Part I: Acting Goal-Oriented

I.4 Human Problem Solving and Production Systems
Problem decomposition

Besides using heuristics, problem solving can be guided by knowledge about the problem structure.

Problem decomposition: Dividing a problem in sub-problems

→ More complex production rules

Advantage: dealing with smaller sub-problems and generating the solution by composition ("divide and conquer")

Representation: AND-OR Trees

standard tree: each arc which exits a node represents an alternative ("or"); extension: specially mark edges which lead to sub-trees which must be all fulfilled for the current node to be fulfilled ("and")
Example: MOVER

(Winston, 1992)

PUT-ON
(put block1 on block2)

GET-SPACE
(create space on goal block)

MAKE-SPACE
(move away blocks)

GRASP
(grasp a block)

CLEAR-TOP
(remove all blocks on top of a block)

GET-RID-OF
(put blocks on table)

MOVE
(move block)

UNGRASP
(let go of block)
AND-OR Tree for MOVER

```
PUT-ON A B
"UND"

GET-SPACE A B
MAKE-SPACE A B
GET-RID-OF D
PUT-ON D Table
GET-SPACE D Table
GRASP D
MOVE D Table
UNGRASP D

GRASP A
CLEAR-TOP A
GET-RID-OF C
PUT-ON C Table
GET-SPACE C Table
GRASP C
MOVE C Table
UNGRASP C

MOVE A B
UNGRASP A

Table

CogSysI Lecture 4: Human Problem Solving and Production Systems – p. 106
```
Example: Route Finding Problems

- "OR"-node: X - F (go from X to F), X - F is primitive, if F can be reached from X in one step (there exists an applicable operation)
 primitive sub-problems are leafs in the tree

- "AND"-node: X - Z via Y (go from X to Z via Y)
 "constraint"

Problem solving: extracting an (optimal) AND-Tree

Using costs: Each leaf is associated with its cost, the costs are propagated upwards in the tree, the AND-tree with the lowest costs is returned

Algorithm: AO* (Nilsson)

In planning: hierarchical planning
Two of many possible decompositions.
Human problem solving

Humans often use greedy strategies for solving problems ("bounded rationality", Herbert Simon)

The means-end (MEA) strategy which is the search algorithm used in the GPS (General problem solver) is such a greedy strategy

As we will see in the lecture on planning, MEA is not complete! (Sussman Anomaly)

Subjects have problems with the transformation from state (6) to (7). Here 2 and not only 1 passenger must be transported back to the left river bank. That is, there must be created a situation which is further removed from the goal state than the situation before.
Means-End-Analysis

Transform: Compare current state with goal state

IF the current state fulfills the goal
THEN stop and announce success
ELSE Reduce the difference between the current state and the goal.

Reduce: Find operator which reduces the difference between current state and goal

IF there is no such operator
THEN stop and announce failure
ELSE Apply the operator to the current state.

Apply: Apply an operator to the current state

IF the operator is applicable to the current state
THEN apply it and transform the resulting state into the goal.
ELSE Reduce the difference between the current state and the application conditions of the operator.
MEA Example

Transform: initial state (discs 1, 2, 3 on peg A) to goal state (discs 1, 2, 3 on peg C)
 Reduce: 3 is not on C
 Apply: Move 3 to C
 Reduce: 3 is not free, because of 2
 Apply: Remove 2
 Reduce: 2 is not free, because of 1
 Apply: Remove 1;
 1 can be moved to C
 2 is free
 2 can be moved to B
 3 is free
 Reduce: 3 cannot be moved to C, because of 1
 Apply: Remove 1;
 1 can be moved to B
 3 can be moved to C
MEA Example cont.

Transform: State (1 and 2 on B, 3 on C) to goal state
 Reduce: 2 is not on C
 Apply: Move 2 to C
 Reduce: 2 is not free because of 1
 Apply: Remove 1;
 1 can be moved to A
 2 is free
 2 can be moved to C

Transform: State (1 is on A, 2 and 3 on C) to goal
 Reduce: 1 is not on C
 Apply: Move 1 to C;
 1 can be moved to C
 1 is on 3

Transform: State (1, 2 and 3 on C) to goal
 success
Cognitive Architectures

Cognitive Architecture: “unified theory of cognition”
- explicit definition of basic mechanisms of information processing
- assumption that these mechanisms are constant over all domains (problem solving, language understanding, pattern recognition etc.)
- basic mechanisms: control of interaction with environment, representation of information in memory, strategy to select rules
- Advantage: different models realized in the same architecture get comparable

Alternative: special purpose cognitive models (such as SME for analogical reasoning, see below)
Cognitive Architectures cont.

- Prominent Architectures: The ACT-family (J.R. Anderson et al.), Soar (based on GPS)
- ACT and Soar are production systems
- ACT: long-term memory is divided in a declarative memory (“know what”, activation net) and a procedural memory (“know how”)
- Example strategies for selecting rules: most specific first, most recently used, priority values (updated in dependence of success)
Production System

INTERPRETER

Match
Select
Apply

Input

Output

DATA
("working memory")

Production Rules
("long term memory")
Finding a good representation

In human problem solving, there is an interaction between constructing a suitable representation and solving the problem.

In AI systems, typically the representation needs to be fixed before problem solving (see Kaplan & Simon, 1990). Exceptions: approaches to solving proportional analogies using re-representation (Copycat, Hofstadter et al. 1995, PAN, O’Hara 1992, Indurkhya 1992)

Empirical studies: Plötzner & van Lehn, 1997

Examples: Mutilated checkerboard, nine-dots problem
Re-Representation
Context Effects

- Since human problem solving is typically guided by knowledge, search for a solution might be misled by preconceptions

- Gestalt-Theory: functional fixation (Duncker 1945)
 Examples: Candle, matches, and box with pushpins; pendulum problem

- A related phenomenon: set-effect (Luchins & Luchins, 1950)
 Water jug problems
Analogical Problem Solving

A problem solving strategy alternative to heuristic search is using analogical reasoning.

- Retrieve a suitable source problem.
- Map the entities of the source with the entities of the target problem in a structure preserving way.
- “Carry-over” known parts of the source to target (possibly perform necessary adaptations)

Gentner (1983)

Cognitive Models: SME (Falkenhainer et al. 1989), LISA (Hummel & Holyoak, 1998)

Empirical investigation of analogical transfer (Schmid et al., 1999)
Learning by Doing

- A problem solving system has no memory. Therefore, it might recalculate solutions which it already had achieved in another problem solving episode.

- The power law of learning (Anzai & Simon, 1979): learning curve, speed-up effect

- Humans acquire skills (procedural knowledge) when solving problem

- Cognitive Models, based on production systems: ACT (Anderson et al.), SOAR (Newell et al.): Declarative knowledge is "compiled" into rules

- But: these models do not cover strategy learning/control rule learning (see Schmid et al. 2000)
The Running Gag of CogSysI

Question: How many AI people does it take to change a lightbulb?

Answer: At least 67.

2nd part of the solution: The Problem Space Group (5)

- One to define the goal state
- One to define the operators
- One to describe the universal problem solver
- One to hack the production system
- One to indicate about how it is a model of human lightbulb-changing behavior

(“Artificial Intelligence”, Rich & Knight)