Lecture 10: Support Vector Machines and their Applications
Cognitive Systems - Machine Learning

Part II: Special Aspects of Concept Learning

SVM, kernel trick, linear separability, text mining, active learning, “mind reading”

last change: 20. Januar 2011
Motivation

- linear classifiers (e.g. perceptrons): efficiently trainable, but low capacity and only for non-symbolic instances
- non-linear classifiers (e.g. NNs with hidden layers): high capacity, but high time complexity, local optima, overfitting, only numerical data
- idea of kernel methods: non-linearly embed instance space in high dimensional feature space with dot-product where mapped training data is linearly separable
 - high capacity
 - applicable for symbolical data
 - time efficient training (polynomial with sample size)
 - global optimum
 - prevents overfitting
instances are linear separable

an hyperplane is defined by \(w \cdot x - b = 0 \), \(w \in \mathbb{R}^N \), \(b \in \mathbb{R} \)

for positive instances we define \(w \cdot x_i - b > 0 \)

for negative instances we define \(w \cdot x_i - b < 0 \)

with \(c(x) \in \{-1, +1\} \) holds: \(c(x_i) \cdot (w \cdot x_i - b) > 0 \)
w and b not unique!

w and b can be scaled, so that \(|(w \cdot x_i) + b| = 1\) for the \(x_i\) closest to the hyperplane

\(\implies c(x_i) \cdot ((w \cdot x_i) + b) \geq 1\)

the distance between the two hyperplanes is given as \(\frac{2}{\|w\|}\)

machine learning searches for the best hyperplane, i.e. the hyperplane separating all instances while being as far apart from the instances as possible
Learning

Find a w and a b such that

- $\frac{1}{2} \|w\|^2$ is minimal
- $c(x_i)(w \cdot x_i - b) \geq 1$ for all x_i

Support Vectors

The solution can be expressed as

$$w = \sum_{i=0}^{n} \alpha_i c(x_i)x_i$$

Only few α_i are not zero. The corresponding x_i are called the support vectors. The support vectors satisfy $c(x_i)(w \cdot x_i - b) = 1$, thus lie on the two parallel hyperplanes.
data may contain noise

constraint is relaxed:
\[c(x_i)(w \cdot x_i - b) \geq 1 - \xi_i \]

relaxation is penalized

\(\xi_i \) are called slack variables

Learning

Find a \(w \), a \(b \) and \(\xi_i \)'s such that

\[
\frac{1}{2} \|w\|^2 - C \sum_{i=0}^{n} \xi_i \text{ is minimal}
\]

\[c(x_i)(w \cdot x_i - b) \geq 1 - \xi_i \text{ for all } x_i \]
The Kernel Trick (Bernhard Boser, Isabelle Guyon and Vladimir Vapnik)

- the data may not be linearly separable at all
- the solution is to transform the feature space: $x_i \rightarrow \Phi(X_i)$
- for example $\Phi\left(\begin{pmatrix} a \\ b \end{pmatrix}\right) = \begin{pmatrix} a^2 \\ 2ab \\ b^2 \end{pmatrix}$
The Kernel Trick (cont’d)

- as every vector occurs only inside a dot product it is not necessary to give Φ explicitly
- every dot-product is replaced by an application of a nonlinear kernel function $\mathcal{K}(x_i, x_j)$
The Kernel Trick (cont’d)

Learning

Find a w, a b and optionally ξ_i’s such that

- $\frac{1}{2} \|w\|^2 - C \sum_{i=0}^{n} \xi_i$ is minimal
- $c(x_i)(w \cdot \Phi(x) - b) \geq 1 - \xi_i$ for all i
- or, equivalently $c(x_i)(\sum_j \alpha_j c(x_j)K(x_j, x_i) - b) \geq 1 - \xi_i$ for all i

Common Kernels

- Polynomial: $K(x_i, x_j) = (x_i \cdot x_j)^d$
- Gaussian Radial Basis Function (RBF): $K(x_i, x_j) = e^{-\gamma\|x_i - x_j\|^2}$
- Hyperbolic Tangent: $K(x_i, x_j) = \tanh(\kappa x_i \cdot x_j + c)$
Application

- Parameter Optimization
- Class Learning
- Text Mining
- Active Learning
- “Mind Reading”
Parameter Optimization

- free parameters are:
 - the cost factor C: the higher the more accurate instances are classified (during training)
 - the kernel function K
 - the parameters of the kernel

- normally powers of 2 are used for C: $C \in \{2^{-5}, \ldots, 2^{15}\}$

- the same holds for γ when using a Gaussian RBF: $\gamma \in \{2^{-15}, \ldots, 2^{3}\}$
Class Learning

- Support vector machines are designed for concept learning.
- There is ongoing research on how to handle class learning.
- A single SVM approach (called multi-class SVM) tries to solve the optimization problem directly.
- Other approaches use more than one SVM in a “divide and conquer” manner:
 - 1-against-1,
 - 1-against-all,
 - Error correcting output codes (ECOC).
Divide and Conquer

1-against-1

- for each pair of classes one SVM is learned
- only examples of the two classes are used
- final classification is assigned by vote

1-against-all

- for each class one SVM is trained
- the concept is whether the example belongs to the class or not
- the class of the SVM with the highest output \((w \cdot x - b)\) is assigned as final classification

A similar meta learner is available (e.g. for perceptrons).
Text Classification

- **applications**
 - automated tagging
 - author attribution
 - spam filtering

- **examples: single documents**

- **representation/attributes:** occurrence frequency of single words

- **preprocessing:**
 - stop word filtering (e.g. *the*, *on*, *for*, *and*)
 - stemming
 - fix typos
 - find synonyms
Text Classification Example

Documents

1. A man is sitting on a bank in the park.
2. We owe the bank $1,000.
3. Two players are sitting on the bank.
4. We called the bank.

Trainings data

<table>
<thead>
<tr>
<th>no.</th>
<th>man</th>
<th>sit</th>
<th>bank</th>
<th>park</th>
<th>we</th>
<th>owe</th>
<th>player</th>
<th>call</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>bench</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>institute</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>bench</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>institute</td>
</tr>
</tbody>
</table>
Active Learning

- active learning is a technique where the learner chooses which examples it needs
- it is used when examples are easily available but labeling the examples is cost-intensive (e.g. biological research, expert ratings)
- in each learning step i there is a set of examples with known label $D_{k,i}$ and a set of examples with unknown label $D_{u,i}$
- the algorithm chooses from the unlabeled examples which shall be labeled $D_{c,i}$
Using SVMs for Active Learning

- SVMs are used to assign $D_{c,i}$
- the distance of each unlabeled example from the hyperplane is calculated
- used are
 - the closest examples (possibly overfitting),
 - the examples most far apart (possibly low accuracy) or
 - a mixture of both
“Mind Reading”

Study by Mitchell et al. 2004

- functional Magnetic Resonance Imaging (fMRI)
- normal students from the university community
- presented were a sentence and a simple image
- the aim was to classify an image sequence as *sentence* or *picture*
- 40 trials per subject
- 13 subjects

Full Reference

fMRI

- three-dimensional images related to neural activity in the brain through time
- ratio of oxygenated hemoglobin to deoxygenated hemoglobin in the blood (BOLD)
- high spatial resolution (several millimeters)
- about 10,000 voxels (volume elements) per image
- one image per 0.5 seconds
Data Preprocessing

- artifacts due to head motion, signal drift, and other sources were removed
- voxel activity values were represented by the percent difference from their mean value during rest
- 80 examples per subject (1040 total)
- about 10,000 attributes per image (about 160,000 per example)
Results

<table>
<thead>
<tr>
<th>error rate</th>
<th>w/o feature selection</th>
<th>with feature selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>trained for each subject</td>
<td>0.34</td>
<td>0.11</td>
</tr>
<tr>
<td>trained for all subjects</td>
<td>0.25</td>
<td></td>
</tr>
</tbody>
</table>

Drawbacks

- each voxel contains on the order of hundreds of thousands of neurons
- the fMRI BOLD response associated with an impulse of neural activity endures for many seconds (9–13)
Learning Terminology

Support Vector Machine

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>unsupervised learning</th>
</tr>
</thead>
</table>

Approaches:

<table>
<thead>
<tr>
<th>Concept / Classification</th>
<th>Policy Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbolic</td>
<td>statistical / neuronal network</td>
</tr>
<tr>
<td>inductive</td>
<td>analytical</td>
</tr>
</tbody>
</table>

Learning Strategy:

⇒ learning from examples