CogSysI Lecture 8: Planning as Heuristic Search

Intelligent Agents
WS 2006/2007

Part II: Problem Solving and Planning

II.8 Planning as Heuristic Search
Planning as Search

Planning is an abstract search problem

Abstract-search(u)
 if Terminal(u) then return(u)
 \(u \leftarrow \text{Refine}(u) \)
 \(B \leftarrow \text{Branch}(u) \)
 \(C \leftarrow \text{Prune}(B) \)
 if \(C = \emptyset \) then return(failure)
 (nondeterministically) choose \(v \in C \)
 return(Abstract-search(v))
STRIPS Planning as Search

- In state-based planning (STRIPS) \(u \) is a sequence of actions
- Every solution reachable from \(u \) contains this sequence as prefix (forward search) or as suffix (backward search)
- \(u \) is a partial plan
In Graphplan u is a subgraph of a planning graph, that is a sequence of sets of actions together with constraints (for preconditions, effects, mutex).

Each solution reachable from u contains actions in u corresponding to the solved levels and at least one action from each level of the subgraph has not yet been solved in u.

Not every action in u will appear in the solution plan (several actions may achieve a goal but perhaps only one of them will be needed in the solution plan).
Abstract-Search

- Refinement: Modifying the collection of actions or constraints in u
- Branch: generating children of u
- Prune: removing some nodes which seem unpromising for search (e.g. an already visited node, or a domain-specific reason)
- Choose: instead of nondeterministic selection often depth-first search with some Select-function is used
Selection of Nodes

- Select is realized using a heuristic function!
- Heuristic: ranking nodes in order of their relative desirability
- in A^*: hand-crafted, in planning automatically derived from planning problem
- \rightarrow design principle: relaxation
- Since heuristics: no guarantee to be the best choice
Relaxation

Select(C) = argmin\{h(u) | $u \in C'$\}

Relaxation: simplifying assumptions, relaxing constraints

Obtaining h by solving the relaxed problem

The closer the relaxed problem is to the real one
 the better is the heuristic
 the more effort it takes to calculate the heuristics

For search for optimal solutions: admissible heuristics necessary
State Reachability Relaxation

Asses how close an action may bring us to the goal

\[
Res(s, a) = s \setminus DEL(a) \cup ADD(a) \text{ if } PRE(a) \subseteq s
\]

Relaxation: neglect \(DEL(a)\)

Simplified \(Res(s, a)\): monotonic increase in number of propositions from \(s\) to \(Res(s, a)\)

Let \(s \in S\) be a state, \(p\) a proposition, and \(g\) a set of propositions

The minimum distance from \(s\) to \(p\), \(\Delta^*(s, p)\) is the minimum number of actions to reach from \(s\) a state containing \(p\).

The minimum distance from \(s\) to \(g\), \(\Delta^*(s, g)\) is the minimum number of actions to reach from \(s\) a state containing all propositions \(g\).
Ignoring DEL-Effects

- Estimate Δ_0: ignoring DEL, estimate distance to g as sum of the distances to all propositions in g

 - $\Delta_0(s, p) = 0$ if $p \in s$
 - $\Delta_0(s, p) = \infty$ if $\forall a \in A, p \notin ADD(a)$
 - $\Delta_0(s, g) = 0$ if $g \subseteq s$
 - otherwise
 - $\Delta_0(s, p) = \min_a \{1 + \Delta_0(s, PRE(a)) | p \in ADD(a)\}$
 - $\Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p)$

Heuristic function: $h_0(s) = \Delta_0(s, g)$ (where g is the set of top-level goals)
Computing the Heuristic

$Delta(s)$

for each p do:
 if $p \in s$ then $\Delta_0(s, p) \leftarrow 0$
 else $\Delta_0(s, p) \leftarrow \infty$

$U \leftarrow \{s\}$

iterate

 for each a such that $\exists u \in U$ with $PRE(a) \subseteq u$ do
 $U \leftarrow \{u\} \cup ADD(a)$
 for each $p \in ADD(a)$ do
 $\Delta_0(s, p) \leftarrow \min\{\Delta_0(s, p), 1 + \sum_{q \in PRE(a)} \Delta_0(s, q)\}$

until no change occurs in the updates
Computing the Heuristic

- Computes a value for each p
- Similar to minimum-distance (single-source) graph-search algorithm
- Starting from s_0 it proceeds through each action whose preconditions are reached, until a fixed point is reached
- Action selection: $a \leftarrow \text{argmin}\{\Delta_0(Res(s, a), g)\}$
- Algorithm is polynomial in the number of propositions and actions
- For actions with different costs: replace 1 by the cost value of a
- Realized in the planner HSP (Geffner and colleagues)
Admissibility

- Heuristic \(h_0 \) is not admissible
- Example: \(PRE(a) \in s_0, ADD(a) = g, s_0 \cap g = \emptyset \)
 true distance to goal is 1
 \(\Delta_0(s_0, g) = \sum_{p \in g} \Delta_0(s_0, p) = |g| \)
- Modification of \(\Delta_0 \): instead of sum of the distances of the elements of \(g \), take maximum of the distances
- Problem: not as informative as \(\Delta_0 \) (considering only a single goal proposition)
- Further modifications: look at the maximum of reaching \(k \)-tuples of propositions of \(g \)
Planning in Real-World Domains

Incomplete Information
- Conformant planning: Create plans that work for all cases
- Conditional planning: sense world during execution and decide which branch of the plan to follow

Incorrect Information
- Execution monitoring: check for unsatisfied preconditions
- Re-planning

Continuous planning: create new goals during acting in real time

Multiagent planning
Including Knowledge

Using knowledge about the structure of the domain

- Hierarchical Planning (decomposition rules)
 cf. problem solving with AND-OR trees
- Domain axioms
- Domain specific search strategies

→ larger plans become feasible (necessary for many real world problems, e.g. Mars Mobile)
Alternative to knowledge engineering: Learning of planning strategies!
Further Topics

- Interleaving plan construction and plan execution
- Plan revision
- Planning with temporal/resource constraints
- Non-deterministic planning
- ...

CogSysI Lecture 8: Planning as Heuristic Search – p. 230