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Reasoning in First Order Logic

• Logic as a formal language for automated reasoning

• Propositional logic (‘Ausagenlogik’): Atomic formula are propositions
which evaluate to true or false, proof of truth of a formula by truth
table based on the semantics of junctors

• First order logic (‘Pädikatenlogik erster Stufe’): More expressive,
allows for predicates over terms, only semi-decidable
• One of the most influential calculi for first order logic: resolution

calculus
• Resolution was introduced by Robinson (1965) as a mechanic way (a

calculus) to perform logical proofs.
• Logical formula must be rewritten into clause form, using

equivalence rules.
• To perform a resolution step on a pair of clauses, literals must be

unified.
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Outline

• Semantic Equivalence

• Clausal Form

• Substitution and Unification

• Proofs by Resolution

• Prolog and SLD-Resolution

• Applications of Resolution

• Reasoning and Inference
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Semantic Equivalence

• Two formulas F and G are called equivalent, if for each
interpretation of G and F holds that G is valid iff F is valid. We write
F ≡ G .

• Theorem: Let be F ≡ G . Let H be a formula where F appears as a
sub-formula. Let H ′ be a formula derived from H by replacing F by
G . Then it holds H ≡ H ′.

• Equivalences can be used to rewrite formulas.

‘iff’ is an abbreviation for ‘if and only if’ (genau dann wenn)

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Resolution Calculus Summer 2020 4 / 48



Semantic Equivalence cont.

(F ∧ F ) ≡ F , (F ∨ F ) ≡ F (idempotency)

(F ∧ G ) ≡ (G ∧ F ), (F ∨ G ) ≡ (G ∨ F ) (commutativity)

((F ∧ G ) ∧ H) ≡ (F ∧ (G ∧ H)), ((F ∨ G ) ∨ H) ≡ (associativity)
(F ∨ (G ∨ H))

(F ∧ (F ∨ G )) ≡ F , (F ∨ (F ∧ G )) ≡ F (absorption)

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H)), (distributivity)
(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))

¬¬F ≡ F (double negation)

¬(F ∧ G ) ≡ (¬F ∨ ¬G ), ¬(F ∨ G ) ≡ (¬F ∧ ¬G ) (de Morgan)

(F → G ) ≡ (¬F ∨ G ) (remove implication)

F ∨ ¬F ≡ true (tautology)

F ∧ ¬F ≡ false (contradiction)
Remark: This is the tertium non datur principle of classical logic.
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Semantic Equivalence cont.

¬∀x F ≡ ∃x ¬F , ¬∃x F ≡ ∀x ¬F

(F ∨ G ) ≡ F , if F tautology;
(F ∧ G ) ≡ G , if F tautology
(F ∨ G ) ≡ G , if F contradiction;
(F ∧ G ) ≡ F , if F contradiction

If x is not free in G it holds:
(∀x F ∧ G ) ≡ ∀x (F ∧ G ), (∀x F ∨ G ) ≡ ∀x (F ∨ G ),
(∃x F ∧ G ) ≡ ∃x (F ∧ G ), (∃x F ∨ G ) ≡ ∃x (F ∨ G )

(∀x F ∧ ∀x G ) ≡ ∀x (F ∧ G ), (∃x F ∨ ∃x G ) ≡ ∃x (F ∨ G )

∀x∀yF ≡ ∀y∀xF , ∃x∃yF ≡ ∃y∃xF
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Clause Form

• Conjunctive Normal Form (CNF):
Conjunction of disjunctions of literals

∧ni=1(∨mj=1Lij)

• Clause Form:
Set of disjunctions of literals (can be generated from CNF)

Rewriting of formulas to clause form:

8 steps, illustrated with example

∀x[B(x)→ (∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬B(y)→ ¬E(x , y)])]
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Clause Form cont.

(0) Original Formula
∀x[B(x)→(∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬B(y)→¬E(x , y)])]

(1) Remove Implications
∀x[¬B(x) ∨ (∃y [O(x , y) ∧ ¬P(y)] ∧ ¬∃y [O(x , y) ∧ O(y , x)] ∧ ∀y [¬(¬B(y)) ∨ ¬E(x , y)] ) ]

(2) Reduce scopes of negation
∀x[¬B(x) ∨ (∃y [O(x , y) ∧ ¬P(y)] ∧ ∀y [¬O(x , y) ∨ ¬O(y , x)] ∧ ∀y [B(y) ∨ ¬E(x , y)] ) ]

(3) Skolemization (remove existential quantifiers)
Replace existentially quantified variables by constant/function symbols.

∃x p(x) becomes p(C)

(“There exists a human who is a student.” is satisfiable if there exists a constant in the
universe U for which the sentence is true.

“Human C is a student.” is satisfiable if the constant symbol C can be interpreted such

that relation p is true.)
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Clause Form cont.

Skolemization cont.
If an existentially quantified variable is in the scope of a universally
quantified variable, it is replaced by a function symbol dependent of this
variable:

∀x ∃y p(x) ∧ q(x , y) becomes ∀x p(x) ∧ q(x , f(x))

(“For all x holds, x is a positive integer and there exists a y which is greater than x .” is

satisfiable if for each x exists an y such that the relation “greater than” holds. E.g.,

f (x) can be interpreted as successor-function.)

Skolemization is no equivalence transformation. A formula and its
Skolemization are only equivalent with respect to satisfiability!
The skolemized formula has a model iff the original formula has a model.

∀x[¬B(x) ∨ ((O(x , f (x)) ∧ ¬P(f (x))) ∧ ∀y [¬O(x , y) ∨ ¬O(y , x)] ∧ ∀y [B(y) ∨ ¬E(x , y)] ) ]
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Clause Form cont.

(4) Standardize variables (“bounded renaming”)
A variable bound by a quantifier is a “dummy” and can be renamed.
Provide that each variable of universal quantifier has a different name.
(Problematic case: free variables)

∀x[¬B(x) ∨ ((O(x , f (x)) ∧ ¬P(f (x))) ∧ ∀y[¬O(x , y) ∨ ¬O(y , x)] ∧ ∀z[B(z) ∨ ¬E(x , z)] ) ]

(5) Prenex-form
Move universal quantifiers to front of the formula.

∀x∀y∀z[¬B(x)∨((O(x , f (x)) ∧ ¬P(f (x))) ∧ (¬O(x , y) ∨ ¬O(y , x)) ∧ (B(z) ∨ ¬E(x , z)) ) ]

(6) CNF
(Repeatedly apply the distributive laws)

∀x∀y∀z[(¬B(x) ∨ O(x , f (x)))∧(¬B(x) ∨ ¬P(f (x)))∧(¬B(x) ∨ ¬O(x , y) ∨ ¬O(y , x))

∧(¬B(x) ∨ B(z) ∨ ¬E(x , z)) ]
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Clause Form cont.

(7) Eliminate Conjunctions
If necessary, rename variable such that each disjunction has a different set
of variables.
The truth of a conjunction entails that all its parts are true.

∀x[¬B(x) ∨ O(x , f (x))], ∀w[¬B(w) ∨ ¬P(f (w))], ∀u ∀y[¬B(u) ∨ ¬O(u, y) ∨
¬O(y , u)], ∀v ∀z[¬B(v) ∨ B(z) ∨ ¬E(v , z)]

(8) Eliminate Universal Quantifiers
Clauses are implicitly universally quantified.
M =

{¬B(x)∨O(x , f (x)),¬B(w)∨¬P(f (w)),¬B(u)∨¬O(u, y)∨¬O(y , u),¬B(v)∨B(z)∨¬E(v , z)}

Schmid & Wolter (Applied CS, UBA) AI-KI-B – Resolution Calculus Summer 2020 11 / 48



Substitution

• A substitution is a set

θ = {v1 ← t1, . . . vn ← tn}

of replacements of variables vi by terms ti .
• If θ is a substitution and E an expression, E ′ = Eθ is called instance

of E .
E ′ was derived from E by applying θ to E .

Example

• E = p(x) ∨ (¬q(x , y) ∧ p(f (x)))
• θ = {x ← C}
• Eθ = p(C ) ∨ (¬q(C , y) ∧ p(f (C )))

• Special case: alphabetic substitution (variable renaming).
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Composition of Substitutions

• Let be
θ = {u1 ← t1, . . . un ← tn, v1 ← s1, . . . vk ← sk} and
σ = {v1 ← r1, . . . vk ← rk ,w1 ← q1, . . .wm ← qm}.

• The composition is defined as
θσ =Def {u1 ← t1σ, . . . un ← tnσ, v1 ← s1σ, . . . vk ← skσ,w1 ←
q1, . . .wm ← qm}

• Composition of substitutions is not commutative!
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Unification

• Let be {E1. . .En} a set of expressions. A substitution θ is a
unificator of E1. . .En, if E1θ = E2θ . . . = Enθ.

• A unificator θ is called most general unifier (mgu), if for each other
unificator σ for E1. . .En there exists a substitution γ with σ = θγ.

• Theorem: If a unificator exists, then also an mgu exists.

E

σ

θ

γ

E’

There are different unification algorithms, e.g. one proposed by Robinson.
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Examples

(1) {P(x),P(A)} θ = {x ← A}
(2) {P(f (x), y , g(y)),P(f (x), z , g(x))} θ = {y ← x , z ← x}
(3) {P(f (x , g(A, y)), g(A, y)),P(f (x , z), z)} θ = {z ← g(A, y)}
(4) {P(x , f (y),B),P(x , f (B),B)} σ = {x ← A, y ← B}

θ = {y ← B}
In (4) holds:
θ is more general than σ: σ = θγ, with γ = {x ← A}
θ is mgu for {P(x , f (y),B),P(x , f (B),B)}
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Unification Algorithm

For a given set of formula S :

1 Let be θ = {}
2 While |S | > 1 DO

1 Calculate the disagreement set D of S
2 If D contains a variable x and a term t in which x does not occur

Then θ = θ{x ← t} and S = Sθ
Else stop (S not unifiable)

3 Return θ as mgu of S

• Since S is the set of all formula, it has size one if all formula are
identical (unified by θ).

• For calculation of disagreement set see practice
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Semantical Entailment

• A formula G is called logical consequence (or entailment) of a set
of formula F = {F1 . . .Fn}, if each model of F is also a model of G .
Note:
We write A � G to denote the “model relation” and also F � G to
denote the “entailment relation”.
• The following propositions are equivalent:

1 G is a logical consequence of F .
2 (∧ni=1Fi )→ G is valid (tautology).
3 (∧ni=1Fi ) ∧ ¬G is not satisfiable (a contradiction).

This relation between logical consequences and syntactical expressions can

be exploited for syntactical proofs. We write F ` G if formula G can be

derived from the set of formulas F .
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Resolution Calculus

• The resolution calculus consists of a single rule (and does not possess
any axioms).

• Resolution is defined for clauses (each formula is a disjunction of
positive and negative literals).

• All formulas must hold: conjunction of clauses.

• Proof by contradiction, exploiting the equivalence given above.
If

(
n∧

i=1

Fi ) ∧ ¬G

is not satisfiable, then “false” (the empty clause) can be derived:

[(
n∧

i=1

Fi ) ∧ ¬G ] ` �
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Resolution Calculus cont.

Resolution rule in propositional logic:

(P ∨ P1 ∨ . . .Pn) ∧ (¬P ∨ Q1 ∨ . . .Qm) ` (P1 ∨ . . .Pn ∨ Q1 ∨ . . .Qm)

Resolution rule for clauses:

[(L ∨ C1) ∧ (¬L ∨ C2)]σ ` [C1 ∨ C2]σ

(σ is a substitution of variables such that L is identical in both parts of the conjunction)

The general idea is to cut out a literal which appears positive in one disjunction

and negative in the other.
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Resolution in Propositional Logic

Example

Theory:

All humans are mortal. F1 = Human→ Mortal
Socrates is a human. F2 = Human

Query:

Socrates is mortal: G = Mortal

To prove F1 ∧ F2 ∧ ¬G ` �, we need the following resolution steps:

1 Human→ Mortal ≡ ¬Human ∨Mortal

2 Human ∧ [¬Human ∨Mortal] ∧ ¬Mortal

3 ` Mortal ∧ ¬Mortal

4 ` �.
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Resolution in FOL

Example

Theory:

All humans are mortal. F1 = ∀x Human(x)→ Mortal(x)
Socrates is a human. F2 = Human(S)

Query:

Socrates is mortal: G = Mortal(S)

To prove F1 ∧ F2 ∧ ¬G ` �, we need the following resolution steps:

1 ∀x Human(x)→ Mortal(x) ≡ ∀x ¬Human(x) ∨Mortal(x)
(substitute S for universally quantified variable x)

2 [Human(S) ∧ [¬Human(x) ∨Mortal(x)] ∧ ¬Mortal(S)]{x → S}
3 ` Mortal(S) ∧ ¬Mortal(S)

4 ` �.
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Resolution

A clause

C =
n∨

i=1

Li

can be written as set
C = {L1, . . . Ln}.

Let be C1, C2 and R clauses. R is called resolvent of C1 and C2 if:

• There are alphabetical substitutions σ1 and σ2 such that C1σ1 and C2σ2

have no common variables.

• There exists a set of literals L1, . . . Lm ∈ C1σ1(m ≥ 1) and
L′1, . . . L

′
n ∈ C2σ2(n ≥ 1) such that L = {¬L1,¬L2, . . .¬Lm, L′1, L′2, . . . L′n} are

unifiable with θ as mgu of L.

• R has the form:

R = ((C1σ1 \ {L1, . . . Lm}) ∪ (C2σ2 \ {L′1, . . . L′n}))θ.
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Resolution cont.

Derivation of a clause by application of the resolution rule can be
described by a refutation tree:

R

C1 C2

C3

R’
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Illustration

C1 = {P(f (x)),¬Q(z),P(z)}
C2 = {¬P(x),R(g(x),A)}

σ1 = {}, σ2 = {x ← u}

L = {P(f (x)),P(z),¬¬P(x)} = {P(f (x)),P(z),P(u)}

θ = {z ← f (x), u ← f (x)}

{P(f(x)), ~Q(z),P(z)} {~P(u),R(g(u),A)}

{~Q(f(x)), R(g(f(x)),A)}

[z <− f(x), u <− f(x)]

R = [({P(f (x)),¬Q(z),P(z)} \ {P(f (x)),P(z)})∪
({¬P(u),R(g(u),A)} \ {P(u)})]θ = {¬Q(f (x)),R(g(f (x)),A)}
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Resolution Proofs

• To prove that formula G (assertion) logically follows from a set of
formula (axioms) F1 . . .Fn:

Resolution Proof Strategy

1 Include the negated assumption in the set of axioms.
2 Try to derive a contradiction (empty clause).

• Theorem:
A set of clauses is not satisfiable, if the empty clause (�) can be
derived with a resolution proof.

• Contradiction:
C1 = A,C2 = ¬A, stands for (A ∧ ¬A) and (A ∧ ¬A) ` �
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Example

• Axiom: “All humans are mortal” Fact: “Socrates is human”
(Both are non-logical: their truth is presupposed)
• Assertion

“Socrates is mortal.”

• Formalization:

F1 : ∀x : Human(x)→ Mortal(x)

F2 : Human(S)

F3 : ¬Mortal(S) (negation of assertion)

• Clause form:

F ′1 : ¬Human(x) ∨Mortal(x)

F ′2 : Human(S)

F ′3 : ¬Mortal(S)

~Human(x) V Mortal(x)~Mortal(S)

~Human(S)

[x <− S]

Human(S)
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Soundness and Completeness of Res.

• A calculus is sound, if only such conclusions can be derived which
also hold in the model.

• A calculus is complete, if all conclusions can be derived which hold in
the model.

• The resolution calculus is sound and refutation complete.

Refutation completeness means, that if a set of formula (clauses) is
unsatisfiable, then resolution will find a contradiction. Resolution cannot be
used to generate all logical consequences of a set of formula, but it can
establish that a given formula is entailed by the set. Hence, it can be used to
find all answers to a given question, using the “negated assumption”
method.
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Remarks

• The proof ideas will given for resolution for propositional logic
(or ground clauses) only.

• For FOL, additionally, a lifting lemma is necessary and the proofs rely
on Herbrand structures.

• We cover elementary concepts of logic only.
• For more details, see

• Ghallab, Nau, & Traverso, Appendix B and chapter 12
• Uwe Schöning, Logik für Informatiker, 5. Auflage, Spektrum, 2000.
• Volker Sperschneider & Grigorios Antoniou, Logic – A foundation for

computer science, Addison-Wesley, 1991.
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Resolution Theorem

Theorem: A set of clauses F is not satisfiable iff the empty clause � can
be derived from F by resolution.

• Soundness:
(Proof by contradiction)
Assume that � can be derived from F . If that is the case, two clauses C1 = {L}
and C2 = {¬L} must be contained in F . Because there exists no model for L ∧ ¬L,
F is not satisfiable.

• Refutation completeness:
(Proof by induction over the number n of atomar formulas in F )
Assume that F is a set of formula which is not satisfiable. Because of the
compactness theorem, it is enough to consider the case that a finite non-satisfiable
subset of formula exists in F .
To show: � is derived from F . (see e.g., Schöning)
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Resolution Strategies

• In general, there are many possibilities, to find two clauses, which are
resolvable. Of the many alternatives, there are possibly only a few
which help to derive the empty clause ↪→ combinatorial explosion!

• For feasible algorithms: use a resolution strategy

• E.g., exploit subsumption to keep the knowledge space, and
therefore the search space, small.
Remove all sentences which are subsumed (more special than) an
existing sentence.
If P(x) is in the knowledge base, sentences as P(A) or P(A) ∨ Q(B)
can be removed.

• Well known efficient strategy: SLD-Resolution (linear resolution with
selection function for definite clauses) (e.g. used in Prolog)
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SLD-Resolution

• linear: Use a sequence of clauses (C0 . . .Cn) starting with the
negated assertion C0 and ending with the empty clause Cn. Each Ci is
generated as resolvent from Ci−1 and a clause from the original set of
axioms.

• Selection function (for the next literal which will be resolved) e.g.
top-down-left-to-right in PROLOG; makes the strategy incomplete!
(“user” must order clauses in a suitable way)

• definite Horn clauses: A Horn clause contains maximally one
positive literal; a definite Horn clause contains exactly one positive
literal (Prolog rule)
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Example Prolog Program – Semantic Net

• Has a trout gills?

• Has a fish cells?
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Example Prolog Program – Semantic Net
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Prolog

PROLOG Logic

Fact isa(fish,animal). isa(Fish,Animal) Positive Literal
isa(trout,fish). isa(Trout,Fish)

Rule is(X,Y) :- is(x , y) ∨ ¬isa(x , y) Definite Clause
isa(X,Y).

is(X,Z) :- is(x , z) ∨ ¬isa(x , y)
isa(X,Y), is(Y,Z). ∨¬is(y , z)

Query is(trout,animal). ¬is(Trout,Animal) Assertion
is(fish,X). ¬is(Fish, x)
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Prolog

• : − denotes the “reversed” implication arrow.

is(X,Z) :- isa(X,Y), is(Y,Z).

is Prolog for:

isa(x , y) ∧ is(y , z)→ is(x , z) ≡
¬(isa(x , y) ∧ is(y , z)) ∨ is(x , z) ≡
¬isa(x , y) ∨ ¬is(y , z) ∨ is(x , z)

• Variables which occur in the head of a clause are implicitly universally
quantified. Variables which occur only in the body are existentially
quantified.

∀x∀z∃y : ¬isa(x , y) ∨ ¬is(y , z) ∨ is(x , z)
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Prolog Example

• Query: is(fish,X)
(stands for ∃x is(Fish, x))

• Negation of query: ¬∃x : is(Fish, x) ≡ ∀x : ¬is(Fish, x)

• SLD-Resolution:(extract)

is(v1,v2) V ~isa(v1,v2) is(v1,v2) V ~isa(v1,v2) 

[

is(v1,v2) V ~isa(v1,v3) V ~is(v3,v2)

Fail!

~is(Fish,x)

~isa(Fish,x) isa(Fish,Animal)

[v1 <− Fish, v2 <− x]

[x <− Animal]

~is(Trout,Animal)

[v1 <− Trout, v2 <− Animal]

isa(Trout,Animal)

~is(Trout,Animal)

v1 <− Trout, v2 <− Animal]

~isa(Trout, v3) V ~is(v3, Animal) isa(Trout,Fish)

[v3 <− Fish]

~isa(Fish,Animal) isa(Fish,Animal)

Backtrack
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Remarks on Prolog

• When writing Prolog programs, one should be know how the
interpreter is working (i.e., understand SLD-resolution)

• Sequence of clauses has influence whether an assertion which follows
logically from a set of clauses can be derived!

• Efficiency: Facts before rules

• Termination: non-recursive rule before recursive

% Program % Query

isa(trout,fish). ? is(trout,animal).

isa(fish,animal).

is(X,Z) :- is(X,Y), isa(Y,Z). is(trout,Y), isa(Y,animal)

is(X,Y) :- isa(X,Y). is(trout,Y’),

isa(Y’,animal),

isa(Y,animal)

...
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Logic vs Functional Programming

X = 3+7. % X = 3+7 unification, no evaluation!

X is 3+7. % X = 10 true when Number is the value

% to which Expr evaluates

10 is 3+7. % Yes

3+7 is 3+7. % No for equality use =:=

add(0, Y, Y).

add(succ(X), Y, succ(Z)) :- add(X, Y, Z).

fac(0, 1).

fac(N, V) :- N > 0, N1 is N-1, fac(N1,V1), V is N*V1.

% Not fac(N-1,V1)

append1(X,[],X).

append1([],Y,Y).

append1([H|T], Y, [H|Z]) :- append1(T,Y,Z).

https://www.swi-prolog.org/pldoc/doc_for?object=manual
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Negation by Failure and Closed World Assumption

• Closed world assumption: Everything which is not known to be true or
can be inferred to be true is false. (E.g.: It is false that a trout is a
mammal since this information is neither given as a fact nor can be
derived.)

• Negation by failure: every predicate that cannot be proved to be true
is believed to be false.

• The predicate cut (written as !) inhibits backtracking.

• Underline represents a wild card. A variable only appearing in the
head and not in the body of a rule results in a warning (singleton).

neg(A):- A, !, fail.

neg(_).
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Applications of Resolution Calculus

• PROLOG

• as a basic method for theorem proving (others: e.g. tableaux)

• Question Answering Systems

• Yes/No-Questions: Assertion/Query mortal(s)

• Query is(trout,X ) corresponds to “What is a trout?”
The variable X is instantiated during resolution and the answer is “a
fish”.

• buys(peter , john,X ): “What does John buy from Peter?”

• buys(peter ,X , car): “Who buys a car from Peter?”
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Theorem Provers

• Theorem provers typically are more general than Prolog:
not only Horn clauses but full FOL; no interleaving of logic and
control (i.e. ordering of formulas has no effect on result)

• Examples: Boyer-Moore (1979) theorem prover; OTTER, Isabelle

• Theorem provers for mathematics, for verification of hardware and
software, for deductive program synthesis.
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Forward- and Backward Chaining

• Rules (e.g. in Prolog) have the form:
Premises → Conclusion

• All rule-based systems (production systems, planners, inference
systems) can be realized using either forward-chaining or
backward-chaining algorithms.

• Forward chaining: Add a new fact to the knowledge base and derive
all consequences (data-driven)

• Backward chaining: Start with a goal to be proved, find implication
sentences that would allow to conclude the goal, attempt to prove the
premises, etc.

• Well known example for a backward reasoning expert system:
MYCIN (diagnosis of bacterial infections)
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Classical Logic

• Propositional logic and FOL are classical logics.

• Classical logic is bivalent and monotonic:
There are only two truth values “true” and “false”.
Because of the tertium non datur, derived conclusions cannot be
changed by new facts or conclusions (vs. multi-valued and
non-monotonic logics).

• In classical logic, “everything” follows from a contradiction
(ex falso quod libet).
A theorem can be proven by contradiction.
In contrast, in intuitionistic logic, all proofs must be constructive!
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Logic Calculi in AI

• Variants of logic calculi are part of many AI systems

• Logic and logical inference is the base of most types of knowledge
representation formalisms (e.g. description logics)

• Most knowledge-based systems (e.g. expert systems) are relying on
some type of deductive inference mechanism

• Often, classical logic is not adequate: non-monotonic, probabilistic or
fuzzy approaches

• Extensions of classical logic for dealing with time or believe:
Modal Logic (e.g., BDI-Logic for Multi-agent Systems)
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Basic Types of Inference: Deduction

(Charles Peirce)

• Deduction: Derive a conclusion from given axioms (“knowledge”)
and facts (“observations”).

Example

(axiom) All humans are mortal.
(fact/premise) Socrates is a human.
(conclusion) Therefore, it follows that Socrates is mortal.

• The conclusion can be derived by applying the modus ponens inference
rule (Aristotelian/propositional logic).
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Basic Types of Inference: Induction

• Induction: Derive a general rule (axiom) from background knowledge
and observations.

Example

(background knowledge) Socrates is a human.
(observation/example) Socrates is mortal.
(generalization) Therefore, I hypothesize that

all humans are mortal.

• Induction means to infer (unsure) generalized knowledge from example
observations.

• Induction is the inference mechanism for learning!
(see lesson on Machine Learning)

• Analogy is a special kind of induction.
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Basic Types of Inference: Abduction

• Abduction: From a known axiom (theory) and some observation,
derive a premise.

Example

(theory) All humans are mortal.
(observation) Socrates is mortal.
(diagnosis) Therefore,

Socrates must have been a human.

• Abduction is typical for diagnostic systems/expert systems.
(It is also the preferred reasoning method of Sherlock Holmes.)

• Simple medical diagnosis:
If one has the flue, one has moderate fewer.
Patient X has moderate fewer.
Therefore, he has the flue.
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Summary

• Resolution is defined for clausal form.

• Logical formula can be rewritten in conjunctive normal form from which a
set of clauses can be generated.

• Rewriting into clausal form relies on equivalence rules, Skolemization is not
an equivalence transformation but a formula and its Skolemization are
equivalent w.r.t. satisfiability.

• In FOL, identify of formulas can be established by restricting their scope:
The most general unifier is defined as the minimal set of substitution of
variables by terms to make two formulas equal.

• Resolution is a proof by contradiction.

• For implementing resolution, a strategy to select clauses for refutation is
necessary.

• Prolog is a resolution prover based on SLD-resolution.

• Deduction is the only type of inference where correctness of derivations
(conclusions) can be guaranteed.
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