AI-KI-B
Problem Solving by Search in State-Spaces

Ute Schmid & Diedrich Wolter
Practice: Johannes Rabold & student assistants

Cognitive Systems and Smart Environments
Applied Computer Science, University of Bamberg

last change: 26. April 2020
In a nutshell: AI Search Algorithms

- Problem solving, planning, automated inference – and most other areas of AI – depend on intelligent search
- Basic concept: state space (or problem space) an abstract representation of the (real) states in the world and (real) actions which allow to reach one state from another

![Diagram of state space](image)

e.g.: initial state tower ‘C A B’ and goal state tower ‘A B C’ admissible sequence of actions: put C on table, put B on table, put A on table, put B on C, put A on B
In a nutshell: AI Search Algorithms

- Problem solving: search for a (shortest) path from an initial state to a state which fulfills a set of problem solving goals
- AI search algorithms mostly are variants of depth-first search where only a small part of states is explored – because state spaces are much too large to apply standard graph search algorithms (e.g. the Dijkstra algorithm)
- A good heuristics can reduce search effort dramatically. However, the heuristics must be carefully designed in a way that
 - the (shortest) solution has a chance to be found (completeness) and that
 - the result is indeed an admissible solution (soundness).
• Introduction of running example
• Search Tree
• Uniformed Systematic Search
 • Depth-First Search (DFS)
 • Breadth-First Search (BFS)
• Complexity of Blocks-World
• Cost-based Optimal Search
 • Uniform Cost Search
• Cost Estimation (Heuristic Function)
• Heuristic Search Algorithms
 • Hill Climbing (Depth-First, Greedy)
 • Branch and Bound Algorithms (BFS-based)
 • Best First Search
 • A*
• Generic Algorithm for Graph Search
• Designing Heuristic Functions
In the following: We are not concerned with how a single state transformation is calculated (see state-space planning)

We represent problems as graphs with abstract states (nodes) and abstract actions (arcs), i.e. state spaces

If we label arcs with numbers, the numbers represent **costs** of the different actions (time, resources).

Illustration: Navigation problem with nodes as cities and arcs as direct connections; blocksworld problems with nodes as constellations of blocks and arcs as put/puttable operators (might have different costs for different blocks)

Please note: In general the state-space (graph) is not given explicitly!

A part of the state space is constructed during search (the states which we explore) in form of a **search tree**.
Example Search Tree

Initial State

Finale State

operator cost

cycle

deadend
There exist different **search strategies**:
- **Basic, uninformed (‘blind’) methods**: random search, systematic strategies (depth-first, breadth-first)
- **Search algorithms for operators with different costs**
- **Heuristic search**: use assumptions to guide the selection of the next candidate operator
During search for a solution, starting from an initial state, a search tree is generated.

- **Root**: initial state
- Each **path from the root to a leaf**: (partial) solution
- **Intermediate nodes**: intermediate states
- **Leafs**: Final states or dead ends

If the same state appears more than once on a path, we have a **cycle**. Without cycle-check search might not terminate! (infinite search tree)
Overall Search Strategy

As long as no final state is reached or there are still reachable, yet unexplored states:

- Collect all operators which can be applied in the current state

 Match state with application conditions

- **Select** on applicable operator.

 In our example: alphabetic order of the labels of the resulting node.

 In general: give a preference order

- **Apply** the operator, generating a successor state

Remark:

⇒ The **Match-Select-Apply Cycle** is the core of “production systems” (see human problem solving)

⇒ Select is realized with respect to the different search algorithms
A **problem** is defined by the following components:

- Initial state
- Actions or successor function $S(x)$, can be associated with costs
- Goal test: explicit (current state equals goal state or current state includes all goals) or implicit (as boolean test, e.g. checkmate(x))

A **problem solution** is a sequence of actions leading from the initial state to a goal state

Problem solving and planning

- Problem solving: focus on search algorithms
- Planning: language for representing problem domains and problems + planning (i.e. search) algorithm (e.g. PDDL as representation language, FF-plan as algorithm)
• A search algorithm generates a sequence of actions.
• This sequence of actions is called a solution of a problem or admissible,
 • if the sequence transforms the initial state in a goal state and
 • if all states on the solution path are states which are possible in the problem domain.
• Proofs of formal characteristics of a search algorithm (e.g. soundness and completeness) are based on the notion of state-space as the world (semantic) in which the action sequence is executed.
• The concept of a state space has been introduced by the AI pioneers Newell and Simon under the name of a problem space.
Depth-First Search

• Construct one path from initial to final state.
• Backtracking:
 Go back to predecessor state and try to generate another successor state (if none exists, backtrack again etc.), if:
 • the reached state is a dead-end, or
 • the reached state was already reached before (cycle)
• Data structure to store the already explored states: **Stack**; depth-first is based on a “last in first out” (LIFO) strategy
• Cycle check: does the state already occur in the path.
• Result: in general not the shortest path (but the first path)
Effort of Depth-First Search

• In the best-case, depth-first search finds a solution in linear time $O(d)$, for d as average depth of the search tree: Solution can be found on a path of depth d and the first path is already a solution.

• In the worst-case, the complete search-tree must be generated: The problem has only one possible solution and this path is created as the last one during search; or the problem has no solution and the complete state-space must be explored.
Remark: Depth-First Search

The most parsimonious way to store the (partial) solution path is to push always only the current state on the stack. Problem: additional infrastructure for backtracking (remember which operators were already applied to a fixed state)

In the following: push always the partial solution path to the stack.
Depth-First Algorithm

Winston, 1992

To conduct a depth-first search,

- Form a one-element stack consisting of a zero-length path that contains only the root node.
- Until the top-most path in the stack terminates at the goal node or the stack is empty,
 - Pop the first path from the stack; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - Push the new paths, if any, on the stack.
- If the goal node is found, announce success; otherwise announce failure.
Depth-First Example

(((S))

(((S A) (S B))

(((S A B) (S A F) [(S A S]) (S B))

(((S A B C) (S A B D) [(S A B S]) (S A F) (S B))

[((S A B C B)) (S A B C F) (S A B D) (S A F) (S B))

Schmid & Wolter (Applied CS, UBA)
• The search tree is expanded level-wise.
• No backtracking necessary.
• Data structure to store the already explored states: **Queue** breadth-first is based on a “first in first out” (FIFO) strategy
• Cycle check:
 for finite state-spaces not necessary for termination (but for efficiency)
• Result: shortest solution path
• Effort: If a solution can be first found on level d of the search tree and for an average branching factor b: $O(b^d)$
Breadth-First Algorithm

Winston, 1992
To conduct a breadth-first search,

- Form a one-element queue consisting of a zero-length path that contains only the root node.
- Until the first path in the queue terminates at the goal node or the queue is empty,
 - Remove the first path from the queue; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - Add the new paths, if any, to the back of the queue.
- If the goal node is found, announce success; otherwise announce failure.
(((S))
(((S A) (S B))
(((S B) (S A B) (S A F) [(S A S)])
(((S A B) (S A F) (S B A) (S B C) (S B D) [(S B S)])
(((S A F) (S B A) (S B C) (S B D) (S A B C) (S A B D) [(S A B S)]))
Complexity of Blocksworld Problems

Remember: Problems can be characterized by their complexity, most problems considered in AI are NP-hard.

<table>
<thead>
<tr>
<th># blocks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td># states</td>
<td>1</td>
<td>3</td>
<td>13</td>
<td>73</td>
<td>501</td>
</tr>
<tr>
<td>approx.</td>
<td>1.0×10^0</td>
<td>3.0×10^0</td>
<td>1.3×10^1</td>
<td>7.3×10^1</td>
<td>5.0×10^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># blocks</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td># states</td>
<td>4051</td>
<td>37633</td>
<td>394353</td>
<td>4596553</td>
<td>58941091</td>
</tr>
<tr>
<td>approx.</td>
<td>4.1×10^3</td>
<td>3.8×10^4</td>
<td>3.9×10^5</td>
<td>4.6×10^6</td>
<td>5.9×10^7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># blocks</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td># states</td>
<td>824073141</td>
<td>12470162233</td>
<td>202976401213</td>
<td>3535017524403</td>
<td>65573803186921</td>
</tr>
<tr>
<td>approx.</td>
<td>8.2×10^8</td>
<td>1.3×10^{10}</td>
<td>2.0×10^{11}</td>
<td>3.5×10^{12}</td>
<td>6.6×10^{13}</td>
</tr>
</tbody>
</table>

Blocksworld problems are **PSpace-complete**: even for a polynomial time algorithm, an exponential amount of memory is needed!
Time and Memory Requirements

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 ms</td>
<td>100 Byte</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>0.1 sec</td>
<td>11 Kilo Byte</td>
</tr>
<tr>
<td>4</td>
<td>11.111</td>
<td>11 sec</td>
<td>1 Mega Byte</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 min</td>
<td>111 Mega Byte</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 h</td>
<td>11 Giga Byte</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
<td>1 Tera Byte</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 Tera Byte</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3500 years</td>
<td>11.111 Tera Byte</td>
</tr>
</tbody>
</table>

Breadth-first search with branching factor $b = 10$, 1000 nodes/sec, 100 bytes/node

Memory requirements are the bigger problem!
Evaluation of DFS and BFS

• **Soundness:** A node s is only expanded to such a node s' where (s, s') is an arc in the state space (application of a legal operator whose preconditions are fulfilled in s)

• **Termination:** For finite sets of states guaranteed.

• **Completeness:** If a finite length solution exists.

• **Optimality:** Depth-first no, breadth-first yes

• worst case $O(b^d)$ for both, average case better for depth-first

 \leftrightarrow If you know that there exist many solutions, that the average solution length is rather short and if the branching factor is rather high, use depth-first search, if you are not interested in the optimal but just in some admissible solution.

• Prolog is based on a depth-first search-strategy.

• Typical planning algorithms are depth-first.
Uniform Cost Search

- Variation of breadth-first search for operators with different costs.
- Path-cost function $g(n)$: summation of all costs on a path from the root node to the current node n.

 Remark: Please note that $g(n)$ denotes the accumulated costs for one specific path from the root to node n: $\sum_{i=0}^{n} c(i, i + 1)$ if nodes i and $i + 1$ are on the selected path.
- Costs must be positive, such that $g(n) < g(\text{successor}(n))$.

 Remark: This restriction is stronger than necessary. To omit non-termination when searching for an optimal solution it is enough to forbid negative cycles.
- Always sort the paths in ascending order of costs.
- If all operators have equal costs, uniform cost search behaves exactly like breadth-first search.
- Uniform cost search is closely related to branch-and-bound algorithms (cf. operations research).
Uniform Cost Algorithm

To conduct a uniform cost search,

- Form a one-element queue consisting of a zero-length path that contains only the root node.
- Until the first path in the queue terminates at the goal node or the queue is empty,
 - Remove the first path from the queue; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - Add the new paths, if any, to the queue and sort the queue with respect to costs.
- If the goal node is found, announce success; otherwise announce failure.
Uniform Cost Example

(omitting cycles)

((S).0)
((S A).3 (S B).4)
((S A B).5 (S A F).6 (S B).4)
sort
sort
sort
((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)
((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)
sort
((S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
sort
((S A B C F).8 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
sort
((S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7 (S A B C F).8)

Note:

- Termination if first path in the queue (i.e. shortest path) is solution, only then it is guaranteed that the found solution is optimal!
- A more efficient realisation of UCS would override the alphabetical order of terminal nodes when the terminal node is the goal state (of course while keeping the order wrt costs!)
• **Depth-limited search:**
 Impose a cut-off (e.g. \(n \) for searching a path of length \(n - 1 \)), expand nodes with max. depth first until cut-off depth is reached (LIFO strategy, since variation of depth-first search).

• **Bidirectional search:**
 forward search from initial state & backward search from goal state, stop when the two searches meet. Average effort \(O(b^{d/2}) \) if testing whether the search fronts intersect has constant effort \(O(1) \).

• In AI, the problem graph is typically not known. If the graph is known, to find *all* optimal paths in a graph with labeled arcs, **standard graph algorithms** can be used. E.g., the Dijkstra algorithm, solving the single source shortest paths problem (calculating the minimal spanning tree of a graph).