CogSysI Lecture 10: Introduction to MAS

Intelligent Agents
WS 2005/2006

Part III: Multi-Agent Systems

Introduction to MAS
Five Trends in Computing

- Ubiquity
 Introduce processor power into many devices and places

- Interconnection
 Computer systems are networked into large distributed systems

- Intelligence
 Complexity of tasks which can be automated and delegated to a computer is growing steadily

- Control
 In more and more domains control is given over from human to computer; e.g. autopilot
Five Trends in Computing cont.

- Human-orientation
 Programming paradigms: machine-oriented to more human-oriented abstractions; HCI: from setting switches to direct manipulation via GUI

arrow New field in computer science: Multiagent Systems
The Idea of MAS

An agent is a computer system that is capable of independent action on behalf of its owner or user.

A multiagent system consists of a number of agents which interact, typically by exchanging messages via some computer network infrastructure.

Different agents might represent users/owners with different goals/motivations.

Therefore, to successfully interact, agents require the ability to

- Cooperate
- Coordinate
- Negotiate

with each other (similar to interaction of people in everyday life)
Key Research Questions

- **Micro/Agent Design**: how to build agents capable of independent, autonomous action
- **Macro/Society Design**: how to build agents capable of interacting with other agents, esp. if they have different goals/interests?
- **Standard AI**: focus on intelligent individual
- **MAS**: Social abilities
 - Emergence of cooperation in a society of self-interested agents
 - Language to communicate beliefs and aspirations
 - Conflict recognition and resolution
 - Coordination of activities to reach common goals
Example Scenarios

- NASA Deep Space 1 mission (1998): space probe with an autonomous, agent-based control system which can make some decisions by itself (before: control decisions were completely done by a 300 person ground crew)

- Autonomous air-traffic control systems: recognition of failure of other control systems and cooperation to track and deal with attended flights (e.g. DVMT, Durfee; OASIS)

- Last minute holiday package via PDA, using a negotiating agent
MAS is Interdisciplinary Research

- Software Engineering: Agent paradigm (going beyond OO)
- Social Sciences: Using theories, gaining insights by simulation of artificial societies
- AI: use planning, reasoning, learning technologies; study intelligent behavior in dynamic, interactive environments
- Game theory: use theories and techniques for negotiation
An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives.

Compare to
- Control systems: e.g. thermostat
- Software demons: e.g. xbiff
Environments

- Accessible vs. inaccessible
 obtaining complete, accurate, up-to-date information about the environments state

- Deterministic vs. non-deterministic
 each action has a single, guaranteed effect, no uncertainty about the result of an action; note: highly complex deterministic environments must be handled as non-deterministic

- Static vs. dynamic
 environment remains unchanged except by performance of the agent

- Discrete vs. continuous
 fixed, finite number of actions and percepts

→ Open Env: inaccessible, non-deterministic, dynamic, continuous
Reactive Systems

- Two sources of complexity of MAS: characteristics of environment and nature of interaction between agent and environment

- Reactive system: maintainance of interaction with environment, must be studied and described on a behavioral level (not a functional level, i.e. in classical terms of pre- and postconditions)

- Example: reactive planning systems

- Local decisions have global consequences

- Example: printer controller
 Simple rule: first grant access to process p_1 and at some later time to process p_2 is unfair, because it might never grant access to p_2
Intelligent Agent

An intelligent agent is a computer system with the ability to perform actions independently, autonomously, and flexible (on behalf of a user or an owner).

Flexibility means: being
- reactive
- pro-active
- social
Demands and Examples

- Performing a useful activity on behalf of humans or organizations (cleaning roboter)
- Coexist/interact with humans (cleaning roboter)
- Be aware of social rules and norms (transportation robot)
- Coordinate activities (team of cleaning robots)
- Cooperate or compete (RoboCup)
- Entertain or educate people (games, tutor systems)
Acting Reactively

If the environment of a program is static (known in advance), the program cannot fail (Compile-Time, Runtime)

In the real world, changes occur, information is incomplete (dynamic system).

A reactive system continuously interacts with its environment and reacts in time to changes

Example: Java-Listener, BUT: here reactions do NOT take into account the current state of the environment, they are determined in advance

Reactive systems can be modelled relative straightforward: e.g. as stimulus-response rules
Acting Pro-activly

- means: generate goals autonomously, try to reach goals
- not only event-driven behavior but: act on one’s own initiative
Acting Socially

- Real world is a multi-agent environment
- When trying to reach goals, others must be taken into account
- Some goals can only be reached through cooperation
- In some situations exit conflicts and competition (e.g. internet auctions)
- Social skills of agents: ability to model goals of other agents when trying to reach one’s own (local) goals, ability to interact (i.e. cooperate and coordinate)
Further Features

- Mobility: ability to move in a computer net or in another environment
- Adaptivity/learning: Improving performance over time
- Rationality: do not act in a way which hinders to fulfill one’s goals
Example: Tileworld
Agents as Intentional Systems

- Endowing agents with “mental” states: beliefs, desires, wishes, hopes
- Folk psychology: attributing attitudes for predicting and explaining other peoples behavior
- Intentional systems (Dennett):
 - First order: having beliefs, desires, etc.
 - Second order: having beliefs and desires about beliefs and desires of its own and others
- Compare to physical systems: for predicting that a stone will fall from my hand I do not attribute beliefs and desires but mass or weight
Abstract Architecture

- Environment: finite set of discrete states $E = \{e, e', \ldots\}$
 assumption: continuous env can be modelled by a discrete env to any degree of accuracy

- Repertoire of possible actions of an agent: $Ac = \{\alpha, \alpha', \ldots\}$

- Interaction of agent and environment: run r, as a sequence of interleaved environment states and actions

 - R: set of all possible finite sequences over E and Ac
 - R^{Ac}: subset of R ending with an action
 - R^{E}: subset of R ending with an environment state
Abstract Architecture

- State transformer function: $\tau : R^A \rightarrow P(E)$
- Termination: $\tau(r) = \emptyset$
- Environment $Env = (E, e_0, \tau)$
- Agent: $Ag : R^E \rightarrow Ac$
- Set of runs of an agent in an environment $R(Ag, Env)$
- Behavioral equivalence: $R(Ag_1, Env) = R(Ag_2, Env)$
Purely Reactive Agents

- No reference to their history, next state is only dependent on the current state

\[Ag : E \rightarrow Ac \]

- Example: thermostat
Perception

- $\text{see} : E \rightarrow \text{Per}$
- $\text{action} : \text{Per}^* \rightarrow \text{Ac}$
- Agent $\text{Ag} = (\text{see}, \text{action})$
- Equivalence relation over environment states: $e \sim e'$ if $\text{see}(e) = \text{see}(e')$
- If $|\sim| = |E|$, the agent is omniscient
- If $|\sim| = 1$, the agent has no perceptual ability
Agents with State

- Internal states I
- $\text{action} : I \rightarrow Ac$
- $\text{next} : I \times Per \rightarrow I$

State-based agents as defined here are not more powerful than agents as defined above.

Identical expressive power: Every state-based agent can be transformed into a standard agent that is behaviorally equivalent.
Utility Functions

- Telling an agent *what* to do without telling it how to do it
- Indirectly via some performance measure
- Associate utility with states of environment, prefer actions leading to states with higher utilities
- Utility can be defined over states or over runs

\[u : E \rightarrow \mathbb{R} \text{ or } u : R \rightarrow \mathbb{R} \]
Task Environments

\[\Psi : R \rightarrow \{0, 1\} \]
is 1 (true) if a run satisfies some specification and 0 (false) otherwise

Task environment: \(\langle Env, \Psi \rangle \)

specifies the properties of the environment and the criteria by which an agent will be judged to have succeeded in its task

Definition of success

- pessimistic: \(\forall r \in R(Ag, Env) \) it has to hold \(\Psi(r) \)
- optimistic \(\exists r \in R(Ag, Env) \) where it holds \(\Psi(r) \)

Two kinds of tasks:

- Achievement: relation to planning
- Maintainance
Deductive Reasoning Agents

- The usual problems of knowledge engineering
 - Transduction problem: Translating world in adequate symbolic description
 - Representation problem: providing a representation such that agents can reason with it for the results to be in time and useful

- Agents as theorem provers
 Logic-based agents: “deliberate agents”

- Specialized languages, e.g. MetateM, based on temporal logic
Deliberate Agents

- \(D \) as a set of logical formulae, internal state of an agent is \(\delta \in D \)
- \(\rho \) as set of deduction rules
- \(\delta \rightarrow \rho \varphi \): formula \(\varphi \) can be proved from database \(\delta \) using deduction rules \(\rho \)
- Goal: Deriving a formula \(Do(\alpha) \) either as best action or as action which is not explicitly forbidden

function action(\(\delta : D \))

for each \(\alpha \in Ac \) do
 if \(\delta \rightarrow \rho Do(\alpha) \) then return \(\alpha \)

for each \(\alpha \in Ac \) do
 if \(\delta \not\rightarrow \rho \neg Do(\alpha) \) then return \(\alpha \)

return null
Vacuum World

Predicates:
In(x,y)
Dirt(x,y)
Facing(d)
(d ∈ {north, east, south, west})

Navigation:
In(0,0) ∧ Facing(north) ∧ ¬Dirt(0,0) → Do(forward)

Cleaning:
In(x,y) ∧ Dirt(x,y) → Do(suck)
Metatem
Practical Reasoning Agents

- What we want to achieve: deliberation
- How to achieve a state: means-end-analysis
The Procedural Reasoning System

- Georgeff and Lansky
- Belief-desire-intention architecture (BDI)

![Diagram]

- Data input
- Beliefs
- Plans
- Desires
- Intentions
- Action output

CogSysI Lecture 10: Introduction to MAS – p. 277