CogSysI Lecture 3: Heuristic Search

Intelligent Agents

WS 2005/2006

Part I: Acting Goal-Oriented

I.3 Heuristic Search
Cost and Cost Estimation

“Real” cost is known for each operator.

Accumulated cost $g(n)$ for a leaf node n on a partially expanded path can be calculated.

For problems where each operator has the same cost or where no information about costs is available, all operator applications have equal cost values. For cost values of 1, accumulated costs $g(n)$ are equal to path-length d.

Sometimes available: Heuristics for estimating the remaining costs to reach the final state.

$\hat{h}(n)$: estimated costs to reach a goal state from node n

“bad” heuristics can misguide search!
Cost and Cost Estimation cont.

Evaluation Function: \(\hat{f}(n) = g(n) + \hat{h}(n) \)
“True costs” of an optimal path from an initial state s to a final state: $f(s)$.

For a node n on this path, f can be decomposed in the already performed steps with cost $g(n)$ and the yet to perform steps with true cost $h(n)$.

$h(n)$ can be an estimation which is greater or smaller than the true costs.

If we have no heuristics, $h(n)$ can be set to the “trivial lower bound” $h(n) = 0$ for each node n.

If $h(n)$ is a non-trivial lower bound, the optimal solution can be found in efficient time (see A*).
Heuristic Search Algorithms

- **Hill Climbing**: greedy-Algorithm, based on depth-first search, uses only $\hat{h}(n)$ (not $g(n)$)
- **Best First Search** based on breadth-first search, uses only $\hat{h}(n)$
- **A***: based on breadth-first search (efficient branch-and-bound algorithm), used evaluation function $f^*(n) = g(n) + h^*(n)$ where $h^*(n)$ is a lower bound estimation of the true costs for reaching a final state from node n.

Design of a search algorithm:
- based on depth- or breadth-first strategy
- use only $g(n)$, use only $\hat{h}(n)$, use both ($f(n)$)
Example Search Tree

Initial State

operator cost

Finale state

cycle
deadend
Hill Climbing Algorithm

Winston, 1992 To conduct a hill climbing search,

- Form a one-element stack consisting of a zero-length path that contains only the root node.
- Until the top-most path in the stack terminates at the goal node or the stack is empty,
 - Pop the first path from the stack; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - Sort the new paths, if any, by the estimated distances between their terminal nodes and the goal.
 - Push the new paths, if any, on the stack.
- If the goal node is found, announce success; otherwise announce failure.
Hill Climbing Example

\[
\begin{align*}
h(S) &= 5, \\ h(A) &= 3, \\ h(B) &= 2, \\ h(C) &= 2, \\ h(D) &= 4 \\
((S, 5)) \\
((S B).2 (S A).3) \\
\end{align*}
\]

\[
\text{The heuristics was not optimal. If we look at the true costs (S A F) is the best solution!}
\]
Problems of Hill Climbing

- Hill climbing is a discrete variant of *gradient descend* methods (as used for example in back propagation).

- Hill climbing is a *local/greedy* algorithm: Only the current node is considered.

- For problems which are greedy solvable (local optimal solution = global optimal solution) it is guaranteed that an optimal solution can be found. Otherwise: danger of local minima/maxima (if \hat{h} is a cost estimation: local minima!)

- Further problems: plateaus (evaluation is the same for each alternative), ridges (evaluation gets worse for all alternatives)
Problems of Hill Climbing cont.

local maximum

ridge

plateau
Best First Search Algorithm

Winston, 1992

To conduct a best first search,

- Form a one-element queue consisting of a zero-length path that contains only the root node.
- Until the first path in the queue terminates at the goal node or the queue is empty,
 - Remove the first path from the queue; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - Add the new paths, if any, to the queue.
 - Sort entire queue by the estimated distances between their terminal nodes and the goal.
- If the goal node is found, announce success; otherwise announce failure.
Best First Example

\[h(S) = 6, \ h(A) = 3, \ h(B) = 2, \ h(C) = 4, \ h(D) = 5 \]

((S)).6
((S B).2 \ (S A).3)
((S A).3 \ (S B A).3 \ (S B C).4 \ (S B D).5 \ [(S B S).6])
((S A F).0 \ (S A B).2 \ (S B A).3 \ (S B C).4 \ (S B D).5 \ [(S A S).6])
Best First Search Remarks

- Best First Search is not a local strategy: at each step the current best node is expanded, regardless on which partial path it is.

- It is probable but not sure that Best First Search finds an optimal solution. (depending on the quality of the heuristic function)
Optimal Search

- Inefficient, blind method: ‘British Museum Algorithm’
 - Generate all solution paths and select the best.
 - Generate-and-test algorithm, effort $O(b^d)$

- Breadth-First search (for no/uniform costs) and Uniform Cost Search (for operators with different costs; Branch-and-Bound) find the optimal solution, but with a high effort (see lecture about uninformed search)

- A* (Nilsson, 1971) is the most efficient branch-and-bound algorithm!
Reminder: Uniform Cost Search

- The complete queue is sorted by accumulated costs $g(n)$ with the path with the best (lowest) cost in front.
- Termination: If the first path in the queue is a solution.
- Why not terminate if the queue contains a path to the solution on an arbitrary position? Because there are partially expanded paths which have lower costs than the solution. These paths are candidates for leading to a solution with lower costs!
The Idea of A*

Extend uniform cost search such, that not only the accumulated costs \(g(n) \) but additionally an estimate for the remaining costs \(\hat{h}(n) \) is used. \(\hat{h} \) is defined such that it is a non-trivial lower bound estimate of the true costs for the remaining path (\(h^* \)). That is, use evaluation function \(f^*(n) = g(n) + h^*(n) \).

Additionally use the principle of ‘dynamic programming’ (Bellman & Dreyfus, 1962): If several partial paths end in the same node, only keep the best of these paths.
A* Algorithm

Winston, 1992

To conduct an A* search,

1. Form a one-element queue consisting of a zero-length path that contains only the root node.
2. Until the first path in the queue terminates at the goal node or the queue is empty,
 - Remove the first path from the queue; create new paths by extending the first path to all neighbors of the terminal node.
 - Reject all new paths with loops.
 - If two or more paths reach a common node, delete all those paths except the one that reaches the common node with the minimum cost.
 - Add the remaining new paths, if any, to the queue.
 - Sort entire queue by the sum of the path length and a lower-bound estimate of the cost remaining, with least-cost paths in front.
3. If the goal node is found, announce success; otherwise announce failure.
A* Example

\[h^*(S) = 5, h^*(A) = 2, h^*(B) = 2, h^*(C) = 1, h^*(D) = 4 \]

((S).0 + 5)
((S A).3 + 2 (S B)4 + 2)

\[\text{g} \]

\[([S A S].11] (S A B).3 + 2 + 2 (S A F).3 + 3 + 0 (S B).6) \]

because of (S A B, 7) and (S B, 6): delete (S A B)

((S A F).6 (S B).6)
Admissibility of A*

Theorem: If \(\hat{h}(n) \leq h(n) \) for all nodes \(n \) and if all costs are greater than some small positive number \(\delta \), then A* always returns an optimal solution if a solution exists (is “admissible”).

Proof: in Nilsson (1971); we give the idea of the proof

Remember, that \(f(n) = g(n) + h(n) \) denotes the “true costs”, that is, the accumulated costs \(g(n) \) for node \(n \) and the “true costs” \(h(n) \) for the optimal path from \(n \) to a final state.

Every algorithm A working with an evaluation function \(\hat{f}(n) = g(n) + \hat{h}(n) \) for which holds that \(\hat{h}(n) \) is smaller or equal than the true remaining costs (including the trivial estimate \(\hat{h}(n) = 0 \) for all \(n \)) is guaranteed to return an optimal solution:
Admissibility of A* cont

Each steps hightens the “security” of estimate \hat{f} because the
influence of accumulated costs grows over the influence of the
estimation for the remaining costs.

If a path terminates in a final states, only the accumulated
costs from the initial to the final state are considered. This
path is only returned as solution if it is first in the queue.

If \hat{h} would be an over-estimation, there still could be a partial
path in the queue for which holds that $\hat{f}(n) > f(n)$.

If \hat{h} is always an under-estimation and if all costs are positive,
it always holds that $\hat{f}(n) \leq f(n)$. Therefore, if a solution path
is in front of the queue, all other (partial) paths must have
costs which are equal or higher.
A* Illustration

- $g(n)$: Knowledge of true costs so far
- $\hat{h}(n)$: Over-estimation not admissible!
- n: Already explored
- $g'(18+0)$: Zero in goal state
- $f(g') = g(g') + 0 = f(g')$
Optimality of A*

“Optimality” means here: there cannot exist a more efficient algorithm.

Compare the example for uniform cost search and A*: both strategies find the optimal solution but A* needs to explore a much smaller part of the search tree!

Why?
Using a non-trivial lower bound estimate for the remaining costs don’t direct search in a wrong direction!

The somewhat lengthy proof is based on contradiction: Assume that A* expands a node \(n \) which is not expanded by another admissible algorithm \(A \).

\[
0 \leq h_1^*(n) \leq h_2^*(n) \leq \ldots \leq h_n^*(n) = h(n)
\]
the tighter the lower bound, the more “well-informed” is the algorithm!
Optimality of A* cont.

Alg. A does not expand n if it “knows” that any path to a goal through node n would have a cost larger or equal to the cost on an optimal path from initial node s to a goal, that is $f(n) \geq f(s)$.

By rewriting $f(n) = g(n) + h(n)$ we obtain $h(n) = f(n) - g(n)$.

Because of $f(n) \geq f(s)$ it holds that $h(n) \geq f(s) - g(n)$.

If A has this information it must use a “very well informed” heuristics such that $\hat{h}(n) = f(s) - g(n)$!

For A^* we know that f^* is constructed such that holds $f^*(n) \leq f(s)$, because the heuristics is an under-estimation.

Therefore it holds that $g(n) + h^*(n) \leq f(s)$ and by rewriting that $h^*(n) \leq f(s) - g(n)$.

Now we see that A used information permitting a tighter lower bound estimation of h than A^*. It follows that the quality of the lower bound estimate determines the number of nodes which are expanded.
How to get a Heuristic Function?

Often, it is not very easy to come up with a good heuristics.

For navigation problems: use Euclidian distance between cities as lower bound estimate.

For “puzzles”: analyse the problem and think of a “suitable” rule. E.g.: Number of discs which are already placed correctly for Tower of Hanoi

Chess programs (Deep Blue, Deep Fritz) rely on very carefully crafted evaluation functions. The “intelligence” of the system sits in this function and this function was developed by human intelligence (e.g. the grand master of chess Joel Benjamin, who contributed strongly to the evaluation function of Deep Blue).
Example: 8-Puzzle

admissible heuristics h^* for the 8-puzzle

h^*_1: total number of misplaced tiles

h^*_2: minimal number of moves of each tile to its correct location, i.e. total Manhattan distance

\[
\begin{array}{ccc}
5 & 4 & \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\]

$h^*_1=7 \quad h^*_2=18$

\[
\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 & \\
7 & 6 & 5 \\
\end{array}
\]

Goal State
Excursus: Minkowski-Metric

\[d(\vec{v}_1, \vec{v}_2) = k \sqrt[|v_1 - v_2|^k} \]

Distance \(d \): in general between to feature vectors in \(n \) dimensional-space.

For 8-Puzzle: 2 Dimensions (\(x \)-position and \(y \)-position).

Minkowski parameter \(k \): determines the metric

- \(k = 2 \): the well known Euclidean distance \(\sqrt{(v_1 - v_2)^2} \) (direct line between two points)
- \(k = 1 \): City-block or Manhattan distance (summation of the differences of each feature)
- \(k \to \infty \): Supremum or dominance distance (only the feature with the largest difference is taken into account)

Psychological investigations about metrics used by humans if they judge similarities (K.-F. Wender)
Summary: Search Algorithms

- **Depth-first** variants are in average more efficient than **breadth-first** variants, but there is no guarantee that an optimal solution can be found.
- Heuristic variant of depth-first search: **Hill-Climbing/greedy search**
- Heuristic variant of breadth-first search: **Best First search**
- Breadth-first variants with costs are called **branch-and-bound-algorithms**: branch from a node to all successors, bound (do not follow) non-promising paths
 - **Uniform-cost search**: non-heuristic algorithm, only uses costs \(g(n) \)
 - **A\(^*\)**: uses an admissible heuristic \(h^*(n) \leq h(n) \)
 - it gains its efficiency (exploring as small a part of the search tree as possible) by: dynamic programming and using a heuristic which is as well-informed as possible (tight lower bound)