Lecture 4: Perceptrons and Multilayer Perceptrons

Cognitive Systems II - Machine Learning

Part I: Basic Approaches of Concept Learning

Perceptrons, Artificial Neuronal Networks (ANNs)

last change November 16, 2009
Biological Motivation

Biological learning systems are built of complex webs of interconnected neurons.

motivation:
- capture kind of highly parallel computation
- based on distributed representation

goal:
- obtain highly effective machine learning algorithms, independent of whether these algorithms fit biological processes (*no cognitive modeling!*)

Lecture 4: Perceptrons and Multilayer Perceptrons – p. 2
Biological Motivation

<table>
<thead>
<tr>
<th></th>
<th>Computer</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>computation units</td>
<td>1 CPU (> 10^7 Gates)</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>memory units</td>
<td>512 MB RAM</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>clock</td>
<td>500 GB HDD</td>
<td>10^{14} synapses</td>
</tr>
<tr>
<td>transmission</td>
<td>10^{-8} sec</td>
<td>10^{-3} sec</td>
</tr>
<tr>
<td></td>
<td>$> 10^9$ bits/sec</td>
<td>$> 10^{14}$ bits/sec</td>
</tr>
</tbody>
</table>

- **Computer:** serial, quick
- **Brain:** parallel, slowly, robust to noisy data
Appropriate Problems

BACKPROPAGATION algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are represented as many attribute-value pairs
 - input values can be any real values
- target function output may be discrete-, real- or vector-valued
- training examples may contain errors
- long training times are acceptable
- fast evaluation of the learned target function may be required
 - many iterations may be neccessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - learned weights are not intuitively understandable
Perceptrons

takes a vector of real-valued inputs \((x_1, \ldots, x_n)\) weighted with \((w_1, \ldots, w_n)\)

calculates the linear combination of these inputs

\[
\sum_{i=0}^{n} w_i x_i = w_0 x_0 + w_1 x_1 + \ldots + w_n x_n
\]

\(-w_0\) denotes a threshold value, i.e. that value which must be reached by the linear combination of inputs to cause the perceptron to output 1

\(x_0\) is always 1

outputs 1 if the result is greater than 0, otherwise -1
Representational Power

- A perceptron represents a hyperplane decision surface in the n-dimensional space of instances.
- Some sets of examples cannot be separated by any hyperplane, those that can be separated are called linearly separable.
- Many Boolean functions can be represented by a perceptron: AND, OR, NAND, NOR.
Perceptron Training Rule

problem: determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example

perceptron training rule:

$$w_i = w_i + \Delta w_i \text{ where } \Delta w_i = \eta(t - o)x_i$$

- t target output
- o perceptron output
- η learning rate (usually some small value, e.g. 0.1)

algorithm:

1. initialize \vec{w} to random weights
2. repeat, until each training example is classified correctly
 (a) apply perceptron training rule to each training example

convergence guaranteed provided linearly separable training examples and sufficiently small η
Delta Rule

- perceptron rule fails if data is not linearly separable
- delta rule converges toward a best-fit approximation
- uses gradient descent to search the hypothesis space
 - perceptron cannot be used, because it is not differentiable
 - hence, a unthresholded linear unit is appropriate
 - error measure: \(E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \)
- to understand gradient descent, it is helpful to visualize the entire hypothesis space with
 - all possible weight vectors and
 - associated \(E \) values
the axes w_0, w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be **parabolic with a single global minimum**
Derivation of Gradient Descent

problem: How calculate the steepest descent along the error surface?

- derivative of E with respect to each component of \vec{w}
 - this vector derivative is called *gradient* of E, written $\nabla E(\vec{w})$

 $$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n} \right]$$

- $\nabla E(\vec{w})$ specifies the steepest ascent, so $-\nabla E(\vec{w})$ specifies the steepest descent

training rule: $w_i = w_i + \Delta w_i$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \quad \text{and} \quad \frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d)(-x_{id})$$

$$\Rightarrow \Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_{id}$$
Differentiating E

\[
\frac{\partial E}{\partial w_i} =
\]

\[
\frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 =
\]

\[
\frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 =
\]

\[
\frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) =
\]

\[
\sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \vec{x}_d) =
\]

\[
\sum_{d \in D} (t_d - o_d)(-x_{id})
\]

Remember:

Outer and inner derivation for \(y = u^2 \): \(\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \)

with \(u = t_d - o_d \)
Incremental Gradient Descent

- application difficulties of gradient descent
 - convergence may be quite slow
 - in case of many local minima, the global minimum may not be found

- idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example

\[\Delta w_i = \eta(t - o)x_i \text{ where } E_d(\bar{w}) = \frac{1}{2}(t_d - o_d)^2 \]

- key differences:
 - weights are not summed up over all examples before updating
 - requires less computation
 - better for avoidance of local minima
Gradient Descent Algorithm

GRADIENT-DESCENT($training_examples, \eta$)

Each training example is a pair of the form $< \vec{x}, t >$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate.

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - Initialize each Δw_i to zero
 - For each $< \vec{x}, t >$ in $training_examples$, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i, Do $\Delta w_i = \Delta w_i + \eta(t - o)x_i$*
 - For each linear unit weight w_i, Do $w_i \leftarrow w_i + \Delta w_i^{**}$

To implement incremental approximation, equation ** is deleted and equation * is replaced by $w_i \leftarrow w_i + \eta(t - o)x_i$.

Lecture 4: Perceptrons and Multilayer Perceptrons – p. 13
Perceptron vs. Delta Rule

perceptron training rule:
- uses thresholded unit
- converges after a finite number of iterations
- output hypothesis classifies training data perfectly
- linearly separability neccessary

delta rule:
- uses unthresholded linear unit
- converges asymptotically toward a minimum error hypothesis
- termination is not guaranteed
- linear separability not neccessary
Multilayer Networks (ANNs)

- capable of learning **nonlinear decision surfaces**
- normally **directed** and **acyclic** ⇒ Feed-forward Network
- based on **sigmoid unit**
 - much like a perceptron
 - but based on a smoothed, **differentiable threshold function**

\[
\sigma(\text{net}) = \frac{1}{1 + e^{-\text{net}}}
\]

\[
\lim_{\text{net} \to +\infty} \sigma(\text{net}) = 1
\]

\[
\lim_{\text{net} \to -\infty} \sigma(\text{net}) = 0
\]
BACKPROPAGATION

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections

- employs gradient descent to minimize error

- redefinition of E
 - has to sum the errors over all units
 - $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2$

- **problem**: search through a large H defined over all possible weight values for all units in the network
BACKPROPAGATION algorithm

\[\text{BACKPROPAGATION}(training_examples, \eta, n_{in}, n_{out}, n_{hidden}) \]

The input from unit \(i \) to unit \(j \) is denoted \(x_{ji} \) and the weight from unit \(i \) to unit \(j \) is denoted \(w_{ji} \).

- create a feed-forward network with \(n_{in} \) inputs, \(n_{hidden} \) hidden units, and \(n_{out} \) output units
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do (EPOCHE)
 - For each \(\langle \vec{x}, \vec{t} \rangle \) in \(training_examples \), Do
 - Propagate the input forward through the network:
 1. Input \(\vec{x} \) to the network and compute \(o_u \) of every unit \(u \)
 - Propagate the errors back through the network:
 2. For each network output unit \(k \), calculate its error term \(\delta_k \)
 \[\delta_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit \(h \), calculate its error term \(\delta_h \)
 \[\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k \]
 4. Update each weight \(w_{ji} \)
 \[w_{ji} \leftarrow w_{ji} + \Delta w_{ji} \text{ where } \Delta w_{ji} = \eta \delta_j x_{ji} \]
Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold

important:
- too few iterations reduce error insufficiently
- too many iterations can lead to overfitting the data
Adding Momentum

- one way to avoid local minima in the error surface or flat regions
- make the weight update in the n^{th} iteration depend on the update in the $(n-1)^{th}$ iteration

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n - 1)$$

Note: $\Delta w_{ji}(n - 1)$ represents the cumulative updates for this weight in the complete last epoch.

$0 \leq \alpha \leq 1$
Representational Power

boolean functions:
- every boolean function can be represented by a two-layer network

continuous functions:
- every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)

arbitrary functions:
- each arbitrary function can be approximated to arbitrary accuracy by a three-layer network
Inductive Bias

- every possible assignment of network weights represents a syntactically different hypothesis
 \[H = \{ \vec{w} | \vec{w} \in \mathbb{R}^{(n+1)} \} \]

- inductive bias: smooth interpolation between data points
Illustrative Example - Face Recognition

task:

- classifying camera image of faces of various people
- images of 20 people were made, including approximately 32 different images per person
- image resolution 120×128 with each pixel described by a greyscale intensity between 0 and 255
- identifying the direction in which the persons are looking (i.e., left, right, up, ahead)
Illustrative Example - Design Choices

- **input encoding:**
 - Image encoded as a set of 30×32
 - Pixel intensitiy values ranging from 0 to 255 linearly scaled from 0 to 1
 ⇒ reduces the number of inputs and network weights
 ⇒ reduces computational demands

- **output encoding:**
 - Network must output one of four values indicating the face direction
 - 1-of-n output encoding: 1 output unit for each direction
 ⇒ more degrees of freedom
 ⇒ difference between highest and second-highest output can be used as a measure of classification confidence
network graph structure:

- BACKPROPAGATION works with any DAG of sigmoid units
- question of how many units and how to interconnect them
- using *standard design*: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer
 ⇒ 30 hidden units
 ⇒ test accuracy of 90%
Advanced Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure
Summary

- able to learn discrete-, real- and vector-valued target functions
- noise in the data is allowed
- perceptrons learn hyperplane decision surfaces (linear separability)
- multilayer networks even learn nonlinear decision surfaces
- **BACKPROPAGATION** works on arbitrary feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples
- an arbitrary function can be approximated to arbitrary accuracy by a three-layer network
- **Inductive Bias**: smooth interpolation between data points