Biological Motivation

- biological learning systems are built of complex webs of interconnected neurons

Motivation:
- capture kind of highly parallel computation
- based on distributed representation

Goal:
- obtain highly effective machine learning algorithms, independent of whether these algorithms fit biological processes (*no cognitive modeling!*)

Lecture 4: Perceptrons and Multilayer Perceptrons – p. 2
Biological Motivation

<table>
<thead>
<tr>
<th></th>
<th>Computer</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>computation units</td>
<td>1 CPU ($> 10^7$ Gates)</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>memory units</td>
<td>512 MB RAM</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>clock</td>
<td>10^{-8} sec</td>
<td>10^{14} synapses</td>
</tr>
<tr>
<td>transmission</td>
<td>$> 10^9$ bits/sec</td>
<td>10^{-3} sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$> 10^{14}$ bits/sec</td>
</tr>
</tbody>
</table>

- **Computer**: serial, quick
- **Brain**: parallel, slowly, robust to noisy data
Appropriate Problems

BACKPROPAGATION algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are represented as many attribute-value pairs
 - input values can be any real values
- target function output may be **discrete-, real- or vector-valued**
- training examples **may contain errors**
- long training times are acceptable
- fast evaluation of the learned target function may be required
 - many iterations may be necessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - learned weights are not intuitively understandable
Perceptrons

- Takes a vector of real-valued inputs \((x_1, \ldots, x_n)\) weighted with \((w_1, \ldots, w_n)\)
- Calculates the linear combination of these inputs
 \[
 \sum_{i=0}^{n} w_i x_i = w_0 x_0 + w_1 x_1 + \cdots + w_n x_n
 \]
- \(-w_0\) denotes a threshold value, i.e. that value which must be reached by the linear combination of inputs to cause the perceptron to output 1
- \(x_0\) is always 1
- Outputs 1 if the result is greater than 0, otherwise \(-1\)
Representational Power

- A perceptron represents a hyperplane decision surface in the \(n \)-dimensional space of instances.

- Some sets of examples cannot be separated by any hyperplane, those that can be separated are called **linearly separable**.

- Many boolean functions can be represented by a perceptron: AND, OR, NAND, NOR.

![Diagram](image-url)
Perceptron Training Rule

- **Problem:** determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example

- **Perceptron Training Rule:**

 $w_i = w_i + \Delta w_i$ where $\Delta w_i = \eta(t - o)x_i$

 - t target output
 - o perceptron output
 - η learning rate (usually some small value, e.g. 0.1)

- **Algorithm:**
 1. initialize \vec{w} to random weights
 2. repeat, until each training example is classified correctly
 (a) apply perceptron training rule to each training example

- Convergence guaranteed provided linearly separable training examples and sufficiently small η
Delta Rule

- perceptron rule fails if data is not linearly separable
- delta rule converges toward a **best-fit approximation**
- uses **gradient descent** to search the hypothesis space
 - perceptron cannot be used, because it is not differentiable
 - hence, a **unthresholded linear unit** is appropriate
- error measure: \(E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \)

- to understand gradient descent, it is helpful to visualize the entire hypothesis space with
 - all possible weight vectors and
 - associated \(E \) values
the axes w_0, w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be parabolic with a single global minimum
Derivation of Gradient Descent

problem: How calculate the steepest descent along the error surface?

- derivative of E with respect to each component of \vec{w}
- this vector derivative is called *gradient* of E, written $\nabla E(\vec{w})$

$$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right]$$

$\nabla E(\vec{w})$ specifies the steepest ascent, so $-\nabla E(\vec{w})$ specifies the steepest descent

training rule: $w_i = w_i + \Delta w_i$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \text{ and } \frac{\partial E}{\partial w_i} = \sum_{d \in D}(t_d - o_d)(-x_{id})$$

$$\Rightarrow \Delta w_i = \eta \sum_{d \in D}(t_d - o_d)x_{id}$$
Incremental Gradient Descent

- Application difficulties of gradient descent
 - Convergence may be quite slow
 - In case of many local minima, the global minimum may not be found

- Idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example

\[\Delta w_i = \eta (t - o)x_i \text{ where } E_d(\bar{w}) = \frac{1}{2} (t_d - o_d)^2 \]

- Key differences:
 - Weights are not summed up over all examples before updating
 - Requires less computation
 - Better for avoidance of local minima
Gradient Descent Algorithm

GRADIENT-DESCENT($training_examples, \eta$)

Each training example is a pair of the form $< \vec{x}, t >$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate.

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero
 - For each $< \vec{x}, t >$ in $training_examples$, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i, Do $\Delta w_i = \Delta w_i + \eta(t - o)x_i^*$
 - For each linear unit weight w_i, Do $w_i \leftarrow w_i + \Delta w_i^{**}$

To implement incremental approximation, equation ** is deleted and equation * is replaced by $w_i \leftarrow w_i + \eta(t - o)x_i$.
Perceptron vs. Delta Rule

Perceptron training rule:
- uses thresholded unit
- converges after a finite number of iterations
- output hypothesis classifies training data perfectly
- linearly separability necessary

Delta rule:
- uses unthresholded linear unit
- converges asymptotically toward a minimum error hypothesis
- termination is not guaranteed
- linear separability not necessary
Multilayer Networks (ANNs)

- capable of learning **nonlinear decision surfaces**
- normally **directed** and **acyclic** \Rightarrow Feed-forward Network
- based on **sigmoid unit**
 - much like a perceptron
 - but based on a smoothed, **differentiable threshold function**

$$\sigma(net) = \frac{1}{1 + e^{-net}}$$

$$\lim_{net \to +\infty} \sigma(net) = 1$$
$$\lim_{net \to -\infty} \sigma(net) = 0$$

$$net = \sum_{i=0}^{n} w_i x_i$$
$$o = \sigma(net) = \frac{1}{1 + e^{-net}}$$
BACKPROPAGATION

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections
- employs gradient descent to minimize error
- redefinition of E
 - has to sum the errors over all units
 - $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2$
- problem: search through a large H defined over all possible weight values for all units in the network
BACKPROPAGATION algorithm

BACKPROPAGATION($training_examples, \eta, n_{in}, n_{out}, n_{hidden}$)

The input from unit i to unit j is denoted x_{ji} and the weight from unit i to unit j is denoted w_{ji}.

1. create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units
2. Initialize all network weights to small random numbers
3. Until the termination condition is met, Do (EPOCH)
 - For each $< \vec{x}, \vec{t} >$ in $training_examples$, Do
 - Propagate the input forward through the network:
 1. Input \vec{x} to the network and compute o_u of every unit u
 - Propagate the errors back through the network:
 2. For each network output unit k, calculate its error term δ_k
 $$\delta_k = o_k (1 - o_k) (t_k - o_k)$$
 3. For each hidden unit h, calculate its error term δ_h
 $$\delta_h = o_h (1 - o_h) \sum_{k \in outputs} w_{kh} \delta_k$$
 4. Update each weight w_{ji}
 $$w_{ji} \leftarrow w_{ji} + \Delta w_{ji} \text{ where } \Delta w_{ji} = \eta \delta_j x_{ji}$$
Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold

important:
- too few iterations reduce error insufficiently
- too many iterations can lead to overfitting the data
Adding Momentum

- one way to avoid local minima in the error surface or flat regions
- make the weight update in the n^{th} iteration depend on the update in the $(n - 1)^{th}$ iteration

\[\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n - 1) \]

Note: $\Delta w_{ji}(n - 1)$ represents the cumulative updates for this weight in the complete last epoch.

$0 \leq \alpha \leq 1$
Representational Power

- **boolean functions:**
 - every boolean function can be represented by a two-layer network

- **continuous functions:**
 - every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)

- **arbitrary functions:**
 - each arbitrary function can be approximated to arbitrary accuracy by a three-layer network
Inductive Bias

- every possible assignment of network weights represents a syntactically different hypothesis
 \[H = \{ \vec{w} | \vec{w} \in \mathbb{R}^{(n+1)} \} \]

- inductive bias: smooth interpolation between data points
Illustrative Example - Face Recognition

- task:
 - classifying camera image of faces of various people
 - images of 20 people were made, including approximately 32 different images per person
 - image resolution 120×128 with each pixel described by a greyscale intensity between 0 and 255
 - identifying the direction in which the persons are looking (i.e., left, right, up, ahead)
Illustrative Example - Design Choices

- **input encoding:**
 - image encoded as a set of 30×32
 - pixel intensity values ranging from 0 to 255 linearly scaled from 0 to 1
 ⇒ reduces the number of inputs and network weights
 ⇒ reduces computational demands

- **output encoding:**
 - network must output one of four values indicating the face direction
 - *1-of-n* output encoding: 1 output unit for each direction
 ⇒ more degrees of freedom
 ⇒ difference between highest and second-highest output can be used as a measure of classification confidence
Illustrative Example - Design Choices

network graph structure:

- BACKPROPAGATION works with any DAG of sigmoid units
- question of how many units and how to interconnect them
- using *standard design*: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer

⇒ 30 hidden units

⇒ test accuracy of 90%
Advanced Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure
Summary

- able to learn discrete-, real- and vector-valued target functions
- noise in the data is allowed
- perceptrons learn hyperplane decision surfaces (linear separability)
- multilayer networks even learn nonlinear decision surfaces
- **BACKPROPAGATION** works on arbitrary feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples
- an arbitrary function can be approximated to arbitrary accuracy by a three-layer network
- **Inductive Bias**: smooth interpolation between data points