Lecture 12: Reinforcement Learning

Cognitive Systems II - Machine Learning

Part III: Learning Programs and Strategies

Q Learning, Dynamic Programming

last change January 17, 2008
Motivation

addressed problem: How can an autonomous agent that senses and acts in its environment learn to choose optimal actions to achieve its goals?

Consider building a learning robot (i.e., agent)
- the agent has a set of sensors to observe the state of its environment and
- a set of actions it can perform to alter its state
- the task is to learn a control strategy, or policy, for choosing actions that achieve its goals

assumption: goals can be defined by a reward function that assigns a numerical value to each distinct action the agent may perform from each distinct state
Motivation

considered settings:
- deterministic or nondeterministic outcomes
- prior background knowledge available or not

similarity to function approximation:
- approximating the function $\pi : S \rightarrow A$
 where S is the set of states and A the set of actions

differences to function approximation:
- Delayed reward: training information is not available in the form $< s, \pi(s) >$. Instead the trainer provides only a sequence of immediate reward values.
- Temporal credit assignment: determining which actions in the sequence are to be credited with producing the eventual reward
Motivation

differences to function approximation (cont.):

- exploration: distribution of training examples is influenced by the chosen action sequence
 - which is the most effective exploration strategy?
 - trade-off between exploration of unknown states and exploitation of already known states

- partially observable states: sensors only provide partial information of the current state (e.g. forward-pointing camera, dirty lenses)

- life-long learning: function approximation often is an isolated task, while robot learning requires to learn several related tasks within the same environment
The Learning Task based on Markov Decision Processes (MDP)

- the agent can perceive a set S of distinct states of its environment and has a set A of actions that it can perform

- at each discrete time step t, the agent senses the current state s_t, chooses a current action a_t and performs it

- the environment responds by returning a reward $r_t = r(s_t, a_t)$ and by producing the successor state $s_{t+1} = \delta(s_t, a_t)$

- the functions r and δ are part of the environment and not necessarily known to the agent

- in an MDP, the functions $r(s_t, a_t)$ and $\delta(s_t, a_t)$ depend only on the current state and action
The Learning Task

- the task is to learn a policy $\pi: S \rightarrow A$

- one approach to specify which policy π the agent should learn is to require the policy that produces the greatest possible cumulative reward over time (discounted cumulative reward)

$$V^\pi(s_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+1}$$

$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where $V^\pi(s_t)$ is the cumulative value achieved by following an arbitrary policy π from an arbitrary initial state s_t

r_{t+i} is generated by repeatedly using the policy π and $\gamma (0 \leq \gamma < 1)$ is a constant that determines the relative value of delayed versus immediate rewards.
The Learning Task

Goal: Learn to choose actions that maximize
\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots \], where \(0 < \gamma < 1 \)

hence, the agent’s learning task can be formulated as

\[\pi^* \equiv \underset{\pi}{\text{argmax}} \ V^\pi(s), (\forall s) \]
Illustrative Example

- the left diagram depicts a simple grid-world environment
 - squares ≈ states, locations
 - arrows ≈ possible transitions (with annotated $r(s, a)$)
 - G ≈ goal state (absorbing state)

- $\gamma = 0.9$

once states, actions and rewards are defined and γ is chosen, the optimal policy π^* with its value function $V^*(s)$ can be determined
Illustrative Example

- the right diagram shows the values of V^* for each state

- e.g. consider the bottom-right state
 - $V^* = 100$, because π^* selects the “move up” action that receives a reward of 100
 - thereafter, the agent will stay G and receive no further awards
 - $V^* = 100 + \gamma \cdot 0 + \gamma^2 \cdot 0 + ... = 100$

- e.g. consider the bottom-center state
 - $V^* = 90$, because π^* selects the “move right” and “move up” actions
 - $V^* = 0 + \gamma \cdot 100 + \gamma^2 \cdot 0 + ... = 90$

- recall that V^* is defined to be the sum of discounted future awards over infinite future
it is easier to learn a numerical evaluation function than implement the optimal policy in terms of the evaluation function

question: What evaluation function should the agent attempt to learn?

one obvious choice is V^*

the agent should prefer s_1 to s_2 whenever $V^*(s_1) > V^*(s_2)$

problem: the agent has to chose among actions, not among states

$$\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]$$

the optimal action in state s is the action a that maximizes the sum of the immediate reward $r(s, a)$ plus the value of V^* of the immediate successor, discounted by γ
Q Learning

thus, the agent can acquire the optimal policy by learning V^*, provided it has perfect knowledge of the immediate reward function r and the state transition function δ.

in many problems, it is impossible to predict in advance the exact outcome of applying an arbitrary action to an arbitrary state.

the Q function provides a solution to this problem.

$Q(s, a)$ indicates the maximum discounted reward that can be achieved starting from s and applying action a first.

$$Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$$

$$\Rightarrow \pi^*(s) = \underset{a}{\text{argmax}} Q(s, a)$$
Q Learning

- hence, learning the Q function corresponds to learning the optimal policy π^*

- if the agent learns Q instead of V^*, it will be able to select optimal actions even when it has *no knowledge of* r and δ

- it only needs to consider each available action a in its current state s and chose the action that maximizes $Q(s, a)$

- the value of $Q(s, a)$ for the current state and action summarizes in one value all information needed to determine the discounted cumulative reward that will be gained in the future if a is selected in s
the right diagram shows the corresponding Q values

the Q value for each state-action transition equals the r value for this transition plus the V^* value discounted by γ
Q Learning Algorithm

- **key idea:** iterative approximation

- relationship between Q and V^*

\[
V^*(s) = \max_{a'} Q(s, a')
\]

\[
Q(s, a) = r(s, a) + \gamma \max_{a'} Q(\delta(s, a), a')
\]

- this recursive definition is the basis for algorithms that use iterative approximation

- the learner’s estimate $\hat{Q}(s, a)$ is represented by a large table with a separate entry for each state-action pair
Q Learning Algorithm

For each \(s, a \) initialize the table entry \(\hat{Q}(s, a) \) to zero

Observe the current state \(s \)

Do forever:

- Select an action \(a \) and execute it
- Receive immediate reward \(r \)
- Observe new state \(s' \)
- Update the table entry for \(\hat{Q}(s, a) \) as follows

\[
\hat{Q}(s, a) \leftarrow r + \gamma \max_a \hat{Q}(s', a')
\]

\(s \leftarrow s' \)

⇒ using this algorithm the agent’s estimate \(\hat{Q} \) converges to the actual \(Q \), provided the system can be modeled as a deterministic Markov decision process, \(r \) is bounded, and actions are chosen so that every state-action pair is visited infinitely often
Illustrative Example

Initial state: s_1

Next state: s_2

$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \cdot \max_{a'} \hat{Q}(s_2, a')$$

$$\leftarrow 0 + 0.9 \cdot \max\{66, 81, 100\}$$

$$\leftarrow 90$$

Each time the agent moves, Q Learning propagates \hat{Q} estimates backwards from the new state to the old.
Experimentation Strategies

- algorithm does not specify how actions are chosen by the agent
- **obvious strategy:** select action a that maximizes $\hat{Q}(s, a)$
 - risk of overcommitting to actions with high \hat{Q} values during earlier trainings
 - exploration of yet unknown actions is neglected

- **alternative:** probabilistic selection

$$P(a_i|s) = \frac{k_i \hat{S}(s,a_i)}{\sum_j k_j \hat{Q}(s,a_j)}$$

k indicates how strongly the selection favors actions with high \hat{Q} values

- k large \Rightarrow exploitation strategy
- k small \Rightarrow exploration strategy
Generalizing From Examples

- so far, the target function is represented as an explicit lookup table
- the algorithm performs a kind of rote learning and makes no attempt to estimate the Q value for yet unseen state-action pairs
- unrealistic assumption in large or infinite spaces or when execution costs are very high

- incorporation of function approximation algorithms such as BACKPROPAGATION
- table is replaced by a neural network using each $\hat{Q}(s,a)$ update as training example (s and a are inputs, \hat{Q} the output)
- a neural network for each action a
Relationship to Dynamic Programming

- Q Learning is closely related to dynamic programming approaches that solve Markov Decision Processes

- **Dynamic programming**
 - assumption that $\delta(s, a)$ and $r(s, a)$ are known
 - focus on how to compute the optimal policy
 - mental model can be explored (no direct interaction with environment)
 \[\Rightarrow \text{ offline system}\]

- **Q Learning**
 - assumption that $\delta(s, a)$ and $r(s, a)$ are not known
 - direct interaction inevitable
 \[\Rightarrow \text{ online system}\]
relationship is appent by considering the Bellman’s equation, which forms the foundation for many dynamic programming approaches solving Markov Decision Processes

\[(\forall s \in S) V^*(s) = E[r(s, \pi(s)) + \gamma V^*(\delta(s, \pi(s)))]\]
Advanced Topics

- different updating sequences
- proof of convergence
- nondeterministic rewards and actions
- temporal difference learning