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Remember ...

... in the last lecture we started to introduce resolution.

Resolution calculus is a basic approach for performing logical
proofs on a machine.
Logical formula must be rewritten into clause form, using
equivalence rules.
To perform a resolution step on a pair of clauses, literals must be
unified.
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Clausal Form

Clause Form

Conjunctive Normal Form (CNF):
Conjunction of disjunctions of literals

∧n
i=1(∨m

j=1Lij)

Clause Form:
Set of disjunctions of literals (can be generated from CNF)

Rewriting of formulas to clause form:

8 steps, illustrated with example

∀x [B(x)→ (∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬B(y)→ ¬E(x , y)] ) ]
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Clausal Form

Clause Form cont.

(0) Original Formula
∀x [B(x)→(∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬B(y)→¬E(x , y)] ) ]

(1) Remove Implications
∀x [¬B(x) ∨ (∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬(¬B(y)) ∨ ¬E(x , y)] ) ]

(2) Reduce scopes of negation
∀x [¬B(x) ∨ (∃y [O(x , y) ∧ ¬P(y)] ∧ ∀y [¬O(x , y) ∨ ¬O(y , x)] ∧ ∀y [B(y) ∨ ¬E(x , y)] ) ]

(3) Skolemization (remove existential quantifiers)
Replace existentially quantified variables by constant/function symbols.

∃x p(x) becomes p(C)

(“There exists a human who is a student.” is satisfiable if there exists a constant in the
universe U for which the sentence is true.
“Human C is a student.” is satisfiable if the constant symbol C can be interpreted such
that relation p is true.)
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Clausal Form

Clause Form cont.

Skolemization cont.
If an existentially quantified variable is in the scope of a universally
quantified variable, it is replaced by a function symbol dependent of
this variable:

∀x ∃y p(x) ∧ q(x , y) becomes ∀x p(x) ∧ q(x , f (x))

(“For all x holds, x is a positive integer and there exists a y which is greater than x .” is
satisfiable if for each x exists an y such that the relation “greater than” holds. E.g.,
f (x) can be interpreted as successor-function.)
Skolemization is no equivalence transformation. A formula and its
Skolemization are only equivalent with respect to satisfiability!
The skolemized formula has a model iff the original formula has a
model.

∀x [¬B(x) ∨ ((O(x , f (x)) ∧ ¬P(f (x))) ∧ ∀y [¬O(x , y) ∨ ¬O(y , x)] ∧ ∀y [B(y) ∨ ¬E(x , y)] ) ]
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Clausal Form

Clause Form cont.

(4) Standardize variables (“bounded renaming”)
A variable bound by a quantifier is a “dummy” and can be renamed.
Provide that each variable of universal quantifier has a different name.
(Problematic case: free variables)
∀x [¬B(x) ∨ ((O(x , f (x)) ∧ ¬P(f (x))) ∧ ∀y [¬O(x , y) ∨ ¬O(y , x)] ∧ ∀z[B(z) ∨ ¬E(x , z)] ) ]

(5) Prenex-form
Move universal quantifiers to front of the formula.
∀x∀y∀z[¬B(x)∨((O(x , f (x)) ∧ ¬P(f (x))) ∧ (¬O(x , y) ∨ ¬O(y , x)) ∧ (B(z) ∨ ¬E(x , z)) ) ]

(6) CNF
(Repeatedly apply the distributive laws)

∀x∀y∀z[(¬B(x) ∨ O(x , f (x)))∧(¬B(x) ∨ ¬P(f (x)))∧(¬B(x) ∨ ¬O(x , y) ∨ ¬O(y , x))

∧(¬B(x) ∨ B(z) ∨ ¬E(x , z)) ]
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Clausal Form

Clause Form cont.

(7) Eliminate Conjunctions
If necessary, rename variable such that each disjunction has a
different set of variables.
The truth of a conjunction entails that all its parts are true.

∀x [¬B(x) ∨ O(x , f (x))], ∀w [¬B(w) ∨ ¬P(f (w))], ∀u ∀y [¬B(u) ∨ ¬O(u, y) ∨
¬O(y , u)], ∀v ∀z[¬B(v) ∨ B(z) ∨ ¬E(v , z)]

(8) Eliminate Universal Quantifiers
Clauses are implicitly universally quantified.
M =

{¬B(x)∨O(x , f (x)),¬B(w)∨¬P(f (w)),¬B(u)∨¬O(u, y)∨¬O(y , u),¬B(v)∨B(z)∨¬E(v , z)}
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Substitution and Unification

Substitution

A substitution is a set

θ = {v1 ← t1, . . . vn ← tn}

of replacements of variables vi by terms ti .
If θ is a substitution and E an expression, E ′ = Eθ is called
instance of E .
E ′ was derived from E by applying θ to E .

Example

E = p(x) ∨ (¬q(x , y) ∧ p(f (x)))

θ = {x ← C}

Eθ = p(C) ∨ (¬q(C, y) ∧ p(f (C)))

Special case: alphabetic substitution (variable renaming).
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Substitution and Unification

Composition of Substitutions

Let be
θ = {u1 ← t1, . . .un ← tn, v1 ← s1, . . . vk ← sk} and
σ = {v1 ← r1, . . . vk ← rk ,w1 ← q1, . . .wm ← qm}.

The composition is defined as
θσ =Def {u1 ← t1σ, . . . un ← tnσ, v1 ← s1σ, . . . vk ← skσ,w1 ←
q1, . . .wm ← qm}

Composition of substitutions is not commutative!
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Substitution and Unification

Unification

Let be {E1. . . En} a set of expressions. A substitution θ is a
unificator of E1. . . En, if E1θ = E2θ . . . = Enθ.
A unificator θ is called most general unifier (mgu), if for each other
unificator σ for E1. . . En there exists a substitution γ with σ = θγ.
Theorem: If a unificator exists, then also an mgu exists.

E

σ

θ

γ

E’

There are lots of unification algorithms, e.g. one proposed by Robinson.

U. Schmid (CogSys) Intelligent Agents last change: 28. Mai 2015 11 / 45



Substitution and Unification

Examples

(1) {P(x),P(A)} θ = {x ← A}
(2) {P(f (x), y , g(y)),P(f (x), z, g(x))} θ = {y ← x , z ← x}
(3) {P(f (x , g(A, y)), g(A, y)),P(f (x , z), z)} θ = {z ← g(A, y)}
(4) {P(x , f (y),B),P(x , f (B),B)} σ = {x ← A, y ← B}

θ = {y ← B}
In (4) holds:
θ is more general than σ: σ = θγ, with γ = {x ← A}
θ is mgu for {P(x , f (y),B),P(x , f (B),B)}
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Substitution and Unification

Unification Algorithm

For a given set of formula S:
1 Let be θ = {}
2 While |S| > 1 DO

1 Calculate the disagreement set D of S
2 If D contains a variable x and a term t in which x does not occur

Then θ = θ{x ← t} and S = Sθ
Else stop (S not unifiable)

3 Return θ as mgu of S

Since S is the set of all formula, it has size one if all formula are
identical (unified by θ).
Calculation of disagreement set see practice
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Proofs by Resolution

Resolution
A clause

C =
n∨

i=1

Li

can be written as set
C = {L1, . . .Ln}.

Let be C1, C2 and R clauses. R is called resolvent of C1 and C2 if:

There are alphabetical substitutions σ1 and σ2 such that C1σ1 and C2σ2
have no common variables.

There exists a set of literals L1, . . .Lm ∈ C1σ1(m ≥ 1) and
L′

1, . . .L
′
n ∈ C2σ2(n ≥ 1) such that L = {¬L1,¬L2, . . .¬Lm,L′

1,L
′
2, . . .L

′
n}

are unifiable with θ as mgu of L.

R has the form:

R = ((C1σ1 \ {L1, . . .Lm}) ∪ (C2σ2 \ {L′
1, . . .L

′
n}))θ.
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Proofs by Resolution

Resolution cont.

Derivation of a clause by application of the resolution rule can be
described by a refutation tree:

R

C1 C2

C3

R’
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Proofs by Resolution

Illustration

C1 = {P(f (x)),¬Q(z),P(z)}
C2 = {¬P(x),R(g(x),A)}

σ1 = {}, σ2 = {x ← u}

L = {P(f (x)),P(z),¬¬P(x)} = {P(f (x)),P(z),P(u)}

θ = {z ← f (x),u ← f (x)}

{P(f(x)), ~Q(z),P(z)} {~P(u),R(g(u),A)}

{~Q(f(x)), R(g(f(x)),A)}

[z <− f(x), u <− f(x)]

R = [({P(f (x)),¬Q(z),P(z)} \ {P(f (x)),P(z)})∪
({¬P(u),R(g(u),A)} \ {P(u)})]θ = {¬Q(f (x)),R(g(f (x)),A)}
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Proofs by Resolution

Resolution Proofs

To prove that formula G (assertion) logically follows from a set of
formula (axioms) F1 . . .Fn:

Resolution Proof Strategy

1 Include the negated assumption in the set of axioms.

2 Try to derive a contradiction (empty clause).

Theorem:
A set of clauses is not satisfiable, if the empty clause (�) can be
derived with a resolution proof.
(Contradiction:
C1 = A,C2 = ¬A, stands for (A ∧ ¬A) and (A ∧ ¬A) ` �)
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Proofs by Resolution

Example

Axiom: “All humans are mortal” Fact: “Socrates is human”
(Both are non-logical: their truth is presupposed)
Assertion

“Socrates is mortal.”
Formalization:

F1 : ∀x : Human(x)→ Mortal(x)

F2 : Human(S)

F3 : ¬Mortal(S) (negation of assertion)

Clause form:

F ′1 : ¬Human(x) ∨Mortal(x)

F ′2 : Human(S)
F ′3 : ¬Mortal(S)

~Human(x) V Mortal(x)~Mortal(S)

~Human(S)

[x <− S]

Human(S)
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Proofs by Resolution

Soundness and Completeness of Res.

A calculus is sound, if only such conclusions can be derived which
also hold in the model.
A calculus is complete, if all conclusions can be derived which
hold in the model.
The resolution calculus is sound and refutation complete.

Refutation completeness means, that if a set of formula (clauses) is
unsatisfiable, then resolution will find a contradiction. Resolution cannot
be used to generate all logical consequences of a set of formula, but it
can establish that a given formula is entailed by the set. Hence, it can be
used to find all answers to a given question, using the “negated
assumption” method.

U. Schmid (CogSys) Intelligent Agents last change: 28. Mai 2015 19 / 45



Proofs by Resolution

Remarks

The proof ideas will given for resolution for propositional logic
(or ground clauses) only.
For FOL, additionally, a lifting lemma is necessary and the proofs
rely on Herbrand structures.
We cover elementary concepts of logic only.
For more details, see

Ghallab, Nau, & Traverso, Appendix B and chapter 12
Uwe Schöning, Logik für Informatiker, 5. Auflage, Spektrum, 2000.
Volker Sperschneider & Grigorios Antoniou, Logic – A foundation
for computer science, Addison-Wesley, 1991.
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Proofs by Resolution

Resolution Theorem

Theorem: A set of clauses F is not satisfiable iff the empty clause �
can be derived from F by resolution.

Soundness:
(Proof by contradiction)
Assume that � can be derived from F . If that is the case, two clauses C1 = {L}
and C2 = {¬L} must be contained in F . Because there exists no model for
L ∧ ¬L, F is not satisfiable.

Refutation completeness:
(Proof by induction over the number n of atomar formulas in F )
Assume that F is a set of formula which is not satisfiable. Because of the
compactness theorem, it is enough to consider the case that a finite
non-satisfiable subset of formula exists in F .
To show: � is derived from F . (see e.g., Schöning)
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Proofs by Resolution

Resolution Strategies

In general, there are many possibilities, to find two clauses, which
are resolvable. Of the many alternatives, there are possibly only a
few which help to derive the empty clause ↪→ combinatorial
explosion!
For feasible algorithms: use a resolution strategy
E.g., exploit subsumption to keep the knowledge space, and
therefore the search space, small.
Remove all sentences which are subsumed (more special than)
an existing sentence.
If P(x) is in the knowledge base, sentences as P(A) or
P(A) ∨Q(B) can be removed.
Well known efficient strategy: SLD-Resolution (linear resolution
with selection function for definite clauses) (e.g. used in Prolog)
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Prolog and SLD-Resoltion

SLD-Resolution

linear: Use a sequence of clauses (C0 . . .Cn) starting with the
negated assertion C0 and ending with the empty clause Cn. Each
Ci is generated as resolvent from Ci−1 and a clause from the
original set of axioms.
Selection function (for the next literal which will be resolved) e.g.
top-down-left-to-right in PROLOG; makes the strategy incomplete!
(“user” must order clauses in a suitable way)
definite Horn clauses: A Horn clause contains maximally one
positive literal; a definite Horn clause contains exactly one positive
literal (Prolog rule)
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Prolog and SLD-Resoltion

Example Prolog Program – Semantic Net

Has a trout gills?
Has a fish cells?
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Prolog and SLD-Resoltion

Example Prolog Program – Semantic Net
/∗ Example o f a h i e r a r c h i c a l semantic network i n PROLOG ∗ /
/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ e x p l i c i t i sa and has l i n k s ∗ /
/∗ f a c t s ∗ /
i sa ( animal , c rea tu re ) .
i sa ( f i s h , animal ) .
i sa ( t r o u t , f i s h ) .
i sa ( heart , organ ) .
hasprop ( animal , hear t ) .
hasprop ( organ , t i s s u e ) .
hasprop ( t i ssue , c e l l s ) .

/∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ∗ /
/∗ Reasoning Rules ∗ /

i s (A,B) :− i sa (A,B ) . /∗ T r a n s i t i v i t y o f i s ∗ /
i s (A,B) :− i sa (A,C) , i s (C,B ) .

has (A,X) :− hasprop (A,X ) . /∗ T r a n s i t i v i t y o f has ∗ /
has (X, Z ) :− hasprop (X,Y) , has (Y, Z ) .

has (A,X) :− i sa (A,B) , has (B,X ) . /∗ I nhe r i t ance of has wr t i s ∗ /
has (A,X) :− hasprop (A,Y) , i sa (Y,X ) . /∗ Genera l i z ing has wr t i s ∗ /
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Prolog and SLD-Resoltion

Prolog

PROLOG Logic

Fact isa(fish,animal). isa(Fish,Animal) Positive Literal
isa(trout,fish). isa(Trout,Fish)

Rule is(X,Y) :- is(x , y) ∨ ¬isa(x , y) Definite Clause
isa(X,Y).

is(X,Z) :- is(x , z) ∨ ¬isa(x , y)
isa(X,Y), is(Y,Z). ∨¬is(y , z)

Query is(trout,animal). ¬is(Trout,Animal) Assertion
is(fish,X). ¬is(Fish, x)
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Prolog and SLD-Resoltion

Prolog

: − denotes the “reversed” implication arrow.
is(X,Z) :- isa(X,Y), is(Y,Z).

is Prolog for:

isa(x , y) ∧ is(y , z)→ is(x , z) ≡
¬(isa(x , y) ∧ is(y , z)) ∨ is(x , z) ≡
¬isa(x , y) ∨ ¬is(y , z) ∨ is(x , z)

Variables which occur in the head of a clause are implicitly
universally quantified. Variables which occur only in the body are
existentially quantified.

∀x∀z∃y : ¬isa(x , y) ∨ ¬is(y , z) ∨ is(x , z)
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Prolog and SLD-Resoltion

Prolog Example

Query: is(fish,X)
(stands for ∃x is(Fish, x))
Negation of query: ¬∃x : is(Fish, x) ≡ ∀x : ¬is(Fish, x)

SLD-Resolution:(extract)
is(v1,v2) V ~isa(v1,v2) is(v1,v2) V ~isa(v1,v2) 

[

is(v1,v2) V ~isa(v1,v3) V ~is(v3,v2)

Fail!

~is(Fish,x)

~isa(Fish,x) isa(Fish,Animal)

[v1 <− Fish, v2 <− x]

[x <− Animal]

~is(Trout,Animal)

[v1 <− Trout, v2 <− Animal]

isa(Trout,Animal)

~is(Trout,Animal)

v1 <− Trout, v2 <− Animal]

~isa(Trout, v3) V ~is(v3, Animal) isa(Trout,Fish)

[v3 <− Fish]

~isa(Fish,Animal) isa(Fish,Animal)

Backtrack
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Prolog and SLD-Resoltion

Remarks on Prolog

When writing Prolog programs, one should be know how the
interpreter is working (i.e., understand SLD-resolution)
Sequence of clauses has influence whether an assertion which
follows logically from a set of clauses can be derived!
Efficiency: Facts before rules
Termination: non-recursive rule before recursive.

% Program % Query
isa(trout,fish). ? is(trout,animal).
isa(fish,animal).

is(X,Z) :- is(X,Y), isa(Y,Z). is(trout,Y), isa(Y,animal)
is(X,Y) :- isa(X,Y). is(trout,Y’),

isa(Y’,animal),
isa(Y,animal)
...
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Applications of Resolution

Applications of Resolution Calculus

PROLOG
as a basic method for theorem proving (others: e.g. tableaux)
Question Answering Systems

Yes/No-Questions: Assertion/Query mortal(s)

Query is(trout ,X ) corresponds to “What is a trout?”
The variable X is instantiated during resolution and the answer is
“a fish”.
buys(peter , john,X ): “What does John buy from Peter?”
buys(peter ,X , car): “Who buys a car from Peter?”
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Applications of Resolution

Theorem Provers

Theorem provers typically are more general than Prolog:
not only Horn clauses but full FOL; no interleaving of logic and
control (i.e. ordering of formulas has no effect on result)
Examples: Boyer-Moore (1979) theorem prover; OTTER, Isabelle
Theorem provers for mathematics, for verification of hardware and
software, for deductive program synthesis.
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Applications of Resolution

Forward- and Backward Chaining

Rules (e.g. in Prolog) have the form:
Premises→ Conclusion
All rule-based systems (production systems, planners, inference
systems) can be realized using either forward-chaining or
backward-chaining algorithms.
Forward chaining: Add a new fact to the knowledge base and
derive all consequences (data-driven)
Backward chaining: Start with a goal to be proved, find implication
sentences that would allow to conclude the goal, attempt to prove
the premises, etc.
Well known example for a backward reasoning expert system:
MYCIN (diagnosis of bacterial infections)
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Applications of Resolution

Logic Calculi in AI

Variants of logic calculi are part of many AI systems
Logic and logical inference is the base of most types of knowledge
representation formalisms (e.g. description logics)
Most knowledge-based systems (e.g. expert systems) are relying
on some type of deductive inference mechanism
Often, classical logic is not adequate: non-monotonic, probabilistic
or fuzzy approaches
(see “Semantische Informationsverarbeitung”)
Extensions of classical logic for dealing with time or believe:
Modal Logic (e.g., BDI-Logic for Multi-agent Systems)
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Deductive Planning

Deductive Planning

Deductive inference can be used to solve planning problems.
Introduce a situation variable to store the partial plans:

si+1 = put(A,B, si ), · · · s2 = puttable(A, s1)
s = put(A,B,puttable(A, [on(A,C), clear(A) · · · ]))

Situation calculus: Introduced by McCarthy (1963) and used for
plan construction by resolution by Green (1969)
In general: extensions of FOL (action languages)
Proof logically, that a set of goals follows from an initial state given
operator definitions (axioms)
Perform the proof in a constructive way (plan is constructed as a
byproduct of the proof)
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Deductive Planning Situation Calculus

Situation Calculus

A1 on(a, table, s1) (literal of the initial state)
A2 ∀ S[on(a, table, S)→ on(a, b, put(a, b, S))] (axiom for put-operator)

≡
¬on(a, table, S) ∨ on(a, b, put(a, b, S)) (clausal form)

Proof the goal predicate on(a, b, SF )

s2 = on(a, table, s1) with on(a, b, s2) exists and s2 can be reached by putting a on b in situation
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Deductive Planning Frame Problem

Frame Problem

No closed world assumption ↪→ full expressive power of FOL
Problem:
additionally to axioms describing the effects of actions, frame
axioms become necessary
Frame axioms are necessary to allow proofing conjunctions of
goal literals.
Example for a frame axiom:
∀ S[on(Y ,Z ,S)→ on(Y ,Z ,put(X ,Y ,S))]
on(Y, Z, put(X, Y, S)) ← on(Y, Z, S)
After a block X was put on a block Y , it still holds that Y is lying on
a block Z , if this did hold before the action was performed.
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Deductive Planning Frame Problem

Blocksworld in Prolog

Effect Axioms:

on(X, Y, put(X, Y, S))← clear(X, S) ∧ clear(Y, S)
clear(Z, put(X, Y, S))← on(X, Z, S) ∧ clear(X, S) ∧ clear(Y, S)
clear(Y, puttable(X, S))← on(X, Y, S) ∧ clear(X, S)
ontable(X, puttable(X, S))← clear(X, S)

Frame Axioms:

clear(X, put(X, Y, S))← clear(X, S) ∧ clear(Y, S)
clear(Z, put(X, Y, S))← clear(X,S) ∧ clear(Y, S) ∧ clear(Z, S)
ontable(Y, put(X, Y, S))← clear(X, S) ∧ clear(Y, S) ∧ ontable(Y, S)
ontable(Z, put(X, Y, S))← clear(X, S) ∧ clear(Y, S) ∧ ontable(Z, S)
on(Y, Z, put(X, Y, S))← clear(X, S) ∧ clear(Y, S) ∧ on(Y, Z, S)
on(W, Z, put(X, Y, S))← clear(X, S) ∧ clear(Y, S) ∧ on(W, Z, S)
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Deductive Planning Frame Problem

Blocksworld in Prolog cont.

Frame Axioms cont.:

clear(Z, puttable(X, S))← clear(X, S) ∧ clear(Z, S)
ontable(Z, puttable(X, S))← clear(X, S) ∧ ontable(Z, S)
on(Y, Z, puttable(X, S))← clear(X, S) ∧ on(Y, Z, S)
clear(Z, puttable(X, S))← on(Y, X, S) ∧ clear(Y, S) ∧ clear(Z, S)
ontable(Z, puttable(X, S))← on(Y, X, S) ∧ clear(Y, S) ∧ ontable(Z, S)
on(W, Z, puttable(X, S))← on(Y, X, S) ∧ clear(Y, S) ∧ on(W, Z, S)

Facts (Initial State):

on(d, c, s1) on(c, a, s1)
clear(d, s1) clear(b, s1)
ontable(a, s1) ontable(b, s1)

Theorem (Goal):

on(a, b, S) ∧ on(b, c, S)
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SAT-Planning

Planning as Satisfiability Problem (SAT-Planing)

Propositional satisfiability: given a boolean formula, does there
exist an assignment of truth values that makes the formula true
(e.g., a model)?
Very first problem shown to be NP-complete
Many algorithms exist which work on average case polynomial
time (e.g., Davis-Putnam, GSAT)
Encode a planning problem P with a fixed length solution path n
as satisfiability problem Ψ (see lecture Formal Characteristics)
That is based on set-theoretical representation
Frame axioms are needed to describe what does not change
Introduction of additional argument to represent plan-length
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SAT-Planning

Example

Planning domain:
� one robot r1
� two adjacent locations l1, l2
� one planning operator

(to move the robot from one location to another)

Encode (P,n) where n = 1

1. Initial state: {at(r1, l1)}
Encoding: at(r1, l1,0) ∧ ¬at(r1, l2,0)

2. Goal: {at(r1, l2)}
Encoding: at(r1, l2,1) ∧ ¬at(r1, l1,1)

3. Operator: see next slide
Dana Nau: Lecture slides for Automated Planning
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SAT-Planning

Example (continued)

Operator: move(r,l,l’)
precond: at(r,l)
effects: at(r,l’), ¬at(r,l)

Encoding:
move(r1, l1, l2,0)⇒ at(r1, l1,0) ∧ at(r1, l2,1) ∧ ¬at(r1, l1,1)
move(r1, l2, l1,0)⇒ at(r1, l2,0) ∧ at(r1, l1,1) ∧ ¬at(r1, l2,1)
move(r1, l1, l1,0)⇒ at(r1, l1,0) ∧ at(r1, l1,1) ∧ ¬at(r1, l1,1)

}
contradictions

move(r1, l2, l2,0)⇒ at(r1, l2,0) ∧ at(r1, l2,1) ∧ ¬at(r1, l2,1) (easy to detect)

move(l1, r1, l2,0)⇒ · · · nonsensical, and we can avoid
generating them if we use data types
like we did for state-variable
representation

move(l2, r1, l1,0)⇒ · · ·
}

move(l1, r2, l1,0)⇒ · · ·
move(l2, r1, l1,0)⇒ · · ·

Operator: move(r : robot,l :location,l’ :location)
precond: at(r,l)
effects: at(r,l’), ¬at(r,l)

Dana Nau: Lecture slides for Automated Planning
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SAT-Planning

Example (continued)

4. Complete-exclusion axiom:
¬move(r1, l1, l2,0) ∧ ¬move(r1, l2, l1,0)

5. Explanatory frame axioms:
¬at(r1, l1,0) ∧ at(r1, l1,1)⇒ move(r1, l2, l1,0)
¬at(r1, l2,0) ∧ at(r1, l2,1)⇒ move(r1, l1, l2,0)
at(r1, l1,0) ∧ ¬at(r1, l1,1)⇒ move(r1, l1, l2,0)
at(r1, l2,0) ∧ ¬at(r1, l2,1)⇒ move(r1, l2, l1,0)

Φ is the conjunct of all these

Dana Nau: Lecture slides for Automated Planning
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SAT-Planning

Summary of the Example

P is a planning problem with one robot and two locations

� initial state {at(r1,l1)}
� goal {at(r1,l2)}

Encoding of (P,1)

� Φ =

[at(r1,l1,0)∧¬ at(r1,l2,0)] (initial state)
∧[at(r1,l2,0)∧¬ at(r1,l1,1)] (goal)
∧[move(r1,l1,l2,0)⇒at(r1,l1,0)∧at(r1,l2,1)∧¬ at(r1,l1,1)] (action)
∧[move(r1,l2,l1,0)⇒at(r1,l2,0)∧at(r1,l1,1)∧¬ at(r1,l2,1)] (action)
∧[¬move(r1,l1,l2,0)∨¬move(r1,l2,l1,0)] (complete exclusion)
∧[¬at(r1,l1,0)∧ at(r1,l1,1)⇒ move(r1,l2,l1,0)] (frame axiom)
∧[¬at(r1,l2,0)∧ at(r1,l2,1)⇒ move(r1,l1,l2,0)] (frame axiom)
∧[at(r1,l1,0)∧ ¬at(r1,l1,1)⇒ move(r1,l1,l2,0)] (frame axiom)
∧[at(r1,l2,0)∧ ¬at(r1,l2,1)⇒ move(r1,l2,l1,0)] (frame axiom)

Dana Nau: Lecture slides for Automated Planning
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SAT-Planning

Extracting a Plan

Let Φ be an encoding of (P,n)
Suppose we find an assignment of truth values that satisfies Φ.
� This means P has a solution of length n

For i = 1, . . . ,n, there will be exactly one action a such that
ai = true
� This is the i ’th action of the plan

Example:
The formula on the previous side
� Φ can be satisfied with move(r1,l1,l2,0) = true
⇒ Thus 〈move(r1,l1,l2,0)〉 is a solution for (P,1)

� It’s the only solution - no other way to satisfy Φ

Dana Nau: Lecture slides for Automated Planning
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Summary

Summary
Resolution is defined for clausal form
Logical formula can be rewritten in conjunctive normal form from which a
set of clauses can be generated
Rewriting into clausal form relies on equivalence rules, Skolemization is
not an equivalence transformation but a formula and its Skolemization
are equivalent w.r.t. satisfiability
In FOL, identify of formulas can be established by restricting their scope:
The most general unifier is defined as the minimal set of substitution of
variables by terms to make two formulas equal.
Resolution is a proof by contradiction.
For implementing resolution, a strategy to select clauses for refutation is
necessary.
Prolog is a resolution prover based on SLD-resolution.
Deductive planning is based on search for a constructive proof that the
goals are entailed by the effect and frame axioms for a problem domain.
SAT-planning used efficient SAT-solving algorithms. Problems have to be
rewritten in set-theoretic representation and frame axioms have to be
included.
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