
Lecture 7: Genetic Algorithms
Cognitive Systems II - Machine Learning

Part II: Special Aspects of Concept Learning

Genetic Algorithms, Genetic Programming,
Models of Evolution

last change November 29, 2007

Lecture 7: Genetic Algorithms – p. 1

Motivation

Learning methods are motivated by analogy
to biological evolution

rather than search from general-to-specific or from
simple-to-complex, genetic algorithms generate successor
hypotheses by repeatedly mutating and recombining parts of the
best currently known hypotheses

at each step, a collection of hypotheses, called the current
population, is updated by replacing some fraction by offspring of the
most fit current hypotheses

Lecture 7: Genetic Algorithms – p. 2

Motivation

reasons for popularity

evolution is known to be a successful, robust method for
adaption within biological systems

genetic algorithms can search spaces of hypotheses containing
complex interacting parts, where the impact of each part on
overall hypothesis fitness may be difficult to model

genetic algorithms are easily parallelized

genetic programming ≈ entire computer programs are evolved to
certain fitness criteria

evolutionary computation = genetic algorithms + genetic
programming

Lecture 7: Genetic Algorithms – p. 3

Genetic Algorithms

problem: search a space of candidate hypotheses to identify the
best hypothesis

the best hypothesis is defined as the one that optimizes a
predefined numerical measure, called fitness

e.g. if the task is to learn a strategy for playing chess, fitness
could be defined as the number of games won by the individual
when playing against other individuals in the current population

basic structure:

iteratively updating a pool of hypotheses (population)

on each iteration
hypotheses are evaluated according to the fitness function
a new population is generated by selecting the most fit
individuals
some are carried forward, others are used for creating new
offspring individuals

Lecture 7: Genetic Algorithms – p. 4

Genetic Algorithms

GA(Fitness, F itness_threshold, p, r, m)
Fitness: fitness function, Fitness_threshold: termination criterion,
p: number of hypotheses in the population, r: fraction to be replaced by crossover,
m: mutation rate

Initialize population: P ← Generate p hypotheses at random

Evaluate: For each h in P , compute Fitnes(h)

While [maxh Fitness(h)] < Fitness_threshold, Do

1. Select:Probabilistically select (1− r) · p members of P to add to PS

2. Crossover: Probalistically select r·p

2
pairs of hypotheses from P . For each pair

< h1, h2 > produce two offspring and add to PS

3. Mutate: Choose m percent of the members of PS with uniform probability. For
each, invert one randomly selected bit

4. Update: P ← PS

5. Evaluate: for each h ∈ P , compute Fitness(h)

Return the hypothesis from P that has the highest fitness.

Lecture 7: Genetic Algorithms – p. 5

Remarks

as specified above, each population P contains p hypotheses

(1 − r) · p hypotheses

are selected and added to PS without changing

the selection is probabilistically

the probability is given by Pr(hi) = Fitness(hi)∑p

j=1
Fitness(hj)

r·p
2

pairs of hypotheses

are selected and added to PS after applying the crossover
operator

the selection is also probabilistically

⇒ (1 − r) · p + 2 · r·p
2

= p where r + (1 − r) = 1

Lecture 7: Genetic Algorithms – p. 6

Representing Hypotheses

hypotheses are often represented as bit strings so that they can
easily be modified by genetic operators

represented hypotheses can be quite complex

each attribute can be represented as a subtring with as many
positions as there are possible values

to obtain a fixed-length bit string, each attribute has to be
considered, even in the most general case

(Outlook = Overcast ∨ Rain) ∧ (Wind = Strong)

is represented as: Outlook 011, Wind 10 ⇒ 01110

Lecture 7: Genetic Algorithms – p. 7

Genetic Operators

generation of successors is determined by a set of operators that
recombine and mutate selected members of the current population

operators correspond to idealized versions of the genetic operations
found in biological evolution

the two most common operators are crossoverand mutation

Lecture 7: Genetic Algorithms – p. 8

Genetic Operators

Single-point crossover:

11101001000

00001010101

11111000000
11101010101

Initial strings Crossover Mask Offspring

Two-point crossover:

11101001000

00001010101

00111110000
11001011000

10011010011

Uniform crossover:

Point mutation:

11101001000

00001010101

10001000100

11101001000 11101011000

00101000101

00001001000

01101011001

Lecture 7: Genetic Algorithms – p. 9

Genetic Operators

Cossover:

produces two new offspring from two parent strings by copying
selected bits from each parent

bit at position i in each offspring is copied from the bit at
position i in one of the two parents

choice which parent contributes bit i is determined by an
additional string, called cross-over mask

single-point crossover:e.g. 11111000000

two-point crossover: e.g. 00111110000

uniform crossover: e.g. 01100110101

mutation: produces bitwise random changes

Lecture 7: Genetic Algorithms – p. 10

Illustrative Example (GABIL)

GABIL learns boolean concepts represented by a disjunctive set of
propositional rules

Representation:

each hypothesis is encoded as shown before

hypothesis space of rule preconditions consists of a conjunction
of constraints on a fixed set of attributes

sets of rules are represented by concatenation

e.g. a1, a2 boolean attributes, c target attribute
IF a1 = T ∧ a2 = F THEN c = T ;
IF a2 = T THEN c = F

⇒ 10 01 1 11 10 0

(bei zweiter Regel kein Constraint auf a1, d.h. alle Werte
erlaubt, kodiert als 11)

Lecture 7: Genetic Algorithms – p. 11

Illustrative Example (GABIL)

Genetic Operators:

uses standard mutation operator

crossover operator is a two-point crossover to manage
variable-length rules

Fitness function:
Fitness(h) = (correct(h))2

based on classification accuracy where correct(h) is the
percent of all training examples correctly classified by
hypothesis h

Lecture 7: Genetic Algorithms – p. 12

Hypothesis Space Search

method is quite different from other methods presented so far

neither general-to-specific nor simple-to-complex search is
performed

genetic algorithms can move very abruptly , replacing a parent
hypothesis by an offspring which is radically different

so this method is less likely to fall into some local minimum

practical difficulty: crowding

some individuals that fit better than others reproduce quickly, so
that copies and very similar offspring take over a large fraction
of the population

⇒ reduced diversity of population

⇒ slower progress of the genetic algorihms

Lecture 7: Genetic Algorithms – p. 13

Genetic Programming

individuals in the evolving population are computer programs rather
than bit strings

has shown good results, despite vast H

representing programs

typical representations correspond to parse trees
each function call is a node
arguments are the descendants

fitness is determined by executing the programm on the training
data

crossover are performed by replacing a randomly chosen
subtree between parents

Lecture 7: Genetic Algorithms – p. 14

Cross-Over

sin ^

2x

+

sin

x +

y^

x 2

x y

+

x y

+

+

+

sin ^

2x ^

x 2

+

sin

x +

y

Lecture 7: Genetic Algorithms – p. 15

Approaches to Genetic Programming

Learning from input/output examples

Typically: functional programs (term representation)

Koza (1992): e.g. Stacking blocks, Fibonacci

Roland Olsson: ADATE, evolutionary computation of
ML programs

Lecture 7: Genetic Algorithms – p. 16

Koza’s Algorithm

1. Generate an initial population of random compositions of the
functions and terminals of the problem.

2. Iteratively perform the following sub-steps until the termination
criterium has been satisfied:

(a) Execute each program in the population and assign it a fitness
value according to how well it solves the problem.

(b) Select computer program(s) from the current population chosen
with a probability based on fitness.
Create a new population of computer programs by applying the
following two primary operations:
i. Copy program to the new population (Reproduction).
ii. Create new programs by genetically recombining randomly

chosen parts of two existing programs.

3. The best so-far individual (program) is designated as result.

Lecture 7: Genetic Algorithms – p. 17

Genetic Operations

Mutation: Delete a subtree of a program and grow a new
subtree at its place randomly.
This “asexual” operation is typically performed
sparingly, for example with a probability of 1% during
each generation.

Crossover: For two programs (“parents”), in each tree a
cross-over point is chosen randomly and the subtree
rooted at the cross-over point of the first program is
deleted and replaced by the subtree rooted at the
cross-over point of the second program.
This “sexual recombination” operation is the
predominant operation in genetic programming and is
performed with a high probability (85% to 90 %).

Lecture 7: Genetic Algorithms – p. 18

Genetic Operations

Reproduction: Copy a single individual into the next
generation.
An individuum “survives” with for example 10%
probability.

Architecture Alteration: Change the structure of a
program.
There are different structure changing operations
which are applied sparingly (1% probability or below):
Introduction of Subroutines: Create a subroutine from

a part of the main program and create a reference
between the main program and the new subroutine.

Deletion of Subroutines: Delete a subroutine; thereby
making the hierarchy of subroutines narrower or
shallower.

Lecture 7: Genetic Algorithms – p. 19

Genetic Operations

Architecture Alteration: Subroutine Duplication: Duplicate
a subroutine, give it a new name and randomly
divide the preexisting calls of the subroutine
between the old and the new one. (This operation
preserves semantics. Later on, each of these
subroutines might be changed, for example by
mutation.)

Argument Duplication: Duplicate an argument of a
subroutine and randomly divide internal references
to it. (This operation is also semantics preserving.
It enlarges the dimensionality of the subroutine.)

Argument Deletion: Delete an argument; thereby
reducing the amount of information available to a
subroutine (“generalization”).

Lecture 7: Genetic Algorithms – p. 20

Genetic Operations

Automatically Defined Iterations/Recursions: Introduce or
delete iterations (ADIs) or recursive calls (ADRs).
Introduction of iterations or recursive calls might result
in non-termination. Typically, the number of iterations
(or recursions) is restricted for a problem. That is, for
each problem, each program has a time-out criterium
and is terminated “from outside” after a certain number
of iterations.

Automatically Defined Stores: Introduce or delete memory
(ADSs).

Lecture 7: Genetic Algorithms – p. 21

Fitness

Quality criteria for programs synthesized by genetic
programming:

correctness: defined as 100% fitness for the given
examples
efficiency
parsimony

The two later criteria can be additionally coded in the
fitness measure.

Lecture 7: Genetic Algorithms – p. 22

Learning to Stack Blocks
U

I
V
E
R
S

L

N

A

Initial State Goal StateA possible intermediate state

N
U
A
L I R V ES

U

S
A

V E I N

R

L

STACK

TABLE

TB
NN

CS

Terminals T = {CS, TB,NN}

CS: A sensor that dynamically specifies the top block of the
Stack.

TB: A sensor that dynamically specifies the block in the
Stack which together with all blocks under it are
already positioned correctly. (“top correct block”)

NN: A sensor that dynamically specifies the block which
must be stacked immediately on top of TB according to
the goal. (“next needed block”) Lecture 7: Genetic Algorithms – p. 23

Learning to Stack Blocks

Set of functions {MS,MT,NOT,EQ,DU}

MS: A move-to-stack operator with arity one which moves
a block from the Table on top of the Stack.

MT: A move-to-table operator with arity one which moves a
block from the top of the Stack to the Table.

NOT: A boolean operator with arity one switching the truth
value of its argument.

EQ: A boolean operator with arity two which returns true if
its arguments are identical and false otherwise.

DU: A user-defined iterative “do-until” operator with arity
two. The expression DU *Work* *Predicate*
causes *Work* to be iteratively executed until
Predicate is satisfied.

Lecture 7: Genetic Algorithms – p. 24

Learning to Stack Blocks

All functions have defined outputs for all conditions: MS and
MT change the Table and Stack as side-effect. They return
true, if the operator can be applied successfully and nil
(false) otherwise. The return value of DU is also a boolean
value indicating whether *Predicate* is satisfied or
whether the DU operator timed out.

Lecture 7: Genetic Algorithms – p. 25

Learning to Stack Blocks

Terminals functions carefully crafted. Esp. the
pre-defined sensors carry exactly that information
which is relevant for solving the problem!

166 fitness cases:
ten cases where zero to all nine blocks in the stack
were already ordered correctly; eight cases where
there is one out of order block on top of the stack; and
a random sampling of 148 additions cases.

Fitness was measured as the number of correctly
handled cases.

Lecture 7: Genetic Algorithms – p. 26

Learning to Stack Blocks
Three variants
1. first, correct program first moves all blocks on the

table and than constructs the correct stack. This
program is not very efficient because there are
made unnecessary moves from the stack to the
table for partially correct stacks. Over all 166
cases, this function generates 2319 moves in
contrast to 1642 necessary moves.

2. In the next trial, efficiency was integrated into the
fitness measure and as a consequence, a function
calculating only the minimum number of moves
emerged. But this function has an outer loop which
is not necessary.

3. By integrating parsimony into the fitness measure,
the correct, efficient, and parsimonious function is
generated.

Lecture 7: Genetic Algorithms – p. 27

Learning to Stack Blocks

Population Size: M = 500
Fitness Cases: 166

Correct Program:
Fitness: 166 - number of correctly handled cases
Termination: Generation 10

(EQ (DU (MT CS) (NOT CS))

(DU (MS NN) (NOT NN)))

Lecture 7: Genetic Algorithms – p. 28

Learning to Stack Blocks

Correct and Efficient Program:
Fitness: 0.75 · C + 0.25 · E with
C = (number of correctly handled cases/166) · 100

E = f(n) as function of the total number of moves over
all 166 cases:
with f(n) = 100 for the analytically obtained minimal
number of moves for a correct program (min = 1641);
f(n) linearly scaled upwards for zero moves up to 1640
moves with f(0) = 0

f(n) linearly scaled downwards for 1642 moves up to
2319 moves (obtained by the first correct program) and
f(n) = 0 for n > 2319

Termination: Generation 11
Lecture 7: Genetic Algorithms – p. 29

Learning to Stack Blocks

(DU (EQ (DU (MT CS) (EQ CS TB))

(DU (MS NN) (NOT NN)))

(NOT NN))

Lecture 7: Genetic Algorithms – p. 30

Learning to Stack Blocks

Correct, Efficient, and Parsimonious Program:
Fitness: 0.70 · C + 0.20 · E + 0.10· (number of nodes in
program tree)
Termination: Generation 1

(EQ (DU (MT CS) (EQ CS TB))

(DU (MS NN) (NOT NN)))

Lecture 7: Genetic Algorithms – p. 31

ADATE

Lecture 7: Genetic Algorithms – p. 32

Models of Evolution and Learning

observations:

individual organisms learn to adapt significantly during their
lifetime

biological and social processes allow a species to adapt over a
time frame of many generations

interesting question: What is the relationship between learning
during lifetime of a single individual and species-level learning
afforded by evolution?

Lecture 7: Genetic Algorithms – p. 33

Models of Evolution and Learning

Lamarckian Evolution:

proposition that evolution over many generations was directly influenced by the
experiences of individual organisms during their lifetime

direct influence of the genetic makeup of the offspring

completely contradicted by science

Lamarckian processes can sometimes improve the effectiveness of genetic
algorithms

Baldwin Effect:

a species in a changing environment underlies evolutionary pressure that favors
individuals with the ability to learn

such individuals perform a small local search to maximize their fitness

additionally, such individuals rely less on genetic code

thus, they support a more diverse gene pool, relying on individual learning to
overcome “missing” or “not quite well” traits

⇒ indirect influence of evolutionary adaption for the entire population

Lecture 7: Genetic Algorithms – p. 34

Summary

method for concept learning based on simulated evolution

evolution of populations is simulated by taking the most fit
individuals over to a new generation

some individuals remain unchanged, others are the base for genetic
operator application

hypotheses are commonly represented as bitstrings

search through the hypothesis space cannot be characterized,
because hypotheses are created by crossover and mutation
operators that allow radical changes between successive
generations

hence, convergence is not guaranteed

Lecture 7: Genetic Algorithms – p. 35

	Motivation
	Motivation
	Genetic Algorithms
	Genetic Algorithms
	Remarks
	Representing Hypotheses
	Genetic Operators
	Genetic Operators
	Genetic Operators
	Illustrative Example (GABIL)
	Illustrative Example (GABIL)
	Hypothesis Space Search
	Genetic Programming
	Cross-Over
	Approaches to Genetic Programming
	Koza's Algorithm
	Genetic Operations
	Genetic Operations
	Genetic Operations
	Genetic Operations
	Fitness
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	Learning to Stack Blocks
	ADATE
	Models of Evolution and Learning
	Models of Evolution and Learning
	Summary

