Lecture 6: Inductive Logic Programming

Cognitive Systems II - Machine Learning

Part II: Special Aspects of Concept Learning

FOIL, Inverted Resolution, Sequential Covering

last change November 22, 2007
Motivation

- it is useful to learn the target function as a set of if-then-rules
 - one of the most expressive and human readable representations
 - e.g. decision trees

- Inductive Logic Programming (ILP):
 - rules are learned directly
 - designed to learn first-order rules (i.e. including variables)
 - sequential covering to incrementally grow the final set of rules

- PROLOG programs are sets of first-order rules

⇒ a general-purpose method capable of learning such rule sets may be viewed as an algorithm for automatically inferring PROLOG programs
Examples

Propositional Logic:

IF Humidity=normal AND Outlook=sunny THEN PlayTennis=yes
IF Humidity=normal AND Temperature=mild AND Wind=weak THEN PlayTennis=yes

playTennis :- humidity(normal), outlook(sunny).
playTennis :- humidity(normal), temperature(mild), wind(weak).

First Order Logic:

IF Parent(x,y) THEN Ancestor(x,y)
IF Parent(x,z) AND Ancestor(z,y) THEN Ancestor(x,y)

ancestor(x,y) :- parent(x,y).
ancestor(x,y) :- parent(x,z), ancestor(z,y).
Sequential Covering

- **basic strategy**: learn one rule, remove the data it covers, then iterate this process

- one of the most widespread approaches to learn a disjunctive set of rules (each rule itself is conjunctive)

- subroutine **LEARN-ONE-RULE**
 - accepts a set of positive and negative examples as input and outputs a single rule that covers many of the positive and few of the negative examples
 - **high accuracy**: predictions should be correct
 - **low coverage**: not necessarily predictions for each example

- performs a greedy search without backtracking
 \[\Rightarrow\] no guarantee to find the smallest or best set of rules
Sequential Covering Algorithm

SEQUENTIAL-COVERING(\texttt{Target_attribute}, Attributes, Examples, \texttt{Threshold})

- \texttt{Learned_Rules} ← \{\}
- \texttt{Rule} ← \texttt{LEARN-ONE-RULE}(
 \texttt{Target_attribute}, Attributes, Examples)
- While \texttt{PERFORMANCE}(
 \texttt{Rule}, Examples) > \texttt{Threshold}, Do
 - \texttt{Learned_rules} ← \texttt{Learned_rules} + \texttt{Rule}
 - \texttt{Examples} ← \texttt{Examples} − \{ examples correctly classified by \texttt{Rule}\}
 - \texttt{Rule} ← \texttt{LEARN-ONE-RULE}(
 \texttt{Target_attribute}, Attributes, Examples)

- \texttt{Learned_rules} ← \texttt{sort} \texttt{Learned_rules} accord to \texttt{PERFORMANCE} over \texttt{Examples}
- \texttt{return} \texttt{Learned_rules}
question: How shall LEARN-ONE-RULE be designed to meet the needs of the sequential covering algorithm?

organize the search through H analogous to ID3

but follow only the most promising branch in the tree at each step

begin by considering the most general rule precondition (i.e. empty test)

then greedily add the attribute test that most improves rule performance over the training examples

unlike to ID3, this implementation follows only a single descendant at each search step rather than growing a subtree that covers all possible values of the selected attribute
General to Specific Beam Search

IF Wind=weak THEN PlayTennis=yes

IF Wind=strong THEN PlayTennis=no

IF Humidity=normal THEN PlayTennis=yes

IF Humidity=high THEN PlayTennis=no

IF Humidity=normal Wind=weak THEN PlayTennis=yes

IF Humidity=normal Wind=strong THEN PlayTennis=no

IF Humidity=normal Outlook=sunny THEN PlayTennis=yes

IF Humidity=normal Outlook=rain THEN PlayTennis=yes

IF Humidity=high THEN PlayTennis=no
General to Specific Beam Search

so far a local greedy search (analogous to hill-climbing) is employed

- danger of suboptimal results
- susceptible to the typical hill-climbing problems

⇒ extension to beam search

- algorithm maintains a list of the k best candidates at each step
- at each step, descendants are generated for each of the k candidates and the resulting set is again reduced to the k most promising candidates
LEARN-ONE-RULE

LEARN-ONE-RULE($Target_{attribute}$, $Attributes$, $Examples$, k)

Returns a single rule that covers some of the Examples. Conducts a general to specific greedy beam search for the best rule, guided by the PERFORMANCE metric.

- Initialize $Best_{hypothesis}$ to the most general hypothesis \emptyset
- Initialize $Candidate_{hypotheses}$ to the set \{ $Best_{hypothesis}$ \}
- While $Candidate_{hypotheses}$ is not empty, Do

 1. **Generate the next more specific candidate_hypotheses**
 - $New_{Candidate_{hypotheses}} \leftarrow$ new generated and specialized candidates

 2. **Update Best_hypotheses**
 - Select hypothesis h from $New_{candidate_{hypotheses}}$ with best PERFORMANCE over Examples
 - IF PERFORMANCE of $h >$ PERFORMANCE of $Best_{hypothesis}$ THEN
 - set h as new $Best_{hypothesis}$

 3. **Update Candidate_hypotheses**
 - $Candidate_{hypotheses} \leftarrow$ the k best members of $New_{Candidate_{hypotheses}}$
Return a rule of the form

“IF Best_hypothesis THEN prediction”

where prediction is the most frequent value of Target_attribute among those Examples that match Best_hypothesis.
Example: Learn One Rule

- Learn *one* rule that covers a certain amount of positive examples
- with high accuracy
- remove the covered positive examples

Example:

(s1) Sky = sunny
(a1) AirTemp = warm
(h1) Humidity = normal
(w1) Water = warm

(s2) Sky = rainy
(a2) AirTemp = cold
(h2) Humidity = high
(w2) Water = cool
Example cont.

- Assume $k = 4$
- Current most specific hypotheses: $s_1, s_2, a_1, a_2, h_1, h_2, w_1, w_2$
- Assume best possible hypotheses wrt performance P: s_1, a_2, h_1, w_1
- Generate new candidate hypotheses, e.g. by specializing s_1:
 - $s_1 \& s_1$ (dublicate)
 - $s_1 \& s_2$ (inconsistent)
 - $s_1 \& a_1$
 - $s_1 \& a_2$
 - $s_1 \& h_1$
Performance Measures

- Relative Frequency (numbers of correctly classified examples by all examples)

\[\frac{n_c}{n} \]

- Entropy (\(S \) as set of examples that match precondition, \(p_i \) proportion of examples from \(S \) for which the target function takes the \(i \)-th value)

\[-\text{Entropy}(S) = \sum_{i=1}^{c} p_i \log_2 p_i \]
Sequential vs. Simultaneous Covering

Sequential covering:
- Learn just one rule at a time, remove the covered examples and repeat the process on the remaining examples.
- Many search steps, making independent decisions to select each precondition for each rule.

Simultaneous covering:
- ID3 learns the entire set of disjunctive rules simultaneously as part of a single search for a decision tree.
- Fewer search steps, because each choice influences the preconditions of all rules.

⇒ Choice depends on how much data is available:
- Plentiful → sequential covering (more steps supported).
- Scarce → simultaneous covering (decision sharing effective).
Differences in Search

generate-then-test:
- search through all syntactically legal hypotheses
- generation of the successor hypotheses is only based on the syntax of the hypothesis representation
- training data is considered after generation to choose among the candidate hypotheses
- each training example is considered several times
 \[\Rightarrow\] impact of noisy data is minimized

example driven:
- individual training examples constrain the generation of hypotheses
- e.g. FIND-S, CANDIDATE ELIMINATION
 \[\Rightarrow\] search can easily be misled
Learning First-Order Rules

- propositional expressions do not contain variables and are therefore less expressive than first-order expressions
- no general way to describe essential relations among the values of attributes
- now we consider learning first-order rules (Horn Theories)
 - a Horn clause is a clause containing at most one positive literal
 - expression of the form:
 \[H \lor \neg L_1 \lor \neg L_2 \lor \ldots \lor \neg L_n \]
 \[\iff H \leftarrow (L_1 \land L_2 \land \ldots \land L_n) \]
 \[\iff \text{IF} (L_1 \land L_2 \land \ldots \land L_n) \text{ THEN } H \]
- FOL terminology see CogSysI
FOIL (Quinlan, 1990)

- natural extension of SEQUENTIAL-COVERING and LEARN-ONE-RULE

- outputs sets of first-order rules similar to Horn Clauses with two exceptions
 1. more restricted, because literals are not permitted to contain function symbols
 2. more expressive, because literals in the body can be negated

- differences between FOIL and earlier algorithms:
 - seeks only rules that predict when the target literal is $True$
 - conducts a simple hill-climbing search instead of beam search
FOIL algorithm

FOIL(*Target_predicate*, *Predicates*, *Examples*)

1. $Pos \leftarrow$ those *Examples* for which the *Target.predicate* is *True*
2. $Neg \leftarrow$ those *Examples* for which the *Target.predicate* is *False*
3. $Learned.rules \leftarrow \{\}$
4. **while** Pos,** Do**
 1. $NewRule \leftarrow$ the rule that predicts *Target.predicate* with no precondition
 2. $NewRuleNeg \leftarrow Neg$
 3. **while** $NewRuleNeg$,** Do**
 1. $Candidate.literals \leftarrow$ generate new literals for $NewRule$, based on *Predicates*
 2. $Best.literal \leftarrow \max_{L \in Candidate.literals} FoilGain(L, NewRule)$
 3. add $Best.literal$ to preconditions of $NewRule$
 4. $NewRuleNeg \leftarrow$ subset of $NewRuleNeg$ that satisfies $NewRule$ preconditions
 4. $Learned.rules \leftarrow Learned.rules + NewRule$
 5. $Pos \leftarrow Pos - \{ \text{members of } Pos \text{ covered by } NewRule \}$
5. **Return** $Learned.rules$
FOIL Hypothesis Space

outer loop (set of rules):
- specific-to-general search
- initially, there are no rules, so that each example will be classified negative (most specific)
- each new rule raises the number of examples classified as positive (more general)
- disjunctive connection of rules

inner loop (preconditions for one rule):
- general-to-specific search
- initially, there are no preconditions, so that each example satisfies the rule (most general)
- each new precondition raises the number of examples classified as negative (more specific)
- conjunctive connection of preconditions
Generating Candidate Specializations

- current rule:
 \[P(x_1, x_2, ..., x_k) \leftarrow L_1...L_n \]
 where
 \[L_1...L_n \] are the preconditions and
 \[P(x_1, x_2, ..., x_k) \] is the head of the rule

- FOIL generates candidate specializations by considering new literals \(L_{n+1} \) that fit one of the following forms:
 - \(Q(v_1, ..., v_r) \) where \(Q \in Predicates \) and the \(v_i \) are new or already present variables (at least one \(v_i \) must already be present)
 - \(Equal(x_j, x_k) \) where \(x_j \) and \(x_k \) are already present in the rule
 - the negation of either of the above forms
FOIL Example

GrandDaughter(x,y) ←
Candidate additions to precondition:
Equal(x,y), Female(x), Female(y), Father(x,y), Father(y,x),
Father(x,z), Father(z,x), Father(z,y), and the negations to
these literals
Assume greedy selection of Father(y,z):
GrandDaughter(x,y) leftarrow Father(y,z)
Candidate additions:
the ones from above and Female(z), Equal(z,y),
Father(z,w), Father(w,z), and their negations
Learned Rule:
GrandDaughter(x,y) leftarrow Father(y,z) ∧ Father(z,x) ∧
Female(y)
FOIL Gain
Induction as Inverted Deduction

- **observation:** induction is just the inverse of deduction

- in general, machine learning involves building theories that explain the observed data

- Given some data D and some background knowledge B, learning can be described as generating a hypothesis h that, together with B, explains D.

$$\forall x_i, f(x_i) \in D \ (B \land h \land x_i) \vdash f(x_i)$$

- the above equation casts the learning problem in the framework of deductive inference and formal logic
Induction as Inverted Deduction

- **features of inverted deduction:**
 - subsumes the common definition of learning as finding some general concept
 - background knowledge allows a more rich definition of when a hypothesis h is said to “fit” the data

- **practical difficulties:**
 - noisy data makes the logical framework completely lose the ability to distinguish between truth and falsehood
 - search is intractable
 - background knowledge often increases the complexity of H
Inverting Resolution

- **Resolution** is a general method for automated deduction
- Complete and sound method for deductive inference
- See CogSys1

Inverse Resolution Operator (propositional form):

1. Given initial clause C_1 and C, find a literal L that occurs in C_1 but not in clause C.
2. Form the second clause C_2 by including the following literals:
 \[
 C_2 = (C - (C_1 - \{L\})) \cup \{-L\}
 \]

- Inverse resolution is not deterministic
Inverting Resolution

\[C_2: \text{KnowMaterial} \lor \neg \text{Study} \]

\[C_1: \text{PassExam} \lor \neg \text{KnowMaterial} \]

\[C: \text{PassExam} \lor \neg \text{Study} \]
Inverting Resolution

Inverse Resolution Operator (first-order form):

resolution rule:
1. Find a literal L_1 from clause C_1, literal L_2 from clause C_2, and substitution θ such that $L_1 \theta = \neg L_2 \theta$
2. Form the resolvent C by including all literals from $C_1 \theta$ and $C_2 \theta$, except for $L_1 \theta$ and $\neg L_2 \theta$. That is,
 \[C = (C_1 - \{L_1\}) \theta \cup (C_2 - \{L_2\}) \theta \]

analytical derivation of the inverse resolution rule:
\[
C = (C_1 - \{L_1\}) \theta_1 \cup (C_2 - \{L_2\}) \theta_2 \text{ where } \theta = \theta_1 \theta_2
\]
\[
C - (C_1 - \{L_1\}) \theta_1 = (C_2 - \{L_2\}) \theta_2 \text{ where } L_2 = \neg L_1 \theta_1 \theta_2^{-1}
\]
\[\Rightarrow \quad C_2 = (C - (C_1 - \{L_1\}) \theta_1) \theta_2^{-1} \cup \{\neg L_1 \theta_1 \theta_2^{-1}\} \]
Inverting Resolution

\[D = \{ \text{GrandChild}(Bob, Shannon) \} \]
\[B = \{ \text{Father}(Shannon, Tom), \text{Father}(Tom, Bob) \} \]
Generalization, θ-Subsumption, Entailment

Interesting to consider the relationship between the more_general_than relation and inverse entailment.

$\text{more_general_than}: h_j \geq g h_k$ iff $(\forall x \in X)[h_k(x) \rightarrow h_j(x)]$. A hypothesis can also be expressed as $c(x) \leftarrow h(x)$.

$\theta - \text{subsumption}$: Consider two clauses C_j and C_k, both of the form $H \lor L_1 \lor \ldots \lor L_n$, where H is a positive literal and the L_i are arbitrary literals. Clause C_j is said to $\theta - \text{subsume}$ clause C_k iff $(\exists \theta)[C_j \theta \subseteq C_k]$.

Entailment: Consider two clauses C_j and C_k. Clause C_j is said to entail clause C_k (written $C_j \vdash C_k$) iff C_k follows deductively from C_j.
Generalization, θ-Subsumption, Entailment

- If $h_1 \geq g h_2$ then $C_1 : c(x) \leftarrow h_1(x)$ θ-subsumes $C_2 : c(x) \leftarrow h_2(x)$

- Furthermore, θ-subsumption can hold even when the clauses have different heads:

 \[
 A : \text{Mother}(x, y) \leftarrow \text{Father}(x, z) \land \text{Spouse}(z, y)
 \]
 \[
 B : \text{Mother}(x, L) \leftarrow \text{Father}(x, B) \land \text{Spouse}(B, y) \land \text{Female}(x)
 \]

 $A\theta \subseteq B$ if we choose $\theta = \{y/L, z/B\}$

- θ-subsumption is a special case of entailment:

 \[
 A : \text{Elephant}(\text{father_of}(x)) \leftarrow \text{Elephant}(x)
 \]
 \[
 B : \text{Elephant}(\text{father_of}(\text{father_of}(y))) \leftarrow \text{Elephant}(y)
 \]

 $A \vdash B$, but $\not\exists \theta[A\theta \subseteq B]$
Generalization is a special case of θ-Subsumption

θ-Subsumption is a special case of entailment

In its most general form, inverse entailment produces intractable searches

θ-Subsumption provides a convenient notion that lies midway between generalization and entailment!
Summary

- learns sets of first-order rules directly
- sequential covering algorithms learn just one rule at a time and perform many search steps
- hence, applicable if data is plentiful
- **FOIL** is a sequential covering algorithm
 - a specific-to-general search is performed to form the result set
 - a general-to-specific search is performed to form each new rule
- Induction can be viewed as the inverse of deduction
- hence, an inverse resolution operator can be found