Lecture 4: Perceptrons and Multilayer Perceptrons
Cognitive Systems - Machine Learning

Part I: Basic Approaches of Concept Learning

Perceptrons, Artificial Neuronal Networks (ANNs)

last change October 30, 2010
Biological Motivation

- biological learning systems are built of complex webs of interconnected neurons

motivation:
- capture kind of highly parallel computation
- based on distributed representation

goal:
- obtain highly effective machine learning algorithms, independent of whether these algorithms fit biological processes

 (no cognitive modeling!)
Biological Motivation

<table>
<thead>
<tr>
<th></th>
<th>Computer</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>computation units</td>
<td>1 CPU (> 10^7 Gates)</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td>memory units</td>
<td>512 MB RAM</td>
<td>10^{11} neurons</td>
</tr>
<tr>
<td></td>
<td>500 GB HDD</td>
<td>10^{14} synapses</td>
</tr>
<tr>
<td>clock</td>
<td>10^{-8} sec</td>
<td>10^{-3} sec</td>
</tr>
<tr>
<td>transmission</td>
<td>> 10^9 bits/sec</td>
<td>> 10^{14} bits/sec</td>
</tr>
</tbody>
</table>

- **Computer**: serial, quick
- **Brain**: parallel, slowly, robust to noisy data
Appropriate Problems

BACKPROPAGATION algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are represented as many attribute-value pairs
 - input values can be any real values
- target function output may be *discrete-, real- or vector-valued*
- training examples *may contain errors*
- long training times are acceptable
- fast evaluation of the learned target function may be required
 - many iterations may be necessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - learned weights are not intuitively understandable
Perceptrons

- takes a vector of real-valued inputs \((x_1, \ldots, x_n) \) weighted with \((w_1, \ldots, w_n) \)
- calculates the linear combination of these inputs
 \[\sum_{i=0}^{n} w_i x_i = w_0 x_0 + w_1 x_1 + \ldots + w_n x_n \]
 \(-w_0\) denotes a threshold value, i.e. that value which must be reached by the linear combination of inputs to cause the perceptron to output 1
 \(x_0\) is always 1
- outputs 1 if the result is greater than 0, otherwise \(-1\)
Representational Power

- A perceptron represents a **hyperplane decision surface** in the n-dimensional space of instances.
- Some sets of examples cannot be separated by any hyperplane, those that can be separated are called **linearly separable**.
- Many boolean functions can be represented by a perceptron: AND, OR, NAND, NOR.

![Diagrams](a) and (b)
Perceptron Training Rule

- **Problem:** determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example.

- **Perceptron training rule:**
 $$ w_i = w_i + \Delta w_i \text{ where } \Delta w_i = \eta (t - o) x_i $$

 - t target output
 - o perceptron output
 - η learning rate (usually some small value, e.g. 0.1)

Algorithm

1. Initialize \vec{w} to random weights
2. Repeat, until each training example is classified correctly
 - Apply perceptron training rule to each training example

- Convergence guaranteed provided *linearly separable* training examples and sufficiently small η
perceptron rule fails if data is not linearly separable

delta rule converges toward a **best-fit approximation**

uses **gradient descent** to search the hypothesis space

- perceptron cannot be used, because it is not differentiable
- hence, a **unthresholded linear unit** is appropriate
- error measure (instead of perceptron training rule):
 \[E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 \]

to understand gradient descent, it is helpful to visualize the entire hypothesis space with

- all possible weight vectors and
- associated \(E \) values
the axes w_0, w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be **parabolic** with a **single global minimum**
Derivation of Gradient Descent

- **problem:** How calculate the steepest descent along the error surface?

- derivative of E with respect to each component of \vec{w}

- this vector derivative is called *gradient* of E, written $\nabla E(\vec{w})$

$$\nabla E(\vec{w}) \equiv [\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \ldots, \frac{\partial E}{\partial w_n}]$$

- $\nabla E(\vec{w})$ specifies the steepest ascent, so $-\nabla E(\vec{w})$ specifies the steepest descent

- **training rule:** $w_i = w_i + \Delta w_i$

 $$\Delta w_i = -\eta \frac{\partial E}{\partial w_i} \quad \text{and} \quad \frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d)(-x_{id})$$

 $$\Rightarrow \Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_{id}$$
Differentiating E

\[\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 = \]
\[\frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 = \]
\[\frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) = \]
\[\sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \vec{x}_d) = \]
\[\sum_{d \in D} (t_d - o_d) (-x_{id}) \]

Remember:
Outer and inner derivation for \(y = u^2 \):
\[\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \]
with \(u = t_d - o_d \)
Incremental Gradient Descent

- application difficulties of gradient descent
 - convergence may be quite slow
 - in case of many local minima, the global minimum may not be found

- idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example

\[\Delta w_i = \eta (t - o)x_i \] where \(E_d(\vec{w}) = \frac{1}{2} (t_d - o_d)^2 \)

- key differences:
 - weights are not summed up over all examples before updating
 - requires less computation
 - better for avoidance of local minima
Gradient Descent

Algorithm

GRADIENT-DESCENT\((training_examples, \eta)\)

Each training example is a pair of the form \(\langle \vec{x}, t \rangle \), where \(\vec{x} \) is the vector of input values, and \(t \) is the target output value. \(\eta \) is the learning rate.

- Initialize each \(w_i \) to some small random value
- Until the **termination condition** is met, Do
 - Initialize each \(\Delta w_i \) to zero
 - For each \(\langle \vec{x}, t \rangle \) in training_examples, Do
 - Input the instance \(\vec{x} \) to the unit and compute the output \(o \)
 - For each linear unit weight \(w_i \), Do \(\Delta w_i = \Delta w_i + \eta(t - o)x_i^* \)
 - For each linear unit weight \(w_i \), Do \(w_i \leftarrow w_i + \Delta w_i^{**} \)

To implement *incremental approximation*, equation ** is deleted and equation * is replaced by \(w_i \leftarrow w_i + \eta(t - o)x_i \).
Perceptron vs. Delta Rule

- **perceptron training rule:**
 - uses thresholded unit
 - converges after a finite number of iterations
 - output hypothesis classifies training data perfectly
 - linearly separability necessary

- **delta rule:**
 - uses unthresholded linear unit
 - converges asymptotically toward a minimum error hypothesis
 - termination is not guaranteed
 - linear separability not necessary
Multilayer Networks (ANNs)

- capable of learning **nonlinear decision surfaces**
- normally **directed** and **acyclic** \(\Rightarrow \) Feed-forward Network
- based on **sigmoid unit**
 - much like a perceptron
 - but based on a smoothed, **differentiable threshold function**

\[
\sigma(\text{net}) = \frac{1}{1 + e^{-\text{net}}}
\]

\[
\lim_{\text{net} \to +\infty} \sigma(\text{net}) = 1
\]

\[
\lim_{\text{net} \to -\infty} \sigma(\text{net}) = 0
\]
BACKPROPAGATION

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections
- employs gradient descent to minimize error
- redefinition of E
 - has to sum the errors over all units
 - $E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} - o_{kd})^2$

problem: search through a large H defined over all possible weight values for all units in the network
BACKPROPAGATION

Algorithm

BACKPROPAGATION(*training_examples*, *η*, *n_in*, *n_out*, *n_hidden*)

The input from unit *i* to unit *j* is denoted *x*_{ji} and the weight from unit *i* to unit *j* is denoted *w*_{ji}.

- create a feed-forward network with *n_in* inputs, *n_hidden* hidden units, and *n_out* output units
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do (EPOCHE)
 - For each *<⃗x, ⃗t>* in *training_examples*, Do
 - Propagate the input forward through the network:
 1. Input ⃗x to the network and compute *o*_u of every unit *u*
 - Propagate the errors back through the network:
 2. For each network output unit *k*, calculate its error term *δ*_k
 \[δ_k \leftarrow o_k(1 - o_k)(t_k - o_k) \]
 3. For each hidden unit *h*, calculate its error term *δ*_h
 \[δ_h \leftarrow o_h(1 - o_h) \sum_{k \in \text{outputs}} w_{kh}δ_k \]
 4. Update each weight *w*_ji
 \[w_{ji} \leftarrow w_{ji} + \Delta w_{ji} \text{ where } \Delta w_{ji} = \eta δ_j x_{ji} \]
Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold

important:
- too few iterations reduce error insufficiently
- too many iterations can lead to overfitting the data
Adding Momentum

- one way to avoid local minima in the error surface or flat regions
- make the weight update in the n^{th} iteration depend on the update in the $(n-1)^{th}$ iteration

$$
\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n - 1)
$$

Note: $\Delta w_{ji}(n - 1)$ represents the cumulative updates for this weight in the complete last epoch.

$$
0 \leq \alpha \leq 1
$$
Representational Power

- **boolean functions:**
 - every boolean function can be represented by a two-layer network

- **continuous functions:**
 - every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)

- **arbitrary functions:**
 - each arbitrary function can be approximated to arbitrary accuracy by a three-layer network
Inductive Bias

- every possible assignment of network weights represents a syntactically different hypothesis
 - \(H = \{ \vec{w} \mid \vec{w} \in \mathbb{R}^{(n+1)} \} \)

- inductive bias: smooth interpolation between data points
 - Multilayer Networks: smooth interpolation between data points
 - Preference bias
 - Perceptron: linear separability necessary
 - Restriction bias
Illustrative Example - Face Recognition

- **task:**
 - classifying camera image of faces of various people
 - images of 20 people were made, including approximately 32 different images per person
 - image resolution 120×128 with each pixel described by a greyscale intensity between 0 and 255
 - identifying the direction in which the persons are looking (i.e., left, right, up, ahead)
Illustrative Example - Design Choices

input encoding:
- image encoded as a set of 30×32
- pixel intensitiy values ranging from 0 to 255 linearly scaled from 0 to 1
 ⇒ reduces the number of inputs and network weights
 ⇒ reduces computational demands

output encoding:
- network must output one of four values indicating the face direction
 - *1-of-n* output encoding: 1 output unit for each direction
 ⇒ more degrees of freedom
 ⇒ difference between highest and second-highest output can be used as a measure of classification confidence
Illustrative Example - Design Choices

- network graph structure:
 - BACKPROPAGATION works with any DAG of sigmoid units
 - question of how many units and how to interconnect them
 - using standard design: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer

⇒ 30 hidden units
⇒ test accuracy of 90%
Advanced Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure
Summary

- able to learn discrete-, real- and vector-valued target functions
- noise in the data is allowed
- perceptrons learn hyperplane decision surfaces (linear separability)
- multilayer networks even learn nonlinear decision surfaces
- **BACKPROPAGATION** works on arbitrary feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples
- an arbitrary function can be approximated to arbitrary accuracy by a three-layer network
- **Inductive Bias**: smooth interpolation between data points
Learning Terminology

Perceptrons / Multilayer Perceptrons

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>unsupervised learning</th>
</tr>
</thead>
</table>

Approaches:

<table>
<thead>
<tr>
<th>Concept / Classification</th>
<th>Policy Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbolic</td>
<td>statistical / neuronal network</td>
</tr>
<tr>
<td>inductive</td>
<td>analytical</td>
</tr>
</tbody>
</table>

Learning Strategy:

⇒ learning from examples