Lecture 11: Reinforcement Learning
Cognitive Systems - Machine Learning

Part III: Learning Programs and Strategies

Q Learning, Dynamic Programming

last change January 14, 2011
Motivation

addressed problem: How can an autonomous agent that senses and acts in its environment learn to choose optimal actions to achieve its goals?

- consider building a learning robot (i.e., agent)
 - the agent has a set of *sensors* to observe the *state* of its environment and
 - a set of *actions* it can perform to alter its state
 - the task is to learn a control strategy, or *policy*, for choosing actions that achieve its goals

assumption: goals can be defined by a *reward function* that assigns a numerical value to each distinct action the agent may perform from each distinct state
Motivation

- **considered settings:**
 - deterministic or nondeterministic outcomes
 - prior background knowledge available or not

- **similarity to function approximation:**
 - approximating the function $\pi : S \rightarrow A$
 where S is the set of states and A the set of actions

- **differences to function approximation:**
 - Delayed reward: training information is not available in the form $<s, \pi(s)>$. Instead the trainer provides only a sequence of immediate reward values.
 - Temporal credit assignment: determining which actions in the sequence are to be credited with producing the eventual reward
differences to function approximation (cont.):

- exploration: distribution of training examples is influenced by the chosen action sequence
 - which is the most effective exploration strategy?
 - trade-off between exploration of unknown states and exploitation of already known states
- partially observable states: sensors only provide partial information of the current state (e.g. forward-pointing camera, dirty lenses)
- life-long learning: function approximation often is an isolated task, while robot learning requires to learn several related tasks within the same environment
The Learning Task

- based on Markov Decision Processes (MDP)
 - the agent can perceive a set S of distinct states of its environment and has a set A of actions that it can perform.
 - at each discrete time step t, the agent senses the current state s_t, chooses a current action a_t and performs it.
 - the environment responds by returning a reward $r_t = r(s_t, a_t)$ and by producing the successor state $s_{t+1} = \delta(s_t, a_t)$.
 - the functions r and δ are part of the environment and not necessarily known to the agent.
 - in an MDP, the functions $r(s_t, a_t)$ and $\delta(s_t, a_t)$ depend only on the current state and action.
The Learning Task

- the task is to learn a policy $\pi: S \rightarrow A$
- one approach to specify which policy π the agent should learn is to require the policy that produces the greatest possible cumulative reward over time (discounted cumulative reward)

$$V^\pi(s_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots$$

$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where $V^\pi(s_t)$ is the cumulative value achieved by following an arbitrary policy π from an arbitrary initial state s_t

r_{t+i} is generated by repeatedly using the policy π and γ ($0 \leq \gamma < 1$) is a constant that determines the relative value of delayed versus immediate rewards
hence, the agent’s learning task can be formulated as

\[\pi^* \equiv \arg\max_{\pi} V^\pi(s), (\forall s) \]
Illustrative Example

- The left diagram depicts a simple grid-world environment:
 - Squares \approx states, locations
 - Arrows \approx possible transitions (with annotated $r(s, a)$)
 - $G \approx$ goal state (absorbing state)

- $\gamma = 0.9$

- Once states, actions, and rewards are defined and γ is chosen, the optimal policy π^* with its value function $V^*(s)$ can be determined.
Illustrative Example

- The right diagram shows the values of V^* for each state.

- E.g., consider the bottom-right state:
 - $V^* = 100$, because π^* selects the “move up” action that receives a reward of 100.
 - Thereafter, the agent will stay in G and receive no further awards.
 - $V^* = 100 + \gamma \cdot 0 + \gamma^2 \cdot 0 + \ldots = 100$.

- E.g., consider the bottom-center state:
 - $V^* = 90$, because π^* selects the “move right” and “move up” actions.
 - $V^* = 0 + \gamma \cdot 100 + \gamma^2 \cdot 0 + \ldots = 90$.

- Recall that V^* is defined to be the sum of discounted future awards over infinite future.
Q Learning

- it is easier to learn a numerical evaluation function than implement
 the optimal policy in terms of the evaluation function

- **question:** What evaluation function should the agent attempt to
 learn?

- one obvious choice is V^*

- the agent should prefer s_1 to s_2 whenever $V^*(s_1) > V^*(s_2)$

- **problem:** the agent has to chose among actions, not among
 states

$$
\pi^*(s) = \arg \max_a [r(s, a) + \gamma V^*(\delta(s, a))]
$$

the optimal action in state s is the action a that maximizes the sum
of the immediate reward $r(s, a)$ plus the value of V^* of the
immediate successor, discounted by γ
Q Learning

- thus, the agent can acquire the optimal policy by learning V^*, provided it has perfect knowledge of the immediate reward function r and the state transition function δ
- in many problems, it is impossible to predict in advance the exact outcome of applying an arbitrary action to an arbitrary state
- the Q function provides a solution to this problem
 - $Q(s, a)$ indicates the maximum discounted reward that can be achieved starting from s and applying action a first

\[
Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))
\]

\[
\Rightarrow \pi^*(s) = \arg\max_a Q(s, a)
\]
Q Learning

- hence, learning the Q function corresponds to learning the optimal policy π^*
- if the agent learns Q instead of V^*, it will be able to select optimal actions even when it has no knowledge of r and δ
- it only needs to consider each available action a in its current state s and chose the action that maximizes $Q(s, a)$
- the value of $Q(s, a)$ for the current state and action summarizes in one value all information needed to determine the discounted cumulative reward that will be gained in the future if a is selected in s
Q Learning

- the right diagram shows the corresponding Q values
- the Q value for each state-action transition equals the r value for this transition plus the V^* value discounted by γ
Q Learning Algorithm

- **key idea**: iterative approximation
- relationship between Q and V^*

\[V^*(s) = \max_{a'} Q(s, a') \]

\[Q(s, a) = r(s, a) + \gamma \max_{a'} Q(\delta(s, a), a') \]

- this recursive definition is the basis for algorithms that use iterative approximation
- the learner’s estimate $\hat{Q}(s, a)$ is represented by a large table with a separate entry for each state-action pair
Q Learning Algorithm

Algorithm

For each \(s, a \) initialize the table entry \(\hat{Q}(s, a) \) to zero
Observe the current state \(s \)
Do forever:

- Select an action \(a \) and execute it
- Receive immediate reward \(r \)
- Observe new state \(s' \)
- Update the table entry for \(\hat{Q}(s, a) \) as follows
 \[
 \hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')
 \]
- \(s \leftarrow s' \)

⇒ Using this algorithm the agent’s estimate \(\hat{Q} \) converges to the actual \(Q \), provided the system can be modeled as a deterministic Markov decision process, \(r \) is bounded, and actions are chosen so that every state-action pair is visited infinitely often.
Illustrative Example

\[\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \cdot \max_{a'} \hat{Q}(s_2, a') \]

\[\leftarrow 0 + 0.9 \cdot \max \{63, 81, 100\} \]

\[\leftarrow 90 \]

- the old values are read from our \(\hat{Q} \)-table, which are about to be updated in each step
- each time the agent moves, Q Learning propagates \(\hat{Q} \) estimates \textit{backwards} from the new state to the old and updates the corresponding value in the table
Illustrative Example

Table before the move

<table>
<thead>
<tr>
<th>(s, a)</th>
<th>(\hat{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, (\rightarrow)</td>
<td>72</td>
</tr>
<tr>
<td>2, (\leftarrow)</td>
<td>63</td>
</tr>
<tr>
<td>2, (\rightarrow)</td>
<td>100</td>
</tr>
<tr>
<td>2, (\downarrow)</td>
<td>81</td>
</tr>
</tbody>
</table>

Table after the move

<table>
<thead>
<tr>
<th>(s, a)</th>
<th>(\hat{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, (\rightarrow)</td>
<td>90</td>
</tr>
<tr>
<td>2, (\leftarrow)</td>
<td>63</td>
</tr>
<tr>
<td>2, (\rightarrow)</td>
<td>100</td>
</tr>
<tr>
<td>2, (\downarrow)</td>
<td>81</td>
</tr>
</tbody>
</table>
Experimentation Strategies

- The algorithm does not specify how actions are chosen by the agent.
- **Obvious strategy**: select action a that maximizes $\hat{Q}(s, a)$
 - Risk of overcommitting to actions with high \hat{Q} values during earlier trainings
 - Exploration of yet unknown actions is neglected
- **Alternative**: probabilistic selection

$$P(a_i|s) = \frac{k\hat{Q}(s,a_i)}{\sum_j k\hat{Q}(s,a_j)}$$

$k > 0$ indicates how strongly the selection favors actions with high \hat{Q} values

- k large \Rightarrow exploitation strategy
- k small \Rightarrow exploration strategy
so far, the target function is represented as an explicit lookup table.

The algorithm performs a kind of rote learning and makes no attempt to estimate the Q value for yet unseen state-action pairs.

⇒ unrealistic assumption in large or infinite spaces or when execution costs are very high.

Incorporation of function approximation algorithms such as BACKPROPAGATION:

- table is replaced by a neural network using each $\hat{Q}(s, a)$ update as training example (s and a are inputs, \hat{Q} the output).
- a neural network for each action a.

Relationship to Dynamic Programming

- Q Learning is closely related to dynamic programming approaches that solve Markov Decision Processes
 - **dynamic programming**
 - assumption that $\delta(s, a)$ and $r(s, a)$ are known
 - focus on how to compute the optimal policy
 - mental model can be explored (no direct interaction with environment)
 ⇒ *offline system*
 - Q Learning
 - assumption that $\delta(s, a)$ and $r(s, a)$ are not known
 - direct interaction inevitable
 ⇒ *online system*
Relationship to Dynamic Programming

The relationship is apparent by considering the Bellman’s equation, which forms the foundation for many dynamic programming approaches solving Markov Decision Processes:

$$(\forall s \in S) V^*(s) = E[r(s, \pi(s)) + \gamma V^*(\delta(s, \pi(s)))]$$
Advanced Topics

- different updating sequences
- proof of convergence
- nondeterministic rewards and actions
- temporal difference learning
Learning Terminology

Q Learning

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>unsupervised learning</th>
</tr>
</thead>
</table>

Approaches:

<table>
<thead>
<tr>
<th>Concept / Classification</th>
<th>Policy Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbolic</td>
<td>statistical / neuronal network</td>
</tr>
<tr>
<td>inductive</td>
<td>analytical</td>
</tr>
</tbody>
</table>

Learning Strategy:

⇒ learning from experience