Lecture 2: Foundations of Concept Learning

Cognitive Systems II - Machine Learning

Part I: Basic Approaches to Concept Learning

Version Space, Candidate Elimination, Inductive Bias

last change October 16, 2007

Definition of Concept Learning

- Learning involves acquiring general concepts from a specific set of training examples D
- Each concept c can be thought of as a boolean-valued function defined over a larger set
 - i.e. a function defined over all animals, whose value is true for birds and false for other animals
- → Concept learning: Inferring a boolean-valued function from training examples

A Concept Learning Task - Informal

- ullet example target concept Enjoy: "days on which Aldo enjoys his favorite sport"
- \blacksquare set of example days D, each represented by a set of attributes

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

• the task is to learn to predict the value of Enjoy for an arbitrary day, based on the values of its other attributes

A Concept Learning Task - Informal

- Hypothesis representation
 - ullet Each hypothesis h consists of a conjunction of constraints on the instance attributes, that is, in this case a vector of six attributes
 - Possible constraints:
 - ?: any value is acceptable single required value for the attribute
 - \emptyset : no value is acceptable
 - if some instance x satisfies all the constraints of hypothesis h, then h classifies x as a positive example (h(x) = 1)
 - \Rightarrow most general hypothesis: $\langle ?, ?, ?, ?, ?, ? \rangle$
 - \Rightarrow most specific hypothesis: $\langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle$

A Concept Learning Task - Formal

Given:

- Instances X: Possible days, each described by the attributes
 - Sky (with values Sunny, Cloudy and Rainy)
 - ullet AirTemp (with values Warm and Cold)
 - ightharpoonup Humidity (with values Normal and High)
 - ightharpoonup Wind (with values Strong and Weak)
 - ightharpoonup Water (with values Warm and Cool)
 - Forecast (with values Same and Change)
- ullet Hypotheses H where each $h \in H$ is described as a conjunction of constraints on the above attributes
- **■** Target Concept $c: Enjoy: X \rightarrow \{0, 1\}$
- Training examples D: positive and negative examples of the table above

Determine:

● A hypothesis $h \in H$ such that $(\forall x \in X)[h(x) = c(x)]$

A Concept Learning Task - Example

• example hypothesis $h_e = \langle Sunny, ?, ?, ?, Warm, ? \rangle$

According to h_e Aldo enjoys his favorite sport whenever the sky is sunny and the water is warm (independent of the other weather conditions!)

ightharpoonup example 1: < Sunny, Warm, Normal, Strong, Warm, Same >

This example satisfies h_e , because the sky is sunny and the water is warm. Hence, Aldo would enjoy his favorite sport on this day.

ightharpoonup example 4: < Sunny, Warm, High, Normal, Cool, Change >

This example does not satisfy h_e , because the water is cool. Hence, Aldo would not enjoy his favorite sport on this day.

 $\Rightarrow h_e$ is not consistent with the training examples D

Concept Learning as Search

- concept learning as search through the space of hypotheses H (implicitly defined by the hypothesis representation) with the goal of finding the hypothesis that best fits the training examples
- most practical learning tasks involve very large, even infinite hypothesis spaces
- many concept learning algorithms organize the search through the hypothesis space by relying on the general-to-specific ordering

FIND-S

- exploits general-to-specific ordering
- finds a maximally specific hypothesis h consistent with the observed training examples D
- algorithm:
 - 1. Initialize h to the most specific hypothesis in H
 - 2. For each positive training instance x
 - if the constraint a_i is satisfied by x then do nothing else replace a_i with the next more general constraint satisfied by x
 - 3. Output hypothesis *h*

FIND-S - Example

- **●** Initialize $h \leftarrow < \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset >$
- $m{ ilde{\square}}$ example 1: < Sunny, Warm, Normal, Strong, Warm, Same > $h \leftarrow <$ Sunny, Warm, Normal, Strong, Warm, Same <math>>
- example 2: < Sunny, Warm, High, Strong, Warm, Same > $h \leftarrow < Sunny, Warm, ?, Strong, Warm, Same >$
- example 3: < Rainy, Cold, High, Strong, Warm, Change >
 This example can be omitted because it is negative.
 Notice that the current hypothesis is already consistent with this example, because it correctly classifies it as negative!
- example 4: < Sunny, Warm, High, Strong, Cool, Change > $h \leftarrow < Sunny, Warm, ?, Strong, ?, ? >$

FIND-S - Example

Instances X

Hypotheses H

$$x_1 = \langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle, + \\ x_2 = \langle Sunny\ Warm\ High\ Strong\ Warm\ Same \rangle, + \\ x_3 = \langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle, -$$

$$x_4 = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle, +$$

$$h_0 = < \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing >$$

$$h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$$

$$h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$$

$$h_3 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$$

Remarks on FIND-S

- in each step, h is consistent with the training examples observed up to this point
- unanswered questions:
 - Has the learner converged to the correct target concept?
 No way to determine whether FIND-S found the only consistent hypothesis h or whether there are many other consistent hypotheses as well
 - Why prefer the most specific hypothesis?
 - Are the training examples consistent?
 - FIND-S is only correct if D itself is consistent. That is, D has to be free of classification errors.
 - What if there are several maximally specific consistent hypotheses?

CANDIDATE-ELIMINATION

- CANDIDATE-ELIMINATION addresses several limitations of the FIND-S algorithm
- ightharpoonup key idea: description of the set of all hypotheses consistent with D without explicity enumerating them
- performs poorly with noisy data
- useful conceptual framework for introducing fundamental issues in machine learning

Version Spaces

- to incorporate the key idea mentioned above, a compact representation of all consistent hypotheses is neccessary
- Version space $VS_{H,D}$, with respect to hypothesis space H and training data D, is the subset of hypotheses from H consistent with D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h, D)\}$$

ullet $VS_{H,D}$ can be represented by the most general and the most specific consistent hypotheses in form of boundary sets within the partial ordering

Version Spaces

■ The general boundary set G, with respect to hypothesis space H and training data D, is the set of maximally general members of H consistent with D.

$$G \equiv \{g \in H | Consistent(g, D) \land (\neg \exists g' \in H) [(g' >_g g) \land Consistent(g', D)]\}$$

The specific boundary set S, with respect to hypothesis space H and training data D, is the set of minimally general (i.e., maximally specific) members of H consistent with D.

$$S \equiv \{s \in H | Consistent(s, D) \land (\neg \exists s' \in H) [(s >_q s') \land Consistent(s', D)] \}$$

Version Spaces

Algorithm

- Initialize G to the set of maximally general hypotheses in H
- Initialize S to the set of maximally specific hypotheses in H For each training example $d \in D$, do
 - ullet If d is a *positive* example
 - Remove from G any hypothesis inconsistent with d
 - $oldsymbol{\wp}$ For each hypothesis s in S that is inconsistent with d
 - · Remove s from S
 - · Add to S all minimal generalizations h of s such that h is consistent with d and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S
 - ullet If d is a *negative* example
 - $oldsymbol{\wp}$ Remove from S any hypothesis inconsistent with d
 - ullet For each hypothesis g in G that is inconsistent with d
 - · Remove g from G
 - · Add to G all minimal specializations h of g such that h is consistent with d and some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

Initialization of the Boundary sets

- $G_0 \leftarrow \{<?,?,?,?,?,?>\}$
- example 1: < Sunny, Warm, Normal, Strong, Warm, Same >

S is overly specific, because it wrongly classifies example 1 as false. So S has to be revised by moving it to the **least more general hypothesis** that covers example 1 and is **still more special** than another hypothesis in G.

- $\Rightarrow S_1 = \{ \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle \}$
- $\Rightarrow G_1 = G_0$
- ightharpoonup example 2: < Sunny, Warm, High, Strong, Warm, Same > 1
 - $\Rightarrow S_2 = \{ \langle Sunny, Warm, ?, Strong, Warm, Same \rangle \}$
 - $\Rightarrow G_2 = G_1 = G_0$

Training examples:

- 1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes
- 2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

ightharpoonup example 3: < Rainy, Cold, High, Strong, Warm, Change >

G is overly general, because it wrongly classifies example 3 as true. So G has to be revised by moving it to the least more specific hypotheses that covers example 3 and is still more general than another hypothesis in S.

There are several alternative minimally more specific hypotheses.

$$\Rightarrow S_3 = S_2$$

$$\Rightarrow G_3 = \{ \langle Sunny, ?, ?, ?, ?, ?, ?, ?, Warm, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, Same > \}$$

$$S_2$$
, S_3 : { < Sunny, Warm, ?, Strong, Warm, Same > }

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

ightharpoonup example 4: $\langle Sunny, Warm, High, Strong, Cool, Change <math>\rangle$

```
\Rightarrow S_4 = \{ \langle Sunny, Warm, ?, Strong, ?, ? \rangle \}
```

$$\Rightarrow G_4 = \{ \langle Sunny, ?, ?, ?, ?, ?, , Warm, ?, ?, ?, ? \}$$

Remarks

- Will the algorithm converge to the correct hypothesis?
 - convergence is assured provided there are no errors in ${\cal D}$ and the ${\cal H}$ includes the target concept
 - ullet G and S contain only the same hypothesis
- How can partially learned concepts be used?
 - some unseen examples can be classified unambiguously as if the target concept had been fully learned
 - ullet positive iff it satisfies every member of S
 - ullet negative iff it doesn't satisfy any member of G
 - otherwise an instance x is classified by majority (if possible)

Inductive Bias

- fundamental property of inductive learning
 - a learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying unseen examples
- inductive bias \approx policy by which the learner generalizes beyond the observed training data to infer the classification of new instances
- Consider a concept learning algorithm L for the set of instances X. Let c be an arbitrary concept defined over X, and $D_c = \{ \langle x, c(x) \rangle \}$ an arbitrary set of training examples of c.
 - Let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on the data D_c .

The inductive bias of ${\cal L}$ is any minimal set of assertions ${\cal B}$ such that

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

Kinds of Inductive Bias

- Restriction Bias (aka Language Bias)
 - entire H is searched by learning algorithm
 - hypothesis representation not expressive enough to encompass all possible concepts
 - e.g. CANDIDATE-ELIMINATION: for the hypothesis language used in the "enjoy"-example *H* only includes conjunctive concepts
- Preference Bias (aka Search Bias)
 - hypothesis representation encompasses all possible concepts
 - learning algorithm does not consider each possible hypothesis
 - e.g. use of heuristics, greedy strategies
- Preference Bias more desirable, because it assures

$$(\exists h \in H)[(\forall x \in X)[h(x) = c(x)]]$$

Un Unbiased Learner

- ullet an unbiased $H=2^{|X|}$ would contain every teachable function
- \blacksquare for such a H,
 - G would always contain the negation of the disjunction of observed negative examples
 - S would always contain the disjunction of the observed positive examples
- hence, only observed examples will be classified correctly
- \Rightarrow in order to converge to a single target concept, every $x \in X$ has to be in D
- ⇒ the learning algorithm is unable to generalize beyond observed training data

Inductive System vs. Theorem Prover

