CogSysI Lecture 9: Non-Monotonic and Human Reasoning

Intelligent Agents

WS 2006/2007

Part III: Reasoning and Inference

III.9 Non-Monotonic and Human Reasoning
Reasoning under Uncertainty

- Deduction in classical logic: based on the assumption that knowledge about the properties of the environment (set of axioms/rules) and perception (set of facts) is perfect!

- Uncertainty:
 - Rule *sore throat* → *flu* holds only with a certain probability.
 - Fact *The car is in working order* can be asserted only with some probability.
Approaches to Reasoning under U.

- Qualitative (logical) approach: non-monotonic reasoning
- Quantitative (probabilistic) approach: e.g. fuzzy logic
- Semi-Qualitative approach: Bayes nets
Bayes Nets

- Rules: Data $D \rightarrow$ Hypothesis H
- Bayes Theorem:
 \[p(H|D) = \frac{p(D|H) \cdot p(H)}{p(D)} \]

- Conditional probability of H given D
- Apriori probabilities: $p(D)$, $p(H)$ and $p(D|H)$
- Example: Sore throat \rightarrow flu

 \[p(\text{Sore throat}) = 0.3 \] (probability that a person has a sore throat)

 \[p(\text{flu}) = 0.4 \] (probability that a person has the flu)

 \[p(\text{Sore throat}|\text{flu}) = 0.6 \] (probability that a person has a sore throat if he/she has the flu)

 With $p = 0.45$ we can infer that someone has the flu if he/she reports a sore throat

- Bayes Nets: directed acyclic graph (DAG) with concepts as nodes. A node has an outgoing edge to another node if it represents a precondition.
Non-Monotonic Reasoning

- A family of formal frameworks devised to capture inference of everyday life.

- Reasoners draw conclusions tentatively, reserving the right to retract them in the light of further information.

- Example: From “Tweety is a bird” we can follow “Tweety can fly” using the rule $\forall x \text{bird}(x) \rightarrow \text{flies}(x)$.
 The new information “Tweety is a penguin” brings us to a revision of the former conclusion. (“Tweety cannot fly”).

- Non-Monotonicity: Inference can be “undone” by new information.

- Some frameworks:
 - Default Logic (Reiter, 1980)
 - Truth Maintenance Systems (Doyle, 1980)
 - Modal Logic (dynamic logic, epistemic logic)
Default Logic

A default theory is a pair \((W, \Delta)\)

\(W\) is a “world description”, a set of first order formulas representing the “strict” or background information.

\(\Delta\) is a set of defaults, representing revisable information.

Inference rules in \(\Delta\) have the form: \(\gamma : \theta/\tau\).

\(\gamma\), \(\theta\), and \(\tau\) are also first order formulas with

- \(\gamma\): pre-requisite (conjunction of literals)
- \(\theta\): justification/consistency assumptions
- \(\tau\): default (revisable conclusion)

Interpretation: “If \(\gamma\) is known and if there is no evidence that \(\theta\) might be false, then \(\tau\) can be inferred.”

Justification is based on the closed world assumption: If \(\neg\theta\) cannot be derived from \(W\) then assume that it holds.
The Tweety Example

Theory:

\[W = \{ \]
\[\text{bird(Tweety),} \]
\[\text{bird(Paul),} \]
\[\text{penguin(Tweety),} \]
\[\forall x \text{ penguin}(x) \rightarrow \neg \text{flies}(x) \} \]
\[\Delta = \{ d_1 \} \text{ with } d_1 :: \text{bird}(x) : \text{flies}(x)/\neg \text{flies}(x) \]

From \(\gamma = \text{bird(Paul)} \) can be derived \(\text{flies(Paul)} \)

From \(\gamma = \text{bird(Tweety)} \) cannot be derived \(\text{flies(Tweety)} \) because there is evidence that \(\neg \text{flies(Tweety)} \)
Remarks on Default Logic

- Determining consistency of defaults is problematic
- Algorithmic approach: calculate extension (model) of a default theory
 Problem: extensions may not exist, are not unique
- To deal with non unique extensions, two strategies were proposed: a credulous and a bold strategy. In the first case, an inference is accepted if it is in some extension E, in the second case, it is accepted only if it is included in all extensions E.
- Determining whether a given default theory has an extension is highly intractable even for a simple subset of FOL, which only allows conjunctions of literals.
Fuzzy Logic

- Reasoning with expressions describing membership in fuzzy sets
- Membership function: $T(x) \in [0 \ldots 1]$ with 0 corresponding to logical “false” (not member) and 1 corresponding to logical “true” (member)
- Example: $Bird(x)$ can be defined such that it returns 0 for all kinds of fishes, 1 for “typical” birds (canary, sparrow), and smaller values for birds such as penguins or hens
- Problem: membership-function may depend on context (a soup bowl can be viewed as a cup if nothing else for pouring a drink in is available)
- Relation to prototype theory (Rosch)
Fuzzy Reasoning

- Standard rules for evaluating fuzzy truth
 \[T(A \land B) = \min(T(A), T(B)) \]
 \[T(A \lor B) = \max(T(A), T(B)) \]
 \[T(\neg A) = 1 - T(A) \]

- For \(T(X) \in \{0, 1\} \) these rules correspond to the classical logical operations \textit{and}, \textit{or}, and \textit{not}
Human Reasoning

Everyday reasoning is necessarily non-monotonic: it is impossible to verify all premisses (knowledge not available, time constraints).

Three examples:
- Symbol-Distance Effect (Potts, 1972)
- Wason-Selection Task (Wason & Johnson-Laird, 1972)
- Syllogistic Reasoning with Mental Models (Johnson-Laird, 1983)
Symbol-Distance Effect

Presentation of assertions (in arbitrary sequence):
```
``Peter is taller than John’’
``‘‘John is taller than Mary’’
``‘‘Mary is taller than Bill’’
```

Task: Verification of a statement “x taller y”

Dependent variable: reaction time

Hypothesis: If humans solve this task with logical reasoning, then it holds, the reaction time will increase with the number of applications of the transitivity rule.

taller(x, y) ∧ taller(y, z) → taller(x,z)
Symbol-Distance Effect cont.

RT

Assumption

Data

taller(Peter, John) taller(John, Mary) taller(Mary, Bill) taller(Bill, Sue)

inference steps

0 1 2 3

integrated mental representation:

Peter John Mary Bill Sue
Wason-Selection Task

“If of one side of a card is a vowel, then there is an even number on its other side”

Check this proposition by turning as few cards as possible.

A D 4 7
Results:

<table>
<thead>
<tr>
<th></th>
<th>A, 4</th>
<th>A</th>
<th>A,7</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>46%</td>
<td>33%</td>
<td>4%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Modus ponens: vowel → even, vowel \models even

Modus tollens: vowel → even, \neg even $\not\models$ \neg vowel

- Subjects do not apply *modus tollens*
- Subjects might interpret implication as biconditional (checking A and 4)
- Subjects might prefer to check cards which are mentioned in the rule to be tested (“matching bias”)
- If context is given, subjects perform the correct tests! (92%) (Johnson-Laird et al., 1972; see Müsseler & Prinz, 2002)
Wason-Selection Task cont.

You work at a post office and need to check whether letters are stamped correctly: If an envelope is sealed it must have a 50 Lira stamp.
Mental Models

Syllogistic reasoning:
- Construction of an integrated internal representation of the premisses
- “Read out” the conclusion

Influence factors on performance (error rates, performance time)
- Number of possible models
- Sequence of presentation of premisses
Mental Models, Example

All squares are striped.
All striped objects have a bold margin.

All squares have a bold margin?

All squares are striped.
Some striped objects have a bold margin.

Some squares have a bold margin?