CogSysI Lecture 8: Automated Theorem Proving

Intelligent Agents

WS 2005/2006

Part II: Inference and Learning

Automated Theorem Proving
Remember ...

... in the last lecture we started to introduce resolution.

- Resolution calculus is a basic approach for performing logical proofs on a machine.
- Logical formula must be rewritten into clause form, using equivalence rules.
- To perform a resolution step on a pair of clauses, literals must be unified.
Clause Form

- **Conjunctive Normalform (CNF):** Conjunction of disjunctions of literals
 \[\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m} L_{ij} \right) \]

- **Clause Form:** Set of disjunctions of literals (can be generated from CNF)

Rewriting of formulas to clause form:
8 steps, illustrated with example

\[\forall x [B(x) \rightarrow (\exists y [O(x, y) \land \neg P(y)]) \]
\[\land \neg \exists y [O(x, y) \land O(y, x)] \]
\[\land \forall y [\neg B(y) \rightarrow \neg E(x, y)] \]
(1) Remove Implications
\[\forall x [\neg B(x) \lor (\exists y [O(x, y) \land \neg P(y)] \land \neg \exists y [O(x, y) \land O(y, x)] \land \forall y [\neg (\neg B(y)) \lor \neg E(x, y)])] \]

(2) Reduce scopes of negation
\[\forall x [\neg B(x) \lor (\exists y [O(x, y) \land \neg P(y)] \land \forall y [\neg O(x, y) \lor \neg O(y, x)] \land \forall y [B(y) \lor \neg E(x, y)])] \]

(3) Skolemization (remove existential quantifiers)
Replace existentially quantified variables by constant/function symbols.
\(\exists x \ p(x) \) becomes \(p(C) \)
(“There exists a human who is a student.” is satisfiable if there exists a constant in the universe \(\mathcal{U} \) for which the sentence is true. “Human \(C \) is a student.” is satisfiable if the constant symbol \(C \) can be interpreted such that relation \(p \) is true.)
Skolemization cont.

If an existentially quantified variable is in the scope of a universally quantified variable, it is replaced by a function symbol dependent of this variable:

\[\forall x \exists y \, p(x) \land q(x, y) \textbf{ becomes } \forall x \, p(x) \land q(x, f(x)) \]

("For all \(x \) holds, \(x \) is a positive integer and there exists a \(y \) which is greater than \(x \)." is satisfiable if for each \(x \) exists an \(y \) such that the relation "greater than" holds. E.g., \(f(x) \) can be interpreted as successor-function.)

Skolemization is \textit{no equivalence transformation}. A formula and its Skolemization are only equivalent with respect to satisfiability! The skolemized formula has a model iff the original formula has a model.

\[
\forall x \left[\neg B(x) \lor ((O(x, f(x))) \land \neg P(f(x))) \right] \land \forall y \left[\neg O(x, y) \lor \neg O(y, x) \right] \land \forall y \left[B(y) \lor \neg E(x, y) \right]
\]
Clause Form cont.

(4) Standardize variables (“bounded renaming”)
A variable bound by a quantifier is a “dummy” and can be renamed. Provide that each variable of universal quantor has a different name. (Problematic case: free variables)
\[\forall x [\neg B(x) \lor ((O(x, f(x)) \land \neg P(f(x)))) \land \forall y [\neg O(x, y) \lor \neg O(y, x)] \land \forall z [B(z) \lor \neg E(x, z)]] \]

(5) Prenex-form
Move universal quantifiers to front of the formula.
\[\forall x \forall y \forall z [B(x) \lor ((O(x, f(x)) \land \neg P(f(x)))) \land (\neg O(x, y) \lor \neg O(y, x)) \land (B(z) \lor \neg E(x, z))] \]

(6) CNF
(Repeatedly apply the distributive laws)
\[\forall x \forall y \forall z [(-B(x) \lor O(x, f(x))) \land (-B(x) \lor \neg P(f(x))) \land (-B(x) \lor \neg O(x, y) \lor \neg O(y, x)) \land (-B(x) \lor B(z) \lor \neg E(x, z))] \]
(7) Eliminate Conjunctions
If necessary, rename variable such that each disjunction has a different set of variables.
The truth of a conjunction entails that all its parts are true.
\[\forall x [-B(x) \lor O(x, f(x))], \forall w [-B(w) \lor \neg P(f(w))], \forall u \forall y [-B(u) \lor \neg O(u, y) \lor \neg O(y, u)]\]
\[\forall v \forall z [-B(v) \lor B(z) \lor \neg E(v, z)]\]

(8) Eliminate Universal Quantifiers
Clauses are implicitly universally quantified.
\[M = \{ -B(x) \lor O(x, f(x)), -B(w) \lor \neg P(f(w)), -B(u) \lor \neg O(u, y) \lor \neg O(y, u), -B(v) \lor B(z) \lor \neg E(v, z)\}\]
Substitution

- A substitution is a set \(\theta = \{v_1 \leftarrow t_1, \ldots, v_n \leftarrow t_n\} \) of replacements of variables \(v_i \) by terms \(t_i \).
- If \(\theta \) is a substitution and \(E \) an expression, \(E' = E\theta \) is called instance of \(E \). \(E' \) was derived from \(E \) by applying \(\theta \) to \(E \).
- Example: \(E = p(x) \lor (\neg q(x, y) \land p(f(x))) \), \(\Theta = \{x \leftarrow C\} \), \(E\Theta = p(C) \lor (\neg q(C, y) \land p(f(C))) \)
- Special case: alphabetic substitution (variable renaming).
- Composition of substitutions: Let be \(\theta = \{u_1 \leftarrow t_1, \ldots, u_n \leftarrow t_n, v_1 \leftarrow s_1, \ldots, v_k \leftarrow s_k\} \) and \(\sigma = \{v_1 \leftarrow r_1, \ldots, v_k \leftarrow r_k, w_1 \leftarrow q_1, \ldots, w_m \leftarrow q_m\} \). The composition is defined as \(\theta\sigma = \text{Def} \{u_1 \leftarrow t_1\sigma, \ldots, u_n \leftarrow t_n\sigma, v_1 \leftarrow s_1\sigma, \ldots, v_k \leftarrow s_k\sigma, w_1 \leftarrow q_1, \ldots, w_m \leftarrow q_m\} \)
- Composition of substitutions is not commutative!
Let be \(\{E_1\ldots E_n\} \) a set of expressions. A substitution \(\theta \) is a **unificator** of \(E_1\ldots E_n \), if \(E_1\theta = E_2\theta \ldots = E_n\theta \).

A unificator \(\theta \) is called **most general unifier** (mgu), if for each other unificator \(\sigma \) for \(E_1\ldots E_n \) there exists a substitution \(\gamma \) with \(\sigma = \theta\gamma \).

Theorem: If exists a unificator, then exists an mgu.

There are lots of unification algorithms, e.g. one proposed by Robinson.
Examples

(1) \{P(x), P(A)\} \quad \theta = \{x \leftarrow A\}

(2) \{P(f(x), y, g(y)), P(f(x), z, g(x))\} \quad \theta = \{y \leftarrow x, z \leftarrow x\}

(3) \{P(f(x, g(A, y)), g(A, y)), P(f(x, z), z)\} \quad \theta = \{z \leftarrow g(A, y)\}

(4) \{P(x, f(y), B), P(x, f(B), B)\} \quad \theta = \{x \leftarrow A, y \leftarrow B\}
\quad \sigma = \{y \leftarrow B\}

In (4) holds:

\sigma \text{ is more general than } \theta: \theta = \sigma \gamma, \text{ with } \gamma = \{x \leftarrow A\}

\sigma \text{ is mgu for } \{P(x, f(y), B), P(x, f(B), B)\}
Resolution

A clause $C = \bigvee_{i=1}^{n} L_i$ can be written as set $C = \{L_1, \ldots, L_n\}$. Let be C_1, C_2 and R clauses. R is called resolvent of C_1 and C_2 if:

- There are alphabetical substitutions σ_1 und σ_2 such that $C_1\sigma_1$ and $C_2\sigma_2$ have no common variables.
- There exists a set of literals $L_1, \ldots, L_m \in C_1\sigma_1(m \geq 1)$ and $L'_1, \ldots, L'_n \in C_2\sigma_2(n \geq 1)$ such that $L = \{\neg L_1, \neg L_2, \ldots, \neg L_m, L'_1, L'_2, \ldots, L'_n\}$ are unifiable with θ as mgu of L.
- R has the form:

 $R = ((C_1\sigma_1 \setminus \{L_1, \ldots, L_m\}) \cup (C_2\sigma_2 \setminus \{L'_1, \ldots, L'_n\}))\theta$.

Resolution cont.

Derivation of a clause by application of the resolution rule can be described by a refutation tree:

```
      C1          C2
         / \         /  \  
        R   C3    R'   
```
Illustration

\[C_1 = \{ P(f(x)), \neg Q(z), P(z) \} \]
\[C_2 = \{ \neg P(x), R(g(x), A) \} \]

\[\sigma_1 = \{ \}, \sigma_2 = \{ x \leftarrow u \} \]

\[L = \{ P(f(x)), P(z), \neg P(x) \} = \{ P(f(x)), P(z), P(u) \} \]

\[\theta = \{ z \leftarrow f(x), u \leftarrow f(x) \} \]

\[R = \left[\left(\{ P(f(x)), \neg Q(z), P(z) \} \setminus \{ P(f(x)), P(z) \} \right) \cup \left(\{ \neg P(u), R(g(u), A) \} \setminus \{ P(u) \} \right) \right] \theta = \{ \neg Q(f(x)), R(g(f(x)), A) \} \]
Resolution Proofs

To prove that formula G (assertion) logically follows from a set of formula (axioms) $F_1 \ldots F_n$: Include the negated assumption in the set of axioms and try to derive a contradiction (empty clause).

Theorem: A set of clauses is not satisfiable, if the empty clause (\Box) can be derived with a resolution proof.

(Contradiction: $C_1 = A$, $C_2 = \neg A$, stands for $(A \land \neg A)$ and $(A \land \neg A) \vdash \Box$)
Example

- Axiom “All humans are mortal” and fact “Socrates is human” (both are non-logical: their truth is presupposed)
- Assertion “Socrates is mortal.”
- Formalization:
 \(F_1 : \forall x \ \text{Human}(x) \rightarrow \text{Mortal}(x) \)
 \(F_2 : \text{Human}(S) \)
 \(F_3 : \neg \text{Mortal}(S) \) (negation of assertion)
- Clause form:
 \(F'_1 : \neg \text{Human}(x) \lor \text{Mortal}(x) \)
 \(F'_2 : \text{Human}(S) \)
 \(F'_3 : \neg \text{Mortal}(S) \)
A calculus is sound, if only such conclusions can be derived which also hold in the model.

A calculus is complete, if all conclusions can be derived which hold in the model.

The resolution calculus is sound and refutation complete. Refutation completeness means, that if a set of formula (clauses) is unsatisifiable, then resolution will find a contradiction. Resolution cannot be used to generate all logical consequences of a set of formula, but it can establish that a given formula is entailed by the set. Hence, it can be used to find all answers to a given question, using the “negated assumption” method.
Remarks

- The proof ideas will given for resolution for propositional logic (or ground clauses) only.
- For FOL, additionally, a lifting lemma is necessary and the proofs rely on Herbrand structures.

- We cover elementary concepts of logic only.
- For more details, see
 - Volker Sperschneider & Grigorios Antoniou, Logic – A foundation for computer science, Addison-Wesley, 1991.
Resolution Theorem

Theorem: A set of clauses F is not satisfiable iff the empty clause \Box can be derived from F by resolution.

- **Soundness:** (Proof by contradiction) Assume that \Box can be derived from F. If that is the case, two clauses $C_1 = \{L\}$ and $C_2 = \{\neg L\}$ must be contained in F. Because there exists no model for $L \land \neg L$, F is not satisfiable.

- **Refutation completeness:** (Proof by induction over the number n of atomic formulas in F) Assume that F is a set of formula which is not satisfiable. Because of the compactness theorem, it is enough to consider the case that a finite non-satisfiable subset of formula exists in F. To show: \Box is derived from F. (see e.g., Schöning)
Resolution Strategies

In general, there are many possibilities, to find two clauses, which are resolvable. Of the many alternatives, there are possibly only a few which help to derive the empty clause \rightarrow combinatorial explosion!

For feasible algorithms: use a resolution strategy

E.g., exploit subsumption to keep the knowledge space, and therefore the search space, small. Remove all sentences which are subsumed (more special than) an existing sentence. If $P(x)$ is in the knowledge base, sentences as $P(A)$ or $P(A) \lor Q(B)$ can be removed.

Well known efficient strategy: SLD-Resolution (linear resolution with selection function for definite clauses) (e.g. used in Prolog)
SLD-Resolution

- **linear**: Use a sequence of clauses \((C_0 \ldots C_n)\) starting with the negated assertion \(C_0\) and ending with the empty clause \(C_n\). Each \(C_i\) is generated as resolvent from \(C_{i-1}\) and a clause from the original set of axioms.

- **Selection function** (for the next literal which will be resolved) e.g. top-down-left-to-right in PROLOG; makes the strategy **incomplete**! (“user” must order clauses in a suitable way)

- **definite Horn clauses**: A Horn clause contains maximally one positive literal; a definite Horn clause contains exactly one positive literal (Prolog rule)
Prolog

<table>
<thead>
<tr>
<th>Fact</th>
<th>isa(fish,animal).</th>
<th>isa(Fish,Animal)</th>
<th>positive literal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>isa(trout,fish).</td>
<td>isa(Trout,Fish)</td>
<td></td>
</tr>
<tr>
<td>Rule</td>
<td>is(X,Y) :- isa(X,Y).</td>
<td>is(x,y) ∨ ¬isa(x,y)</td>
<td>definite Clause</td>
</tr>
<tr>
<td></td>
<td>is(X,Z) :- isa(X,Y), is(Y,Z).</td>
<td>is(x,z) ∨ ¬isa(x,y) ∨ ¬is(y,z)</td>
<td></td>
</tr>
<tr>
<td>Query</td>
<td>is(trout,animal).</td>
<td>¬is(Trout,Animal)</td>
<td>Assertion</td>
</tr>
<tr>
<td></td>
<td>is(Fish,X)</td>
<td>¬is(Fish,x)</td>
<td></td>
</tr>
</tbody>
</table>

- denotes the “reversed” implication arrow.

\[
\text{is}(X,Z) \leftarrow \text{is}(X,Y), \text{is}(Y,Z).
\]

\[
\text{isa}(x, y) \land \text{is}(y, z) \rightarrow \text{is}(x, z) \equiv \\
\neg(\text{isa}(x, y) \land \text{is}(y, z)) \lor \text{is}(x, z) \equiv \neg \text{isa}(x, y) \lor \neg \text{is}(y, z) \lor \text{is}(x, z)
\]

- Variables which occur in the head of a clause are implicitly universally quantified. Variables which occur only in the body are existentially quantified.

\[
\forall x \forall z \exists y \neg \text{isa}(x, y) \lor \neg \text{is}(y, z) \lor \text{is}(x, z)
\]
Prolog Example

- **Query:** is(fish,X)
 (stands for $\exists x \ is(Fish, x)$)

- **Negation of query:** $\neg \exists x \ is(Fish, x) \equiv \forall x \ \neg is(Fish, x)$

- **SLD-Resolution:**

 - $\neg is(Fish, x)$
 - $is(v_1, v_2) \lor \neg isa(v_1, v_2)$

 - $[v_1 \leftarrow Fish, v_2 \leftarrow x]$
 - $\neg isa(Fish, x)$
 - $isa(Fish, Animal)$

 - $[x \leftarrow Animal]$

 - $\neg isa(Fish, x)$
 - $isa(Trount, Animal)$

 - $is(v_1, v_2) \lor \neg isa(v_1, v_2)$

 - $[v_1 \leftarrow Trout, v_2 \leftarrow Animal]$

 - $\neg isa(Trount, Animal)$
 - $isa(Trount, Animal)$

 - $\neg isa(Trount, v_3) \lor \neg is(v_3, Animal)$

 - $[v_3 \leftarrow Fish]$

 - $\neg isa(Trount, v_3)$
 - $isa(Trount, Fish)$

 - $isa(Trount, Animal)$

 - $\neg isa(Fish, Animal) \lor \neg isa(Fish, Animal)$

 - $\neg isa(Fish, Animal)$

 - $isa(Fish, Animal)$

 - $\neg isa(Fish, Animal)$

 - $[\text{Fail!}]

 - $[\text{Backtrack}]$
Remarks on Prolog

- When writing Prolog programs, one should be know how the interpreter is working (i.e., understand SLD-resolution)
- Sequence of clauses has influence whether an assertion which follows logically from a set of clauses can be derived!
- **Efficiency**: Facts before rules
- **Termination**: non-recursive rule before recursive.

```prolog
% Program
isa(trout, fish).
isa(fish, animal).

is(X, Z) :- is(X, Y), isa(Y, Z).
is(X, Y) :- isa(X, Y).

% Query
? is(trout, animal).
is(trout, Y), isa(Y, animal)
is(trout, Y'), isa(Y', animal), isa(Y, animal)
...
```

CogSysI Lecture 8: Automated Theorem Proving – p. 222
Applications of Resolution Calculus

- PROLOG

- as a basic method for theorem proving (others: e.g. tableaux)

- Question Answering Systems

Yes/No-Questions: Assertion/Query \textit{mortal(s)}

Query \textit{is(trout, X)} corresponds to “What is a trout?”
The variable \(X\) is instantiated during resolution and the answer is “a fish”.

\textit{buys(peter, john, X)}: “What does John buy from Peter?”

\textit{buys(peter, X, car)}: “Who buys a car from Peter?”
Theorem Provers

- Theorem provers typically are more general than Prolog: not only Horn clauses but full FOL; no interleaving of logic and control (i.e. ordering of formulas has no effect on result)

- Examples: Boyer-Moore (1979) theorem prover; OTTER, Isabelle

- Theorem provers for mathematics, for verification of hardware and software, for deductive program synthesis.
Forward- and Backward Chaining

- Rules (e.g. in Prolog) have the form: \(\text{Premises} \rightarrow \text{Conclusion} \)

- All rule-based systems (production systems, planners, inference systems) can be realized using either forward-chaining or backward-chaining algorithms.

- Forward chaining: Add a new fact to the knowledge base and derive all consequences (data-driven)

- Backward chaining: Start with a goal to be proved, find implication sentences that would allow to conclude the goal, attempt to prove the premises, etc.

- Well known example for a backward reasoning expert system: MYCIN (diagnosis of bacterial infections)
The Running Gag of CogSysI

Question: How many AI people does it take to change a lightbulb?
Answer: At least 67.

4th part of the solution: **The Logical Formalism Group (12)**

- One to figure out how to describe lightbulb changing in predicate logic
- One to show the adequacy of predicate logic
- One to show the inadequacy of predicate logic
- One to show that lightbulb logic is nonmonotonic
- One to show that it isn’t nonmonotonic
- One to incorporate nonmonotonicity into predicate logic
- One to determine the bindings for the variables
- One to show the completeness of the solution
- One to show the consistency of the solution
- One to hack a theorem prover for lightbulb resolution
- One to indicate how it is a description of human lightbulb-changing behavior
- One to call the electrician (“Artificial Intelligence”, Rich & Knight)