Lecture 8: Instance-based Learning

Cognitive Systems II - Machine Learning

Part II: Special Aspects of Concept Learning

k-nearest neighbors, locally weighted linear regression
radial basis functions, lazy vs. eager learning

last change December 13, 2007
Motivation

- all learning methods presented so far construct a general explicit description of the target function when examples are provided

- **Instance-based learning:**
 - examples are simply stored
 - generalization is postponed until a new instance must be classified
 - in order to assign a target function value, the example’s relationship to the previously stored examples is examined
 - sometimes referred to as **lazy learning**
Motivation

advantages:
- instead of estimating f for the entire instance space, local approximations to the target function are possible
- especially if target function is complex but still decomposable

disadvantages:
- classification costs are high
 - efficient techniques for indexing examples are important to reduce computational effort
- typically all attributes are considered when attempting to retrieve similar training examples
 - if the concept depends only on a few attributes, the truly most similar instances may be far away ("curse of dimensionality")
k-nearest Neighbor Learning

- most basic instance-based method
- assumption:
 - instances correspond to a point in a n-dimensional space \mathbb{R}^n
 - thus, nearest neighbors are defined in terms of the standard Euclidean Distance

\[
d(x_i, x_j) \equiv \sqrt{\sum_{r=1}^{n} (a_r(x_i) - a_r(x_j))^2}
\]

where an instance x is described by $< a_1(x), a_2(x), ..., a_n(x) >$

- target function may be either discrete-valued or real-valued
\(k \)-nearest Neighbor Learning

discrete-valued target function:

- \(f : \mathbb{R}^n \rightarrow V \) where \(V \) is the finite set \(\{v_1, v_2, \ldots, v_s\} \)
- the target function value is the most common value among the \(k \) nearest training examples

\[
\hat{f}(x_q) \leftarrow \arg\max_{v \in V} \sum_{i=1}^{k} \delta(v, f(x_i))
\]

where \(\delta(a, b) = (a == b) \)

continuous-valued target function:

- algorithm has to calculate the mean value instead of the most common value
- \(f : \mathbb{R}^n \rightarrow \mathbb{R} \)

\[
\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} f(x_i)}{k}
\]
\(\kappa \)-nearest Neighbor Learning

- e.g. instances are points in a two-dimensional space where the target function is boolean-valued
 - 1-nearest neighbor: \(x_q \) is classified positive
 - 4-nearest neighbor: \(x_q \) is classified negative
Hypothesis Space

- no explicit hypothesis is formed

- decision surface is a combination of convex polyhedra surrounding each of the training examples

- for each training example, the polyhedron indicates the set of possible query points x_q whose classification is completely determined by this training example (Voronoi diagram)
Distance-Weighted Nearest Neighbor

- contribution of each of the k nearest neighbors is weighted accorded to their distance to x_q

- discrete-valued target functions

$$
\hat{f}(x_q) \leftarrow \arg\max_{v \in V} \sum_{i=1}^{k} w_i \delta(v, f(x_i))
$$

where $w_i \equiv \frac{1}{d(x_q, x_i)^2}$ and $\hat{f}(x_q) = f(x_i)$ if $x_q = x_i$

- continuous-valued target function:

$$
\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^{k} w_i f(x_i)}{\sum_{i=1}^{k} w_i}
$$
highly effective inductive inference method for many practical problems provided a sufficiently large set of training examples

robust to noisy data

weighted average smoothes out the impact of isolated noisy training examples

inductive bias of k-nearest neighbors

- assumption that the classification of x_q will be similar to the classification of other instances that are nearby in the Euclidean Distance

curse of dimensionality

- distance is based on all attributes
- in contrast to decision trees and inductive logic programming
- solutions to this problem
 - attributes can be weighted differently
 - eliminate least relevant attributes from instance space
Locally Weighted Regression

a note on terminology:

- *Regression* means approximating a real-valued target function
- *Residual* is the error $\hat{f}(x) - f(x)$ in approximating the target function
- *Kernel function* is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that $w_i = K(d(x_i, x_q))$

- nearest neighbor approaches can be thought of as approximating the target function at the single query point x_q
- locally weighted regression is a generalization to this approach, because it constructs an explicit approximation of f over a local region surrounding x_q
Locally Weighted Linear Regression

- The target function is approximated using a linear function
 \[\hat{f}(x) = w_0 + w_1 a_1(x) + \ldots + w_n a_n(x) \]

- Methods like gradient descent can be used to calculate the coefficients \(w_0, w_1, \ldots, w_n \) to minimize the error in fitting such linear functions.

- ANNs require a global approximation to the target function.

- Here, just a local approximation is needed.

\[\Rightarrow\] the error function has to be redefined.
Locally Weighted Linear Regression

possibilities to redefine the error criterion E

1. Minimize the squared error over just the k nearest neighbors

$$E_1(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors}} (f(x) - \hat{f}(x))^2$$

2. Minimize the squared error over the entire set D, while weighting the error of each training example by some decreasing function K of its distance from x_q

$$E_2(x_q) \equiv \frac{1}{2} \sum_{x \in D} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))$$

3. Combine 1 and 2

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest neighbors}} (f(x) - \hat{f}(x))^2 \cdot K(d(x_q, x))$$
Locally Weighted Linear Regression

choice of the error criterion

- E_2 is the most esthetically criterion, because it allows every training example to have impact on the classification of x_q
- however, computational effort grows with the number of training examples
- E_3 is a good approximation to E_2 with constant effort

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest neighbors}} K(d(x_q, x))(f(x) - \hat{f}(x))a_j(x)$$
Remarks on locally weighted linear regression:

- In most cases, constant, linear or quadratic functions are used.
- Costs for fitting more complex functions are prohibitively high.
- Simple approximations are good enough over a sufficiently small subregion of X.
Radial Basis Functions

closely related to distance-weighted regression and to ANNs

learned hypotheses have the form

\[\hat{f}(x) = w_0 + \sum_{u=1}^{k} w_u \cdot K_u(d(x_u, x)) \]

where

- each \(x_u \) is an instance from \(X \) and
- \(K_u(d(x_u, x)) \) decreases as \(d(x_u, x) \) increases and
- \(k \) is a user-provided constant

though \(\hat{f}(x) \) is a global approximation to \(f(x) \), the contribution of each of the \(K_u \) terms is localized to a region nearby the point \(x_u \)
Radial Basis Functions

It is common to choose each function $K_u(d(x_u, x))$ to be a Gaussian function centered at x_u with some variance σ_u^2:

$$K_u(d(x_u, x)) = e^{\frac{-1}{2\sigma_u^2}d^2(x_u, x)}$$

The function of $\hat{f}(x)$ can be viewed as describing a two-layer network where the first layer of units computes the various $K_u(d(x_u, x))$ values and the second layer a linear combination of the results.
Case-based Reasoning
Remarks on Lazy and Eager Learning

- **Lazy methods** defer the decision of how to generalize beyond the training data until a new query instance x_q is encountered.

- **Eager methods** generalize before any new query instance is encountered.

Lazy methods allow stepwise changes of hypotheses by taking into account new examples. In contrast: in many eager methods hypotheses cannot be incrementally updated.

Differences in computation time are obvious.

Essential differences in the **inductive bias**:
- Lazy methods are able to consider the query instance x_q when deciding how to generalize.
- Eager methods already have committed to a global approximation of the target function before any x_q is encountered.
instance-based learning simply stores examples and postpones generalization until a new instance is encountered

able to learn discrete- and continuous-valued concepts

noise in the data is allowed (smoothed out by weighting distances)

Inductive Bias of k-nearest neighbors: classification of an instance is similar to the classification of other instances nearby in the Euclidean Distance

Locally Weighted Regression forms a local approximation of the target function