
AI-KI-B
Problem Solving by Search in State-Spaces

Ute Schmid & Diedrich Wolter
Practice: Johannes Rabold & student assistants

Cognitive Systems and Smart Environments
Applied Computer Science, University of Bamberg

last change: 22. April 2021

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 1 / 27

In a nutshell: AI Search Algorithms

• Problem solving, planning, automated inference – and most other
areas of AI – depend on intelligent search

• Basic concept: state space (or problem space)
an abstract representation of the (real) states in the world and (real)
actions which allow to reach one state from another

e.g.: initial state tower ‘C A B’ and goal state tower ‘A B C’ admissible sequence of actions: put

C on table, put B on table, put A on table, put B on C, put A on B

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 2 / 27

In a nutshell: AI Search Algorithms

• Problem solving: search for a (shortest) path from an initial state to a
state which fulfills a set of problem solving goals

• AI search algorithms mostly are variants of depth-first search where
only a small part of states is explored – because state spaces are
much too large to apply standard graph search algorithms (e.g. the
Dijkstra algorithm)
• A good heuristics can reduce search effort dramatically. However, the

heuristics must be carefully designed in a way that
• the (shortest) solution has a chance to be found (completeness)

and that
• the result is indeed an admissible solution (soundness).

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 3 / 27

Outline

• Introduction of running example

• Search Tree
• Uninformed Systematic Search

• Depth-First Search (DFS)
• Breadth-First Search (BFS)

• Complexity of Blocks-World
• Cost-based Optimal Search

• Uniform Cost Search

• Cost Estimation (Heuristic Function)
• Heuristic Search Algorithms

• Hill Climbing (Depth-First, Greedy)
• Branch and Bound Algorithms (BFS-based)

• Best First Search
• A*

• Generic Algortithm for Graph Search

• Designing Heuristic Functions

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 4 / 27

Running Example

• In the following: We are not concerned with how a single state
transformation is calculated (see state-space planning)

• We represent problems as graphs with abstract states (nodes) and
abstract actions (arcs), i.e. state spaces

• If we label arcs with numbers, the numbers represent costs of the
different actions (time, resources).

• Illustration: Navigation problem with nodes as cities and arcs as direct
connections; blocksworld problems with nodes as constellations of
blocks and arcs as put/puttable operators (might have different costs
for different blocks)

• Please note: In general the state-space (graph) is not given explicitly!

• A part of the state space is constructed during search (the states
which we explore) in form of a search tree.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 5 / 27

Example Search Tree

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 6 / 27

Search Algorithms

• There exist different search strategies:
• Basic, uninformed (‘blind’) methods:

random search, systematic strategies (depth-first, breadth-first)

• Search algorithms for operators with different costs

• Heuristic search:
use assumptions to guide the selection of the next candidate operator

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 7 / 27

Search Tree

• During search for a solution, starting from an initial state, a search
tree is generated.
• Root: initial state
• Each path from the root to a leaf: (partial) solution
• Intermediate nodes: intermediate states
• Leafs: Final states or dead ends

• If the same state appears more than once on a path, we have a cycle.
Without cycle-check search might not terminate! (infinite search tree)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 8 / 27

Overall Search Strategy

As long as no final state is reached or there are still reachable, yet
unexplored states:

• Collect all operators which can be applied in the current state
Match state with application conditions

• Select on applicable operator.
In our example: alphabetic order of the labels of the resulting node.
In general: give a preference order

• Apply the operator, generating a successor state

Remark:

⇒ The Match-Select-Apply Cycle is the core of “production systems”
(see human problem solving)

⇒ Select is realized with respect to the different search algorithms

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 9 / 27

Problem Solving

• A problem is defined by the following components:
• Initial state
• Actions or successor function S(x), can be associated with costs
• Goal test: explicit (current state equals goal state or current state

includes all goals) or implicit (as boolean test, e.g. checkmate(x))

• A problem solution is a sequence of actions leading from the initial
state to a goal state
• Problem solving and planning

• Problem solving: focus on search algorithms
• Planning: language for representing problem domains and problems +

planning (i.e. search) algorithm (e.g. PDDL as representation language,
FF-plan as algorithm)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 10 / 27

State-Space and Admissibility

• A search algorithm generates a sequence of actions.
• This sequence of actions is called a solution of a problem or

admissible,
• if the sequence transforms the initial state in a goal state and
• if all states on the solution path are states which are possible in the

problem domain.

• Proofs of formal characteristics of a search algorithm (e.g. soundness
and completeness) are based on the notion of state-space as the world
(semantic) in which the action sequence is executed.

• The concept of a state space has been introduced by the AI pioneers
Newell and Simon under the name of a problem space.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 11 / 27

Depth-First Search

• Construct one path from initial to final state.

• Backtracking:
Go back to predecessor state and try to generate another successor state
(if none exists, backtrack again etc.), if:

• the reached state is a dead-end, or
• the reached state was already reached before (cycle)

• Data structure to store the already explored states:
Stack; depth-first is based on a “last in first out” (LIFO) strategy

• Cycle check: does the state already occur in the path.

• Result: in general not the shortest path (but the first path)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 12 / 27

Effort of Depth-First Search

• In the best-case, depth-first search finds a solution in linear time
O(d), for d as average depth of the search tree: Solution can be
found on a path of depth d and the first path is already a solution.

• In the worst-case, the complete search-tree must be generated: The
problem has only one possible solution and this path is created as the
last one during search; or the problem has no solution and the
complete state-space must be explored.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 13 / 27

Remark: Depth-First Search

• The most parsimonious way to store the (partial) solution path is to
push always only the current state on the stack.
Problem: additional infrastructure for backtracking
(remember which operators were already applied to a fixed state)

• In the following: push always the partial solution path to the stack.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 14 / 27

Depth-First Algorithm

Winston, 1992
To conduct a depth-first search,

• Form a one-element stack consisting of a zero-length path that contains only the
root node.

• Until the top-most path in the stack terminates at the goal node or the stack is

empty,

• Pop the first path from the stack; create new paths by extending the
first path to all neighbors of the terminal node.

• Reject all new paths with loops.
• Push the new paths, if any, on the stack.

• If the goal node is found, announce success; otherwise announce failure.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 15 / 27

Depth-First Example

((S))
((S A) (S B))
((S A B) (S A F) [(S A S)] (S B))
((S A B C) (S A B D) [(S A B S)] (S A F) (S B))
([(S A B C B)] (S A B C F) (S A B D) (S A F) (S B))

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 16 / 27

Breadth-First Search

• The search tree is expanded level-wise.

• No backtracking necessary.

• Data structure to store the already explored states:
Queue breadth-first is based on a “first in first out” (FIFO) strategy

• Cycle check:
for finite state-spaces not necessary for termination (but for efficiency)

• Result: shortest solution path

• Effort: If a solution can be first found on level d of the search tree
and for an average branching factor b: O(bd)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 17 / 27

Breadth-First Algorithm

Winston, 1992
To conduct a breadth-first search,

• Form a one-element queue consisting of a zero-length path that contains only the
root node.

• Until the first path in the queue terminates at the goal node or the queue is empty,

• Remove the first path from the queue; create new paths by extending
the first path to all neighbors of the terminal node.

• Reject all new paths with loops.
• Add the new paths, if any, to the back of the queue.

• If the goal node is found, announce success; otherwise announce failure.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 18 / 27

Breath-First Example

((S))
((S A) (S B))
((S B) (S A B) (S A F) [(S A S)])
((S A B) (S A F) (S B A) (S B C) (S B D) [(S B S)])
((S A F) (S B A) (S B C) (S B D) (S A B C) (S A B D) [(S A B S)])

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 19 / 27

Complexity of Blocksworld Problems

Remember: Problems can be characterized by their complexity, most problems

considered in AI are NP-hard.

blocks 1 2 3 4 5
states 1 3 13 73 501

approx. 1.0 × 100 3.0 × 100 1.3 × 101 7.3 × 101 5.0 × 102

blocks 6 7 8 9 10
states 4051 37633 394353 4596553 58941091

approx. 4.1 × 103 3.8 × 104 3.9 × 105 4.6 × 106 5.9 × 107

#blocks 11 12 13 14 15
states 824073141 12470162233 202976401213 3535017524403 65573803186921

approx. 8.2 × 108 1.3 × 1010 2.0 × 1011 3.5 × 1012 6.6 × 1013

Blocksworld problems are PSpace-complete:

even for a polynomial time algorithm, an exponential amount of memory is needed!

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 20 / 27

Time and Memory Requirements

Depth Nodes Time Memory
0 1 1 ms 100 Byte
2 111 0.1 sec 11 Kilo Byte
4 11.111 11 sec 1 Mega Byte
6 106 18 min 111 Mega Byte
8 108 31 h 11 Giga Byte
10 1010 128 days 1 Tera Byte
12 1012 35 years 111 Tera Byte
14 1014 3500 years 11.111 Tera Byte

Breadth-first search with branching factor b = 10, 1000 nodes/sec, 100 bytes/node ↪→
Memory requirements are the bigger problem!

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 21 / 27

Evaluation of DFS and BFS

• Soundness: A node s is only expanded to such a node s ′ where (s, s ′) is an
arc in the state space (application of a legal operator whose preconditions
are fulfilled in s)

• Termination: For finite sets of states guaranteed.

• Completeness: If a finite length solution exists.

• Optimality: Depth-first no, breadth-first yes

• worst case O(bd) for both, average case better for depth-first
↪→ If you know that there exist many solutions, that the average solution length is

rather short and if the branching factor is rather high, use depth-first search, if you

are not interested in the optimal but just in some admissible solution.

• Prolog is based on a depth-first search-strategy.

• Typical planning algorithms are depth-first.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 22 / 27

Uniform Cost Search

• Variation of breadth-first search for operators with different costs.

• Path-cost function g(n): summation of all costs on a path from the root
node to the current node n.
Remark: Please note that g(n) denotes the accumulated costs for one specific path

from the root to node n:
∑n

i=0 c(i , i + 1) if nodes i and i + 1 are on the selected

path.

• Costs must be positive, such that g(n) < g(successor(n)).
Remark: This restriction is stronger then necessary. To omit non-termination
when searching for an optimal solution it is enough to forbid negative cycles.

• Always sort the paths in ascending order of costs.

• If all operators have equal costs, uniform cost search behaves exactly like
breadth-first search.

• Uniform cost search is closely related to branch-and-bound algorithms
(cf. operations research).

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 23 / 27

Uniform Cost Algorithm

To conduct a uniform cost search,

• Form a one-element queue consisting of a zero-length path that contains only the
root node.

• Until the first path in the queue terminates at the goal node or the queue is empty,

• Remove the first path from the queue; create new paths by extending
the first path to all neighbors of the terminal node.

• Reject all new paths with loops.
• Add the new paths, if any, to the queue and sort the queue with

respect to costs.

• If the goal node is found, announce success; otherwise announce failure.

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 24 / 27

Uniform Cost Example

(omitting cycles)
((S).0)
((S A).3 (S B).4)
((S A B).5 (S A F).6 (S B).4)
sort
((S B).4 (S A B).5 (S A F).6)
((S B A).6 (S B C).5 (S B D).6 (S A B).5 (S A F).6)
sort
((S A B).5 (S B C).5 (S A F).6 (S B A).6 (S B D).6)
((S A B C).6 (S A B D).7 (S B C).5 (S A F).6 (S B A).6 (S B D).6)
sort
((S B C).5 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)

((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 25 / 27

Uniform Cost Example cont.

((S B C F).7 (S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7)
sort
((S A B C).6 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
((S A B C F).8 (S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7)
sort

((S A F).6 (S B A).6 (S B D).6 (S A B D).7 (S B C F).7 (S A B C F).8)

Note:

• Termination if first path in the queue (i.e. shortest path) is solution,
only then it is guaranteed that the found solution is optimal!

• A more efficient realisation of UCS would override the alphabetical
order of terminal nodes when the terminal node is the goal state (of
course while keeping the order wrt costs!)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 26 / 27

Further Search Algorithms

• Depth-limited search:
Impose a cut-off (e.g. n for searching a path of length n − 1), expand
nodes with max. depth first until cut-off depth is reached (LIFO
strategy, since variation of depth-first search).

• Bidirectional search:
forward search from initial state & backward search from goal state,

stop when the two searches meet. Average effort O(b
d
2) if testing

whether the search fronts intersect has constant effort O(1).

• In AI, the problem graph is typically not known. If the graph is
known, to find all optimal paths in a graph with labeled arcs,
standard graph algorithms can be used. E.g., the Dijkstra
algorithm, solving the single source shortest paths problem
(calculating the minimal spanning tree of a graph).

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Search Summer 2020 27 / 27

	In a nutshell
	Outline
	Problem, State Space, Search Tree
	Uniformed Systematic Search
	Depth-First Search
	Breadth-First Search

	Complexity of Blocks-World
	Cost-based Optimal Search
	Uniform Cost Search

