requirement is exponential in the length of the solution

In practice, more likely to use depth-first search or greedy search
- Worst-case memory requirement is linear in the length of the solution
- In general, sound but not complete
 - But classical planning has only finitely many states
 - Thus, can make depth-first search complete by doing loop-checking
Branching Factor of Forward Search

- Forward search can have a very large branching factor
 - E.g., many applicable actions that don’t progress toward goal
- Why this is bad:
 - Deterministic implementations can waste time trying lots of irrelevant actions
- Need a good heuristic function and/or pruning procedure
 - See section 4.5 (Domain-Specific State-Space Planning)
 - and lecture on Heuristic Search Planning
Backward Search

- For forward search, we started at the initial state and computed state transitions
 - new state = $\gamma(s, a)$

- For backward search, we start at the goal and compute inverse state transitions
 - new set of sub-goals = $\gamma^{-1}(g, a)$

- To define $\gamma^{-1}(g, a)$, must first define **relevance**:
 - An action a is relevant for a goal g if
 - a makes at least one of g’s literals true
 - $\Rightarrow a$ makes at least one of g’s literals true
 - $\leadsto g \cap \text{effects}(a) \neq \emptyset$
 - a does not make any of g’s literals false
 - $\Rightarrow a$ does not make any of g’s literals false
 - $\leadsto g^+ \cap \text{effects}^-(a) = \emptyset$ and $g^- \cap \text{effects}^+(a) = \emptyset$
In this context, we are interested in what are called **Inverse State Transitions**. These operations allow us to undo certain actions or effects, which is essential when trying to find solutions for planning problems.

If a is relevant for g, then

$$\gamma^{-1}(g, a) = (g - \text{effects}(a)) \cup \text{precond}(a)$$

Otherwise $\gamma^{-1}(g, a)$ is undefined.

Example: Suppose that

- $g = \{\text{on}(b1,b2), \text{on}(b2,b3)\}$
- $a = \text{stack}(b1,b2)$

What is $\gamma^{-1}(g, a)$?

Dana Nau: Lecture slides for *Automated Planning*
Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License: http://creativecommons.org/licenses/by-nc-sa/2.0/
Algorithm 2 Backward-search\((O, s_0, g)\)

\[
\begin{align*}
\pi & \leftarrow \text{the empty plan} \\
\text{loop} & \\
\quad \text{if } s_0 \text{ satisfies } g \text{ then return } \pi \\
\quad A & \leftarrow \{a | a \text{ is a ground instance of an operator in } O \text{ and } \gamma^{-1}(g, a) \text{ is defined}\} \\
\quad \text{if } A = \emptyset \text{ then return failure} \\
\quad \text{non-deterministically choose any action } a \in A \\
\quad \pi & \leftarrow a.\pi \\
\quad g & \leftarrow \gamma^{-1}(g, a) \\
\text{end loop}
\end{align*}
\]
Efficiency of Backward Search

- Backward search can also have a very large branching factor
 - E.g., an operator o that is relevant for g may have many ground instances a_1, a_2, \ldots, a_n such that each a_i’s input state might be unreachable from the initial state
- As before, deterministic implementations can waste lots of time trying all of them
Remarks on Backward Planning

- Forward search also called *progression* planning
- Backwards search also called *regression* planning
- Problem with backwards planning: inconsistent states can be produced (see blocksworld example)
- Compare Graphplan strategy: build a Planning Graph by forwards search (polynomial effort) and extract the plan from the graph backwards (exponential effort, as usual for planning)
Axiom: $\forall x, y \ on(x, y) \rightarrow \neg \text{clear}(y)$
Lifting

- Can reduce the branching factor of backward search if we partially instantiate the operators
 - this is called *lifting*
Lifted Backward Search

- More complicated than Backward-search
 - Have to keep track of what substitutions were performed
- But it has a much smaller branching factor
- mgu = most general unifier (see later), e.g. for $foo(x, y)$, substitution $\theta = \{ x \leftarrow a_1 \}$ results in equality between all effects of $foo(a_1, y)$ and goal $q(a_1)$

Algorithm 3 Lifted-backward-search(O, s_0, g)

```plaintext
\begin{align*}
\pi & \leftarrow \text{the empty plan} \\
\text{loop} & \quad \text{if } s_0 \text{ satisfies } g \text{ then return } \pi \\
& \quad \ A \leftarrow \{(o, \theta)|o \text{ is a standardization of an operator in } O, \\
& \quad \quad \theta \text{ is an mgu for an atom of } g \text{ and an atom of } effects^+(o), \\
& \quad \quad \text{and } \gamma^{-1}(\theta(g), \theta(o)) \text{ is defined } \} \\
& \quad \text{if } A = \emptyset \text{ then return failure} \\
& \quad \text{non-deterministically choose a pair } (o, \theta) \in A \\
& \quad \pi \leftarrow \text{the concatenation of } \theta(o) \text{ and } \theta(\pi) \\
& \quad g \leftarrow \gamma^{-1}\theta(g), \theta(o)) \\
\text{end loop}
\end{align*}
```
The Search Space is Still Too Large

- Lifted-backward-search generates a smaller search space than Backward-search, but it still can be quite large
 - Suppose actions a, b, and c are independent, action d must precede all of them, and there's no path from s_0 to d's input state
 - We'll try all possible orderings of a, b, and c before realizing there is no solution
- More about this in Chapter 5 (Plan-Space Planning)

STRIPS

- $\pi \leftarrow$ the empty plan
- do a modified backward search from g
 - instead of $\gamma^{-1}(s, a)$, each new set of sub-goals is just $\text{precond}(a)$
 - whenever you find an action that’s executable in the current state, then go forward on the current search path as far as possible, executing actions and appending them to π
- repeat until all goals are satisfied

$$\pi = \langle a_6, a_4 \rangle$$
$$s = \gamma(\gamma(s_0, a_6), a_4)$$

g_6 satisfied in s_0

current search path
STRIPS

classical example: moving boxes between rooms (“Strips World”)

Originally: representation formalism (relying on CWA) and planning algorithm
today: “STRIPS planning” refers to classical representation without extensions and not to a specific algorithm

STRIPS algorithm: a linear (and therefore incomplete) approach

compare to: General Problem Solver (GPS), a cognitively motivated problem solving algorithm which is also linear and therefore incomplete
Strips

STRIPS Algorithm

- Backward-search with a kind of hill climbing strategy
- In each recursive call only such sub-goals are relevant which are preconditions of the last operator added
- Consequence:
 considerable reduction of branching, but resulting in incompleteness
- Linear planning:
 organizing sub-goals in a stack
- Non-linear planning:
 organizing sub-goals in a set, interleaving of goals
Algorithm 4 STRIPS (O, s, g)

\[
\pi \leftarrow \text{empty plan} \\
\text{loop} \\
\quad \text{if } s \text{ satisfies } g \text{ then} \\
\quad \quad \text{return } \pi \\
\quad \text{end if} \\
\quad A \leftarrow \{a | a \text{ is a ground instance of an operator in } O, \text{ and } a \text{ is relevant for } g\} \\
\quad \text{if } A = \emptyset \text{ then} \\
\quad \quad \text{return failure} \\
\quad \text{end if} \\
\quad \text{non-deterministically choose any action } a \in A \\
\quad \pi' \leftarrow \text{STRIPS}(O, s, \text{precond}(a)) \\
\quad \text{if } \pi' = \text{failure} \text{ then} \\
\quad \quad \text{return } \text{failure} \\
\quad \text{end if} \\
\quad s \leftarrow \gamma(s, \pi') \quad \quad ;;\text{if we get here, then } \pi' \text{ achieves } \text{precond}(a) \text{ from } s \\
\quad s \leftarrow \gamma(s, a) \quad \quad ;;s \text{ now satisfies } \text{precond}(a) \\
\quad \pi \leftarrow \pi.\pi'.a \\
\text{end loop}
\]
Incompleteness of Linear Planning

The Sussman Anomaly

Initial State

Goal:
on(A, B) and
non(B, C)

on(B, C)
on(A, B)

on(A, B) and
non(B, C)
Linear planning corresponds to dealing with goals organized in a stack:

\[\text{on}(A, B), \text{on}(B, C) \]

try to satisfy goal \(\text{on}(A, B) \)
- solve sub-goals \(\text{clear}(A), \text{clear}(B) \)\(^1\)
- all sub-goals hold after \(\text{puttable}(C) \)
- apply \(\text{put}(A, B) \)
- goal \(\text{on}(A, B) \) is reached
- try to satisfy goal \(\text{on}(B, C) \).

\(^1\)We ignore the additional subgoal \(\text{ontable}(A) \) rsp. \(\text{on}(A, z) \) here.
Interleaving of Goals

- Non-linear planning allows that a sequence of planning steps dealing with one goal is interrupted to deal with another goal.
- For the Sussman Anomaly, that means that after block C is put on the table pursuing goal $on(A, B)$, the planner switches to the goal $on(B, C)$.
- Non-linear planning corresponds to dealing with goals organized in a set.
- The correct sequence of goals might not be found immediately without backtracking.
Interleaving of Goals cont.

\{on(A, B), on(B, C)\}

try to satisfy goal \(on(A, B)\)
\{clear(A), clear(B), on(A, B), on(B, C)\}
\(clear(A)\) and \(clear(B)\) hold after \(puttable(C)\)

try to satisfy goal \(on(B, C)\)
apply \(put(B, C)\)

try to satisfy goal \(on(A, B)\)
apply \(put(A, B)\).
Rocket Domain

(Veloso)

- **Objects:**
 - n boxes, Positions (Earth, Moon), one Rocket

- **Operators:**
 - load/unload a box, move the Rocket
 - (oneway: only from earth to moon, no way back!)

- **Linear planning:**
 - to reach the goal, that Box1 is on the Moon, load it, shoot the Rocket, unload it, now no other Box can be transported!
The Register Assignment Problem

- State-variable formulation:

 Initial state: \{\text{value}(r_1)=3, \text{value}(r_2)=5, \text{value}(r_3)=0\}

 Goal: \{\text{value}(r_1)=5, \text{value}(r_2)=3\}

 Operator: assign(r,v,r',v')

 precond: value(r)=v, value(r')=v'

 effects: value(r)=v'

- STRIPS cannot solve this problem at all
The Sussman Anomaly can also be handled by the usage of domain-specific knowledge

Example: block stacking using forward search
Quick Review of Blocks World

unstack(x,y)

Pre: on(x,y), clear(x), handempty
Eff: ¬on(x,y), ¬clear(x), ¬handempty, holding(x), clear(y)

stack(x,y)

Pre: holding(x), clear(y)
Eff: ¬holding(x), ¬clear(y), on(x,y), clear(x), handempty

pickup(x)

Pre: ontable(x), clear(x), handempty
Eff: ¬ontable(x), ¬clear(x), ¬handempty, holding(x)

putdown(x)

Pre: holding(x)
Eff: ¬holding(x), ontable(x), clear(?x), handempty
The Sussman Anomaly

On this problem, STRIPS can’t produce an irredundant solution
- Try it and see
A blocks-world planning problem $P = (O, s_0, g)$ is solvable if s_0 and g satisfy some simple consistency conditions:

- g should not mention any blocks not mentioned in s_0
- A block cannot be on two other blocks at once
- Etc.

⇒ Can check these in time $O(n \log n)$

If P is solvable, can easily construct a solution of length $O(2m)$, where m is the number of blocks:

- Move all blocks to the table, then build up stacks from the bottom

⇒ Can do this in time $O(n)$

With additional domain-specific knowledge can do even better . . .
A block \(x \) needs to be moved if any of the following is true:

- \(s \) contains \texttt{ontable(x)} and \(g \) contains \texttt{on(x,y)} - see \textbf{a} below
- \(s \) contains \texttt{on(x,y)} and \(g \) contains \texttt{ontable(x)} - see \textbf{d} below
- \(s \) contains \texttt{on(x,y)} and \(g \) contains \texttt{on(x,z)} for some \(y \neq z \)
 \(\Rightarrow \) see \textbf{c} below
- \(s \) contains \texttt{on(x,y)} and \(y \) needs to be moved - see \textbf{e} below
Domain-Specific Algorithm

\[
\text{loop} \\
\text{if there is a clear block } x \text{ such that} \\
\hspace{1em} x \text{ needs to be moved and} \\
\hspace{1em} x \text{ can be moved to a place where it won’t need to be moved} \\
\text{then move } x \text{ to that place} \\
\text{else if there is a clear block } x \text{ such that} \\
\hspace{1em} x \text{ needs to be moved} \\
\text{then move } x \text{ to the table} \\
\text{else if the goal is satisfied} \\
\hspace{1em} \text{then return the plan} \\
\text{else return failure} \\
\text{repeat}
\]
Easily Solves the Sussman Anomaly

\[
\text{loop}
\]

\[
\text{if} \quad \text{there is a clear block} \ x \ \text{such that}
\]

\[
x \ \text{needs to be moved and}
\]

\[
x \ \text{can be moved to a place where it won't need to be moved}
\]

\[
\text{then move} \ x \ \text{to that place}
\]

\[
\text{else if} \ \text{there is a clear block} \ x \ \text{such that}
\]

\[
x \ \text{needs to be moved}
\]

\[
\text{then move} \ x \ \text{to the table}
\]

\[
\text{else if the goal is satisfied}
\]

\[
\text{then return the plan}
\]

\[
\text{else return failure}
\]

\[
\text{repeat}
\]
Properties

- The block-stacking algorithm:
 - Sound, complete, guaranteed to terminate
 - Runs in time $O(n^3)$
 \[\Rightarrow\] Can be modified to run in time $O(n)$
 - Often finds optimal (shortest) solutions
 - But sometimes only near-optimal (Exercise 4.22 in the book)
 \[\Rightarrow\] PLAN LENGTH for the blocks world is NP-complete
Specific vs. General Approaches

- In general, it is more useful to have a general purpose approach, such as a domain-independent planner.
- However, if there is knowledge available for a domain, it should not be ignored; but used to make the general approach more informed and thereby usually more efficient.
- One possibility to exploit knowledge in a more general way, is to combine planning and machine learning.

Applying the inductive programming system IGOR2 to learn Tower building from solution examples.
Learning A Solution Strategy for BlocksWorld

Tower (9 examples of towers with up to four blocks, 1.2 sec)
(10 corresponding examples for Clear and IsTower as BK)

\[
\begin{align*}
\text{Tower}(O, S) &= S \quad \text{if } \text{IsTower}(O, S) \\
\text{Tower}(O, S) &= \text{put}(O, \text{Sub1}(O, S), \\
&\quad \text{Clear}(O, \text{Clear}((\text{Sub1}(O, S), \\
&\quad \text{Tower}((\text{Sub1}(O, S), S))))) \quad \text{if } \neg \text{IsTower}(O, S) \\
\text{Sub1}(s(O), S) &= O.
\end{align*}
\]
Planning is search

Basic search techniques are forward (from initial state to a state fulfilling the goals) and backward (from the goals to the initial state)

For backward search an inverse state-transition operator has to be defined

Algorithms need to be sound and complete, furthermore, efficiency should be considered (branching factor during search!)

A classical planning algorithm is Strips

Strips is incomplete as demonstrated with the Sussman Anomaly

Incompleteness can be overcome by defining domain specific algorithms