Multiagent Communication

- Competitive: mechanisms for collective decision making
 - (Voting)
 - Auction
 - Negotiation
 - (Argumentation)

- Cooperative: communication for distributed problem solving
 - Speech acts
 - Agent Communication Languages
 - Ontologies
Object vs. Agent Communication

- Object o_2 invokes a public method m_1 of object o_1 passing argument arg
 $\rightarrow o_2$ communicates arg to o_1
 \rightarrow BUT: the decision to execute m_1 lies only with o_2

- An autonomous agent has control over its state and its behavior
 There is no guarantee that another agent really performs an action

- An agent cannot force another agent to perform some action or to change its internal state

- An agent can try to influence another agent by communication

- Communication can change the internal state (belief, desire, intention) of another agent

- Communication as special case of action: speech acts
Speech Acts – Austin

- Philosopher John Austin (1962)
- Some utterances have the same characteristics as actions
- E.g., declaring war, declaring a couple as married
- Identification of performative verbs, such as request, inform, promise

Aspects of speech acts
“The tea pot is empty”
- Locution: How is an utterance formulated
- Illocution: What did the speaker mean (“somebody should make new tea”)
- Perlocution: How does the utterance influence the receiver
Philosopher John Searle (1969) identified properties that must hold for a speech act to succeed.

E.g.: **Speaker requests** that **hearer** performs **action**

- Normal I/O conditions: Hearer must be able to hear the request (not deaf, etc.), act must be performed in normal circumstances (not in a movie etc.)

- Preparatory conditions: what must be true in the world that speaker correctly chooses the speech act (hearer must be able to perform action, speaker must believe that hearer is able to perform action, hearer does not do the action without request)

- Sincerity conditions: e.g., speaker must really want the action to be performed
Types of Speech Acts

- Representatives: informing
- Directives: requesting
- Commissives: promising
- Expressives: thanking
- Declarations: declaring (change of affairs)
Speech Acts in Planning

If a planning system requires interaction (with humans, other autonomous agents), the plans must include speech actions.

How can properties of speech acts be represented in such a way that a planning system can reason about them?

Cohen and Perrault, 1979

STRIPS representation with pre- and postconditions, now represented in multimodal logic special operators for beliefs, abilities, wants
Speech Acts in Plans

Request(S, H, α)
PRE Cando.pr (S Believe (H Cando α)) \land
 (S Believe (H believe (H Cando α)))
Want.pr (S Believe (S Want request\textit{Instance}))
EFF (H Believe (S Believe (S Want α)))

CauseToWant(A_1, A_2, α)
PRE Cando.pr (A_1 Believe (A_2 Believe (A_2 Want α)))
EFF (A_1 Believe (A_1 Want α))

Inform(S, H, ϕ)
PRE Cando.pr (S Believe ϕ)
Want.pr (S Believe (S Want inform\textit{Instance}))
EFF (H Believe (S Believe ϕ))

Convince(A_1, A_2, ϕ)
PRE Cando.pr (A_1 Believe (A_2 Believe ϕ))
EFF (A_1 Believe ϕ)
Speech Acts in Plans cont.

- Request and Inform are basic actions
- Request models only the illocutionary force of the act
- Therefore: CauseToWant as mediating act (prelocution; Hearer wants to perform α)
- Similarly: Convince is a mediating act for Inform (Hearer believes ϕ)
Agent Communication Languages

- Speech act theory has influenced language development for agent communication

- DARPA-funded Knowledge Sharing Effort (KSE):
 - Knowledge Interchange Format (KIF): Representation of knowledge about a “domain of discourse”
 - Knowledge Query and Manipulation Language (KQML): “Outer” language for agent communication; defines “envelope” format for messages
KIF

(Genesereth and Fikes, 1992)

Express properties of things in a domain
Michael is a vegetarian

Express relationships between things in a domain
Michael and Janine are married

Express general properties of a domain
Everybody has a mother

Closely based on First-Order Logic
Written in a Lisp-like notation
KIF Examples

(= (temperature m1) (scalar 83 Celsius))

; temperature and scalar
; are user-defined functions

(defrelation bachelor (?x) :=
 (and (man ?x) (not (married ?x))))

(defrelation person (?x) := => (mammal ?x))
KQML

Message defined by a **performative** and a number of parameters

assumption of a **virtual knowledge base** (VKB)

agents treat other agents as if they had some internal representation of knowledge (although they do not know whether this is the case and in what format this knowledge is represented)

```
(ask-one
 :content (PRICE IBM ?price)
 :receiver stock-receiver
 :language LPROLOG
 :ontology NYSE-TICKS
)
```
KQML Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>:content</td>
<td>content of message</td>
</tr>
<tr>
<td>:force</td>
<td>whether sender will ever deny content</td>
</tr>
<tr>
<td>:reply-with</td>
<td>whether sender expects a reply and identifier for reply</td>
</tr>
<tr>
<td>:in-reply-to</td>
<td>reference to the identifier of a ’reply-with’</td>
</tr>
<tr>
<td>:sender</td>
<td>sender of the message</td>
</tr>
<tr>
<td>:receiver</td>
<td>intended recipient</td>
</tr>
</tbody>
</table>
Some KQML Performatives

(Finin et al., 1993)

<table>
<thead>
<tr>
<th>Performative</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>achieve</td>
<td>S wants R to make something true of their environment</td>
</tr>
<tr>
<td>advertise</td>
<td>S claims to be suited to processing a performative</td>
</tr>
<tr>
<td>ask-about</td>
<td>S wants all relevant sentences in R’s VKB</td>
</tr>
<tr>
<td>ask-all</td>
<td>S wants all of R’s answers to a question</td>
</tr>
<tr>
<td>ask-if</td>
<td>S wants to know whether the answer to C is in R’s VKB</td>
</tr>
<tr>
<td>ask-one</td>
<td>S wants one of R’s answers to C</td>
</tr>
<tr>
<td>broadcast</td>
<td>S wants R to send a performative over all connections</td>
</tr>
<tr>
<td>broker-all</td>
<td>S wants R to collect all responses to a performative</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Some KQML Performatives cont.

...
eos end of a stream response to an earlier query
evaluate S wants R to evaluate C
monitor S wants updates to R’s response to ’stream-all’
...
pipe S wants R to route all further performatives to another agent
recommend-all S wants all names of agents who can respond to C
...
stream-about multiple response version of ’ask-about’
stream-all multiple response version of ’ask-all’
tell S claims to R that C is in S’s VKB
...
Example Dialogues

(evaluate
 :sender A :receiver B
 :language KIF :ontology motors
 :reply-with q1 :content (val (torque m1)))

(reply
 :sender B :receiver A
 :language KIF :ontology motors
 :in-reply-to q1
 :content (= (torque m1) (scalar 12 kgf)))
Example Dialogues cont.

(stream-about
 :sender A :receiver B
 :language KIF :ontology motors
 :reply-with q1 :content m1)

(tell
 :sender B : receiver A
 :in-reply-to q1
 :content (= (torque m1) (scalar 12 kgf)))

(tell
 :sender B : receiver A
 :in-reply-to q1 :content (= (status m1) normal))

(eos
 :sender B : receiver A
 :in-reply-to q1)
From KQML to FIPA ACL

- KQML was taken up by the multiagent systems community in a significant way, BUT
 - Set of performatives was never really fixed, therefore, different KQML implementations were developed which could not interoperate
 - message transport mechanisms were never precisely defined, again a reason for interoperability problems
 - Semantics of KQML was never rigidly defined; meaning of KQML performatives was only described informally, and therefore open to different interpretations
 - The performative set is rather large and rather ad hoc
 - Performatives for making commitments are missing (important for cooperation)

- Foundation for Intelligent Physical Agents (FIPA) started working standards for multiagent systems, 1995
Ontologies for Agent Communication

- Ontology:
 - Formal definition of a body of knowledge
 - Typically, a taxonomy of class and subclass relations, coupled with definitions of characteristics (attributes, relations) of and between things

- Allows for agreement on terminology in agent communication

- E.g., agent is buying some engineering item from another agent; must be able to unambiguously specify the desired properties, such as size; meaning of 'size', 'centimeter' etc.

- KIF is a language for defining ontologies

- Currently most important: XML (Extensible Markup Language) and DAML (DARPA Agent Markup Language)
XML

- Markup Language: Grammar for interspersing documents with markup commands
- HTML (Hypertext Markup Language): Markups for displaying documents in a web-browser (separating function and form)
- XML is a meta-markup language, that is, there is no fixed set of pre-defined tag
- Tag based languages describe content ("semantics") rather than form (layout) of data.
- XML documents are trees: single root element and each element can have an arbitrary number of children.
- DAML is based on XML
<rdf:Description rdf:ID='''United-Kingdom'''>
 <rdf:type rdf:resource='''GEOREF''' />
 <HAS-TOTAL-AREA>
 (* 244820 Square-Kilometers)
 </HAS-TOTAL-AREA>
 <HAS-LAND-AREA>
 (* 241590 Square-Kilometers)
 </HAS-LAND-AREA>
 <HAS-COMPARATIVE-AREA-DOC>
 slightly smaller than Oregon
 </HAS-COMPARATIVE-AREA-DOC>
 ...
</rdf:Description>
Multiagent Systems, Further Aspects

- Cooperative, distributed problem solving
- Modal Logic for MAS (semantics of agent states)
- Agent-oriented software engineering
- Agent platforms