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Part II: Special Aspects of Concept Learning

COLT, Probably Approximately Correct (PAC) Learning
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Motivation

which concepts are learnable under which conditions?

especially: which concepts are effective learnable

providing learning algorithms
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Goals

Give a rigorous, computationally detailed and plausible account of how to
learning can be done. Translation:

Rigorous: theorems, please.

Computationally detailed: exhibit algorithms that learn.

Plausible: with a feasible quantity of computational resources, and
with reasonable information and interaction requirements.

Dana Angluin
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PAC Learning Model

PAC stands for probably approximately correct

seminal paper: L. G. Valiant (1984). A theory of the learnable.
Communications of the ACM, 27(11). 1134–1142

instances are generated at random from X according to some
probability distribution D

generally D not known to the learner

generally D may be any distribution, distribution free learning

D is stationary

a particular class C of possible target concepts is fixed,
c : X → {0, 1} for each c ∈ C, a hypothesis space H is fixed,
basically we assume C ⊆ H, a computational representation of H is
fixed, then the learnability of C is investigated: learnability of C in
terms of H
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PAC Learning Model Cont.

true (prediction) error: errorD(h) = Prx∈D(c(x) 6= h(x))

training error errorD(h): fraction of training examples misclassified
by h

intuition: parameters ε and δ are chosen, then we require that the
learner eventually conjectures a hypothesis h ∈ H which
approximates c with errorD(h) < ε, the probability that this does not
happen should be smaller than δ

definition: a learning algorithm PAC-identifies concepts from C in
terms of H iff for every distribution D and every concept c ∈ C, for
all positive numbers ε and δ it eventually outputs a concept h ∈ H

such that with probability at least 1 − δ, errorD(h) < ε
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PAC Learning Model Cont.

polynomial time: efficiency of the learning algorithm is measured
with respect to relevant parameters: length of X, size of target
concept (note that this is dependent on the chosen computational
representation), 1/ε, and 1/δ

definition: C is PAC-learnable in terms of H provided there exists a
polynomial-time learning algorithm that PAC-identifies C in terms of
H

note that the number of training examples is bound by the
polynomial-time requirements: if any training example requires
some minimum processing time, then for C to meet the
polynomial-time requirements (i.e. beeing PAC-learnable) the
learning algorithm must learn from a polynomial number of training
examples
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PAC Learning Model and Sample Size

for hypothesis space H, target concept c, probability D, and traning
examples D the version space V SH,D is said to be ε-exhausted with
respect to c and D, iff for all h ∈ V SH,D, errorD(h) < ε

theorem (Haussler 1988): let m ≥ 1 be the number of training
examples of c drawn according to D, if H is finite, then for all
0 ≤ ε ≤ 1, the probability that V SH,D is not ε-exhausted is less than
or equal to |H|e−εm

if we require that this probability of failure is below some δ:
|H|e−εm ≤ δ then rearranging terms to solve for m yields the upper
bound for m:

m ≥
1

ε
(ln |H| + ln

(

1

δ

)

)
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PAC Learning Model and Sample Size cont.

The given bound is a general bound on the number of training
examples sufficient for any consistent learner to succesfully learn
any target concept in H for any desired values of δ and ε

if C 6⊆ H then a consistent hypothesis cannot always be found. an
agnostic learner makes no prior commitment about whether or not
C ⊆ H and simply outputs the hypothesis with minimum training
error

for an agnostic learner the sample size is bound to

m ≥
1

2ε2
(ln |H| + ln

(

1

δ

)

)

where δ is the probability that errorD(h) > errorD(h) + ε
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PAC-learnable Concept Classes

conjunctions of boolean literals are PAC-learnable, this can be
shown by first showing that any consistent learner will require only a
polynomial number of training examples to learn any c ∈ C and then
suggesting a specific algorithm that uses polynomial time per traing
example

for n boolean variables, |H| = 3n, i.e. m ≥ 1

ε
(n ln 3 + ln( 1

δ
))

e.g. to learn concepts of up to 10 boolean literals with 95to
present m examples, where m = 1

0.1
(10 ln 3 + ln( 1

0.05
)) = 140

the computational effort depends on the specific learning
algorithm, but e.g. the FIND-S algorithm outputs the most
specific consistent hypothesis and updates the hypothesis for
each training example using time linear in n
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PAC-learnable Concept Classes Cont.

because the sample size for the concjunction of literals-class is
polynomial in n, 1/δ, 1/ε and independent of size(c) and FIND-S
requires time linear in n and independent of 1/δ, 1/ε, and size(c),
this concept class is PAC-learnable (by FIND-S)

k-term DNF expressions are not PAC-learnable, they have
polynomial sample size, but updating the hypothesis according to
one example requires exponential time

surprisingly k-term CNF expressions are PAC-learnable, though this
class is strictly larger than the class of k-term DNF expressions
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Vapnik-Chervonenkis Dimension

beside |H| there exists another measure for the complexity of the
hypothesis space, the Vapnik-Chervonenkis dimension of H, written
V C(H)

we can state the sample size in terms of V C(H)

that leads to tighter bounds and additionally it applies to infinite
hypothesis spaces

a set of instances S is shattered by hypothesis space H iff for every
partition of S into two subsets with all positive and respectively all
negative labeled instances there exists some hypothesis in H

consistent with this partition

Lecture 11: Computational Learning Theory (COLT) – p. 263



Vapnik-Chervonenkis Dimension Cont.

the Vapnik-Chervonenkis dimension, V C(H), of hypothesis space
H defined over instance space X is the size of the largest finite
subset of X shattered by H. if arbitrarily large finite subsets of X

can be shattered by H, then V C(H) = ∞

for all finite H, V C(H) ≤ log
2
|H| because there are 2d hypotheses

required for shattering a set of d = V C(H) instances. Hence
2d ≤ |H| and with d = V C(H), V C(H) ≤ log

2
|H|

for finite hypothesis spaces we gave an upper bound dependent on
|H| for the number of examples which is sufficient to PAC-learn a
target concept. for infinite hypothesis spaces such a bound can be
given dependent on V C(H):

m ≥
1

ε
(4 log

2

(

2

δ

)

+ 8V C(H) log
2

(

13

ε

)

)
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VC Dimension, Examples

example 1: suppose X = R and H all intervals on R, that is, each h

has the form a < x < b, where a and b are any real constants. Since
every set of two real numbers can be shattered but not any set of
three real numbers, V C(H) = 2
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VC Dimension, Examples Cont.

example 2: suppose X = R × R is the set of points on the x, y plane
and H is the set of all linear decision surfaces, that is, all
perceptrons defined for this instance space

for every set of two points and every classification of these
points, a linear decision surface can be found, hence
V C(H) ≥ 2

if three colinear points are given, they cannot be shattered, but
every set of three non-colinear points can be shattered. Since
the definition of VC Dimension depends on one existing largest
subset, V C(H) ≥ 3

since no set of four points can be shattered, V C(H) < 4, that
is, V C(H) = 3
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