
Fakultät Wirtschaftsinformatik und Angewandte
Informatik

Otto-Friedrich-Universität Bamberg

Induction on Number Series - A
case study with MagicHaskeller on

the Web

Henrik Marquardt (Matr.No. 1666105)

Project Report

WS 2014/2015

April 14, 2015

Supervisor: Prof. Dr.Ute Schmid

Abstract

Induction of number series is part of most intelligence tests nowadays. Also
cognitive science research has a focus to that subject. With induction of number
series you can measure inductive reasoning ability. Systems like IGOR II and
MagicHaskeller deal with induction of number series. This paper has a focus on
MagicHaskeller, especially MagicHaskeller on the Web. The aim of this paper is
to give a short introduction to MagicHaskeller on the Web - a description of the
system, the way how to use the system and the capabilities of the system. After
the description of the system the used data and ideas were presented. Then the
way how to use the system depending on three possibilities was detected. This
way was taken for evaluation to describe the capabilities of the system. And
at least the conclusion gives an overview of the results and some problems that
could not be fixed yet.

Contents

1 Introduction 1

2 Theoretical Background 3
2.1 Number Series . 3

2.1.1 Number Series and Intelligence 3
2.1.2 A collection of Number Series 3

2.2 Inductive Programming with MagicHaskeller 5
2.2.1 Inductive Programming 5
2.2.2 MagicHaskeller . 6
2.2.3 MagicHaskeller on the Web 6
2.2.4 MagicHaskeller vs. MagicHaskeller on the Web 7

3 Induction on Number Series with MagicHaskeller on the Web 11
3.1 Input List - Output Successor Value 12
3.2 Input Position - Output List . 12
3.3 Input Position - Output Value . 13

4 Realization and Evaluation 15

5 Conclusion and further Works 17

Bibliography 19

A First Appendix Chapter 21
A.1 E-Mail about a possible Combination for a running System . . . 21
A.2 Extended 20 Number Series . 22
A.3 Solutions of MagicHaskeller on the Web 23

A.3.1 Solutions for Input List - Output Successor Value 23
A.3.2 Solutions for Input Position - Output List 27
A.3.3 Solutions for Input Position - Output Value 28

A.4 Evaluation of Solutions . 30
A.4.1 Evaluation for Input List - Output Successor Value 30

iii

List of Tables

A.1 forward Input NS1-NS10, e.g. f [3,5,7,9] == 11 23
A.2 forward Input NS11-NS20 . 24
A.3 backward Input NS1-NS10, e.g. f [9,7,5,3] == 11 25
A.4 backward Input NS11-NS20 . 26
A.5 forward and backward Input, e.g. f 4 == [3,5,7,9,11] or f 4 ==

[11,9,7,5,3] . 27
A.6 forward Input, e.g. f 0 == 3 && f 1 == 5 && f 2 == 7 && f 3

== 9 && f 4 == 11 . 28
A.7 backward Input, e.g. f 0 == 11 && f 1 == 9 && f 2 == 7 &&

f 3 == 5 && f 4 == 3 . 29
A.8 Evaluation of forward Input NS1-NS10, e.g. f [3,5,7,9] == 11 . . 30
A.9 Evaluation of forward Input NS11-NS20 31
A.10 Evaluation of backward Input NS1-NS10, e.g. f [9,7,5,3] == 11 . 32
A.11 Evaluation of backward Input NS11-NS20 33

v

List of Figures

2.1 Explicitly and Recursively Illustrated Functions from (Martina,
2012) [p.5] . 3

2.2 MagicHaskeller on the Web - Textfield for Input 7
2.3 MagicHaskeller on the Web - Examples 7
2.4 MagicHaskeller on the Web - All Solutions presented 8

vii

Chapter 1

Introduction

As a part of many classical intelligence tests in psychology, solving number series
pose an interesting and also challenging task for both humans and machines.
One function of an intelligent test is to measure inductive reasoning ability.
Solving number series depends on difficulty of operators, amount of numbers,
complexity and other criteria. Cognitive science research has a focus on the
ability of inductive reasoning (Hofmann et al., 2014). An approach of artificial
intelligence is to solve number series by program synthesis. Inductive functional
programming algorithms do so. The algorithms automatically generate func-
tional programs from a set of input-output example pairs (Katayama, 2012).
Currently there are two approaches to inductive functional programming un-
der active development - the analytical approach and the generate-and-test ap-
proach(Katayama, 2012). Both approaches can be used for generating functional
programs, e.g. Igor II uses the analytical approach, MagicHaskeller uses
the generate-and-test approach.
This article deals with MagicHaskeller especially the MagicHaskeller on
the Web. On the one hand it is about how to use the system: which function-
alities are provided by the system and which form of input-output examples is
required to work with the system. On the other hand this article tests which
problems in form of number series MagicHaskeller on the Web is able to
solve and which ones not.
In 2 there is a description of the used number series and an introduction to the
used system MagicHaskeller on the Web. 3 describes the form of input-
output possibilities and how to deal with the number series in conjunction with
the system. In 4 there is an evaluation of Chapter 3 - which possibilities work
fine and which number series MagicHaskeller on the Web is able to solve.
And in 5 there is a short conclusion and the things that could not be done so
far.

1

Chapter 2

Theoretical Background

2.1 Number Series

2.1.1 Number Series and Intelligence

Number series problems tasks are part of intelligence tests. Intelligence tests
were made for measuring the IQ-Value - the intelligence of a subject. For solv-
ing these number series problems you need logical capabilities or calculating
skills. These skills are important factors for intelligence measurement (Ragni
and Klein, 2011).

2.1.2 A collection of Number Series

To illustrate the relation between numbers you can define number series math-
ematically as a function fn|n ∈ N with the domain N and the co-domain W
(Erbrecht et al., 2003). MagicHaskeller and MagicHaskeller on the Web are
able to do this if the systems have a number series as an input. How to give
MagicHaskeller on the Web a correct input will be described later.
There are two ways of illustrating the relation of numbers inside of number se-
ries - explicitly and recursively.

Figure 2.1: Explicitly and Recursively Illustrated Functions from (Martina,
2012) [p.5]

Explicit means that the successor depends on the position inside of a number
series.
Implicit means that the successor depends on the pre-successor. (Martina, 2012)

Finding a representation of a number series depends on many factors. Some
number series e.g. 3, 5, 7, 9, 11 represented as fn = fn−1 + 2 seems to be very

3

CHAPTER 2. THEORETICAL BACKGROUND

easy while e.g. 7, 7, 14, 42, 168 represented as fn = fn−1 ∗n seems to be hard to
find quickly a representation. 2012 a group of students - Grünwald et al. (2012)
- had to think about number series that can be used to test MagicHaskeller
on its functional complexity. They classified number series into three classes:
Operational Complexity, Numerical Complexity and Structural Complexity.

Operational Complexity

Operational Complexity means the complexity of operators e.g. addition, sub-
traction, multiplication or division. Also possible operators could be square-root
and others. It is obvious that the complexity respectively the difficulty of usage
of operators are different. So for humans it is easier to operate with an addition
than to operate with a division.

Numerical Complexity

Another factor is the Numerical Complexity. Opined is the value of numbers.
For humans it is easier to operate with low values than with high values, e.g.
working with values inside the times table is easier than working with values
of the The Great Multiplication. The reason for that is that (the most) people
learned the times table in the course of their life and another reason is the
more often usage of the times table than The Great Multiplication. There is no
telling up to which value the Numerical Complexity increases strongly or what
are the domains of low values or high values, but it is fact that the Numerical
Complexity raises by increasing values.

Structural Complexity

The third dimension of Grünwald et al. (2012) classification is the Structural
Complexity. Structural Complexity means the combination of operators and val-
ues, e.g. pre-successor, fix operator and fix values. They divided the Structural
Complexity into five classes.

• Class 1: pre-successor - fix operator - fix values

• Class 2: pre-successor - fix operator - series from class 1

• Class 3: pre-successor - varying operator - varying values

• Class 4: pre-successor - pre-successor - fix operator

• Class 5: pre-successor - fix operator - series from class 4

Number Series

To get number series including Operational Complexity, Numerical Complex-
ity and Structural Complexity, Grünwald et al. (2012) linked all three classes.
They combined Operational Complexity and Numerical Complexity (simple -
simple; complex - simple; simple - complex; complex - complex) and linked the
five classes to each combination. The result are 20 number series with differ-
ent specifications of combinations between Operational Complexity, Numerical
Complexity and Structural Complexity 2.1.2 that will be used as input to demon-
strate the functional complexity of MagicHaskeller on the Web.

4

2.2. INDUCTIVE PROGRAMMING WITH MAGICHASKELLER

numerical simple - operational simple

• Class 1 - NS1: 3, 5, 7, 9, 11, (13)

• Class 2 - NS2: 2, 7, 13, 20, 28, (37)

• Class 3 - NS3: 5, 7, 10, 12, 15, (17)

• Class 4 - NS4: 2, 2, 4, 6, 10, (16)

• Class 5 - NS5: 1, 2, 4, 7, 12, (20)

numerical complex - operational simple

• Class 1 - NS6: 107, 291, 475, 659, 843, (1027)

• Class 2 - NS7: 237, 311, 386, 462, 539, (617)

• Class 3 - NS8: 128, 254, 381, 507, 634, (760)

• Class 4 - NS9: 103, 103, 206, 309, 515, (824)

• Class 5 - NS10: 1, 24, 47, 93, 162, (277)

numerical simple - operational complex

• Class 1 - NS11: 1, 4, 9, 16, 25, (36)

• Class 2 - NS12: 1, 1, 2, 6, 24, (120)

• Class 3 - NS13: 4, 6, 12, 14, 28, (30)

• Class 4 - NS14: 2, 2, 4, 8, 32, (256)

• Class 5 - NS15: 1, 1, 3, 12, 84, (924)

numerical complex - operational complex

• Class 1 - NS16: 121, 144, 169, 196, 225, (256)

• Class 2 - NS17: 7, 7, 14, 42, 168, (840)

• Class 3 - NS18: 16, 48, 51, 153, 156, (468)

• Class 4 - NS19: 2, 3, 6, 18, 108, (1944)

• Class 5 - NS20: 3, 3, 9, 36, 252, (2772)

2.2 Inductive Programming with MagicHaskeller

2.2.1 Inductive Programming

Induction of number series means the thinking about how to represent a number
series as a valid function. (Martina, 2012). The way of induction with a system
can be done differently. So on the one hand Inductive Programming is auto-
matic programming (Flener and Schmid, 2008). This is the way of synthesizing
small sets of input/output examples to generate programs. Afterwards these
automatic generated programs will be checked to validation. This principle is
often described as generate-and-test approach. Inductive programming systems
like MagicHaskeller on the Web include this way.
On the other hand Inductive Programming is machine learning. The system
synthesizes the small sets of input/output by investigating the inference of an
algorithm or program (Flener and Schmid, 2008). This way is also known as
the analytical approach. IGOR2 or the latest versions of MagicHaskeller include
this way of synthesizing input/output examples.

5

CHAPTER 2. THEORETICAL BACKGROUND

2.2.2 MagicHaskeller

MagicHaskeller is an inductive functional programming system based on sys-
tematic exhaustive search (Katayama, 2011). The system synthesizes given
input-output specifications to find functions that represent the input-output
specifications, e.g. f [1..5] == 6 ⇒ f = (\f → 1 + length a). f [1..5] == 6
is the given input-output specification and f = (\f → 1 + length a) is the
solution or rather the represented function of the program. Note: the input-
output specification is the syntax of MagicHaskeller on the Web! The solution
of MagicHaskeller and MagicHaskeller on the Web would be the same here.
Since version 0.8.6 MagicHaskeller was extended by a module for analytical
synthesis - the analytical approach (Katayama, 2011). The first versions in-
cluded only the module for exhaustive search - the generate-and-test approach.
The generate-and-test approach generates all possible programs dependend on
the given set of functions and lambda abstractions. The complexity of com-
binations increases step by step, so MagicHaskeller starts with the easy tasks
(Grünwald et al., 2012). Afterwards the system checks all these combinations
against the input-output specification to satisfiability. Each satisfiable function
is a potential solution and will be presented by the system.
The analytical approach is an extension to the IGOR-algorithm (Hofmann,
2012). Programs were synthesized by looking into the input-output specifi-
cations and conducting inductive inference (Katayama, 2011). The advantage
of the extension by the analytical approach is that more functions can be synthe-
sized. Fibonacci functions cannot be synthesized by the analytical approach, but
by the generate-and-test approach and the analytical approach can synthesize
some functions in a realistic time what the generate-and-test approach cannot
do. The combination of both approaches is called analytically-generate-and-test
approach (Katayama, 2011) which is maybe implemented in the latest versions
of the MagicHaskeller.

2.2.3 MagicHaskeller on the Web

MagicHaskeller on the Web is as MagicHaskeller an inductive functional pro-
gramming system. Instead of MagicHaskeller, MagicHaskeller on the Web is no
stand-alone version - it’s a web application. More differences are described in
2.2.4.

MagicHaskeller on the Web is available on http://nautilus.cs.miyazaki-u.

ac.jp/~skata/MagicHaskeller.html. If you visit the link you can directly use
MagicHaskeller on the Web.
The first textbox below the caption

”
Use it now!“2.2 is for the input of the num-

ber serie. How to put in a valid expression for a number series will be explained
in chapter 3.

By clicking the
”
Synthesize-Button“the system synthesizes the inserted ex-

pression and gives possible solutions if solutions were found. Below the textbox
there is a caption

”
Examples“2.3. This caption shows possible valid expressions

that can be used to use MagicHaskeller on the Web. As can be seen the system
is also able to deal with Strings, Doubles and combinations of different data
types.

6

http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html
http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

2.2. INDUCTIVE PROGRAMMING WITH MAGICHASKELLER

Figure 2.2: MagicHaskeller on the Web - Textfield for Input

Figure 2.3: MagicHaskeller on the Web - Examples

If you synthesize the example f”abcde”2 == ”aabbccddee” the system gives
as the first solution f = (\a b → concat(transpose(replicate b a))). The
solution is presented as implemented library functions, e.g. concat, transpose,
replicate and more. A documentation will be opened if you click onto a function
(Katayama, 2013). If the solution does not accord with the expected one, there is
a button

”
More...“. By clicking the More-Button the system will research for

other solutions that present the input as a function and will give more solutions.
If no More-Button is available, the system does not find other solutions than
presented already 2.4.

When all solutions are presented and there is no expected solution contained,
the user has the possibility to click one of the Exemplify-Button. If you do so
you get a list of fragments of the exemplified function. If a value does not corre-
spondent to the expected value, you can easily correct the value by changing the
value in the suitable textbox and clicking the Narrow search-Button. The
function gets modified that the changed value is correct within the new function.

If completely no function was found by the system, there is a textbox above
the Suggest-Button. You can submit a correct expression in there and press
the Suggest-Button. This solution will be regarded as your suggestion and
may be able to be synthesized by future versions.

2.2.4 MagicHaskeller vs. MagicHaskeller on the Web

This article deals with the MagicHaskeller on the Web, a partly translated
version of the MagicHaskeller. MagicHaskeller is a stand-alone version which
means that it has to be installed e.g. on a desktop PC. The problem of the
stand-alone version is the special combination of the versions of the operat-

7

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.4: MagicHaskeller on the Web - All Solutions presented

ing system, the Glasgow Haskell Compiler and the MagicHaskeller, cause of the
compatibility among each other. One possible combination for a running system
would be a server of Ubuntu 10.04, GHC 6.12.1 and MagicHaskeller 0.8.6.3 A.1.

Another problem is that the MagicHaskeller is not updated very often
(Katayama, 2015).

An advantage over the MagicHaskeller on the Web is the functional com-
plexity: the latest version of MagicHaskeller includes both approaches - the
generate-and-test and the analytical approach. MagicHaskeller on the Web has
no module for analytical synthesis. So in theory the stand-alone version will be
able to solve more number series problems than the web application.

The most important advantage of the MagicHaskeller on the Web over the
stand-alone version of the MagicHaskeller is not the functionality, but the avail-
ability. It is easy to deal with the MagicHaskeller on the Web because it is a
web application that can be executed from each PC with a connection to the
internet. With the MagicHaskeller on the Web there is a tool that can be used
for automated inductive programming without any problems with the compat-
ibility of versions. In spite of the smaller complexity of this system this article
deals with the MagicHaskeller on the Web because of the better availability and
the more current maintenance.

8

2.2. INDUCTIVE PROGRAMMING WITH MAGICHASKELLER

MagicHaskeller on the Web is written in Haskell so the usage of this tool
is as simple as a web search engine if syntax and semantics were recognized
(Katayama, 2013). This article describes how to use the MagicHaskeller on the
Web for solving number series problems. Furthermore this article response to
components, limits and functionality of the MagicHaskeller on the Web.

9

Chapter 3

Induction on Number
Series with MagicHaskeller
on the Web

The main subject of this article is how to use MagicHaskeller on the Web to solve
number series problems. The number series presented in 2.1.2 are 20 different
problems depending on the combination of Operational Complexity, Numerical
Complexity and Structural Complexity. To put it straight - this article shows
which of these problems MagicHaskeller on the Web is able to fix and which
ones MagicHaskeller on the Web is not able to fix. This article also shows how
to create a valid input expression for the system and which expressions work
better and which ones work worse. The solutions were reviewed to correctness
in chapter 4.
MagicHaskeller on the Web is a system written in Haskell. So the system needs
a Haskell expression returning a Boolean value without using a let expressions
or where clauses (Katayama, 2015). If you do so you will get an error message

”
Error: let expressions and where clauses are prohibited here. You can still use

case expressions without where clauses for non-recursive bindings“.
Another point is the count of numbers that will be used as an expression fed
to MagicHaskeller on the Web. Five values should be enough for number series
problems depending on one pre-successor. For a consistent work the number
series with two pre-successors will be extended to ten values, so the favored
solution should be more clearly for the system. The extended version of the
number series including a possible solution can be seen in the appendix A.2. As
can be seen not all number series depending on two pre-successor were extended
to 10 values. The reason of that is the dimension of the values, e.g. the eighth
value of NS19 is 408 ∗ 106. To work with such a high value makes less sense, so
I decided to use 9999 as a maximum value. If values of a number series overrun
9999 they will not be included. The highest included values are flagged with
brackets. Note: fib(1, 1, 3) means the Fibonacci-Series 1, 1, 3, 4, 7, 11, 18, ...!
The idea how to formulate different expressions to test MagicHaskeller on the
Web on several ways consists of Hofmann et al. (2014). This cap includes induc-
tion of number series and Igor2, that is also an inductive functional program-

11

CHAPTER 3. INDUCTION ON NUMBER SERIES WITH
MAGICHASKELLER ON THE WEB

ming system like MagicHaskeller (on the Web). Three possibilities to represent
number series were defined:

• Input List - Output Successor Value

• Input Position - Output List

• Input Position - Output Value

This article uses all three ways two times - forwards and backwards. So there
are six different ways to test input-output expression. In each of the following
sections there is a description of the way how to form a valid Haskell expression
for the system by the first number series as an example. All other number series
were also tested. The solutions of the system of each number series combined
with each way is written as an overview in the appendix A.3.1.

3.1 Input List - Output Successor Value

One of the presented ways is Input List - Output Successor Value. The
input has to be presented as a list while the output has to be presented as the
next value of the list. To work with MagicHaskeller on the Web you have to
transform this statement into a valid Haskell expression. The system needs a
function as an input. As an output the system expects a value like a number
or a list. Translated to this way the required input is a function list and the
output is the next successor value of the list. The first number series shall serve
as an example for a correct feed. Given is the first number series 3, 5, 7, 9, 11
and the next value should be 13, so there are five values that can be taken for
a Haskell expression. The two possible expression analyzed in this article are

1. f [3, 5, 7, 9] == 11

2. f [9, 7, 5, 3] == 11

A possible solution given from Grünwald et al. (2012) is fn = fn−1 + 2. The
first solutions of MagicHaskeller on the Web are

1. f = (\a→ 2 + last(0 : a)) for f [3, 5, 7, 9] == 11

2. f = (\a→ 2 + foldr const 0 a) for f [9, 7, 5, 3] == 11

In A.3.1 there is an overview of all 20 number series and the first three
solutions of MagicHaskeller on the Web. The evaluation of these solutions will
be described in Chapter 4.

3.2 Input Position - Output List

Another way for a representation of an input is Input Position - Output
List. It is the same principle as before: the system needs a function as an
input and a value as an output. For this way the input function has to be
presented as a position and the output as a list is. Translated into a correct
Haskell expression it looks like

12

3.3. INPUT POSITION - OUTPUT VALUE

1. f 4 == [3, 5, 7, 9, 11]

2. f 4 == [11, 9, 7, 5, 3]

For this way of representing a number series problem, MagicHaskeller on the
Web is not able to find any solutions (cf. A.3.2).

3.3 Input Position - Output Value

The third way to present a number series problem is Input Position - Output
Value. The basic principle of creating the Haskell expression is the same like
before, but now there are single values instead of the list. To generate a valid
Haskell expression you have to link the values to their position. To demonstrate
the whole number series you have to string together all links with the && -
operator. Demonstrated as a valid Haskell expression it looks like

1. f 0 == 3 && f 1 == 5 && f 2 == 7 && f 3 == 9 && f 4 == 11

2. f 0 == 11 && f 1 == 9 && f 2 == 7 && f 3 == 5 && f 4 == 3

For presenting number series problems by this way, the system is able to find
solutions.

1. f = (\a→ 1 + (2∗(1 + a)))

2. f = (\a→ length(drop a [a..10]))

The overview of all number series problems and the first three solutions by
this way is illustrated in A.3.3.

13

Chapter 4

Realization and Evaluation

To analyze the system the extended number series that can be seen in A.2 were
used as input-output sets. Three forms of an input-output set were tested
to find out which form of input-output examples MagicHaskeller on the Web
can deal with. As can be seen in A.3, MagicHaskeller on the Web is good in
dealing with the form Input List - Output Successor Value. The system
is completely not able to deal with Input Position - Output List and of
limited suitability with Input Position - Output Value. Because of that
only Input List - Output Successor Value is evaluated in this article.

Due to lack of time only the first three solutions (if three or more solu-
tions were found) were evaluated, but both directions - forwards and backwards.

The differences between forward and backward input in reference to the
first three solutions are minimal. If a correct solution for the number series was
found, the system found the solution with both ways. Often the same solutions
were found (cf. A.4.1 NS2) or the input in form of a list is reversed (cf. A.4.1
NS1). Another difference is the usage of function pairs like drop and take, but
logical it is the same when a list is reversed. So I guess that there is no dif-
ference in finding solutions between the forward input and the backward input.
To prove that you have to analyze and compare all solutions (not only three) of
the system. Due to lack of time I did not.

To proof the solutions for correctness towards the input and towards the
number series, as can be seen in A.4.1, the solutions were recognized or tested
with the GHCi version 7.8.3.

While MagicHaskeller on the Web finds a solution, it is always a correct
solution for the used input (cf. A.4.1). So with each solution you can continue
the number series. Sometimes the solution was correct for the regarded number
series, sometimes the solutions was only correct for another number series that
have the same values at the beginning as the regarded one. This means that
all solutions of the system were correct, but not forceful a correct solution to
continue exactly the regarded number series.

15

CHAPTER 4. REALIZATION AND EVALUATION

The solutions for number series NS2, NS3’, NS6, NS7, NS8’, NS10’, NS11,
NS13’, NS15’, NS16, NS18’ and NS20’ were no correct solutions to continue
the number series. It is possible to say that the system finds a correct solu-
tion, if a correct solution is shown in the first three solutions. But while only
three solutions were regarded, it is not possible to say that the system is not
able to find a correct solution if no correct solution was shown in the first three
solutions. In favor you have to analyze all solutions prevented by the system.
It is only possible to say that the first three solutions do not include a correct
solution and this is not significant because it is possible that correct solutions
can be found later (cf. A.4.1 NS12).

In the case of MagicHaskeller finds no solution, there might be two rea-
sons for that. On the one hand the system is not able to solve the problem,
on the other hand the systems stops automatically at some point to preserve
stability of the server (Katayama, 2013). It can be observed that the system
needs a lot of more time to find solutions for number series with large numbers.
It is notable that all solutions that were not found are numerical complex (NS6,
NS7, NS8’, NS10’, NS16). However, since the system stops automatically at
some point to preserve stability of the server, you will not be able answer the
question, if the system is not able to find possible solutions or if it depends on
the automatic stop. Note: the time varies until the time-out occurs. One reason
for that is the connection to the server.

16

Chapter 5

Conclusion and further
Works

This article gives an introduction to MagicHaskeller on the Web. 2.2.3 describes
how to use the system and 2.2.4 describes theoretically the differences between
the stand-alone and the web version MagicHaskeller. A practical comparison
can be done in further works. Also a comparison with IGOR II can be made,
that would be more interesting.

2.1.2 shows the data that were used to analyze the system. All these se-
ries number were taken to find out which input expression is the best for the
system. The best expression is Input List - Output Successor Value.
Maybe there are more than the three presented possibilities of expressions that
MagicHaskeller on the Web can deal with, but this has to be done in further
works.

One can note that (depending on the used number series) the system is not
good in dealing with large numbers. The system needs more time and after
some time a time-out will occur. So if you want to find out whether the reason
of No Solution depends on the system or the time-out, the programmer has
to deactivate the time-out. In favor you have to contact Mr. Katayama.

Another open question is which of the number series MagicHaskeller on the
Web can solve. As can be seen in A.4.1 the system is able to solve some prob-
lems with the first three solutions. But is the system able to solve more number
series if you analyze more than three respectively all solutions? To answer this
question and to prove my statement that there are no differences in finding
solutions between the forward input and the backward input at Input List -
Output Successor Value, you have to analyze all solutions.

During work I noticed that the used number series are not as good as I
thought, so if this work will be continued I recommend to use number series like
the Ninety-Nine Haskell Problems or others.

17

Bibliography

Erbrecht, R., Felsch, M., König, H., Kricke, W., Martin, K., Pfeil, W., Winter,
R., and Wörstenfeld, W. (2003). Das große Tafelwerk interaktiv - Formel-
sammlung für die Sekundarstufen I und II. Cornelsen.

Flener, P. and Schmid, U. (2008). An introduction to inductive programming.
Artif. Intell. Rev., 29(1):45–62.

Grünwald, R., Heidel, E., Strätz, A., Sünkel, M., and Terbach, R. (2012). In-
duction on Number Series. Project Report.

Hofmann, J. (2012). Automatische Induktion über Zahlenreihen. Master’s the-
sis, Uni Bamberg. Bachelor Thesis.

Hofmann, J., Kitzelmann, E., and Schmid, U. (2014). Applying Inductive Pro-
gram Synthesis to Induction of Number Series - A Case Study with IGOR2.
In KI 2014: Advances in Artificial Intelligence, pages 25–36. Springer.

Katayama, S. (2011). MagicHaskeller: System demonstration. Online;
http://www.cogsys.wiai.uni-bamberg.de/aaip11/accepted/katayama_

short.pdf; accessed 20.03.2015.

Katayama, S. (2012). An Analytical Inductive Functional Programming System
that Avoids Unintended Programs. In PEPM ’12 Proceedings of the ACM
SIGPLAN 2012 workshop on Partial evaluation and program manipulation,
pages 43–52. ACM.

Katayama, S. (2013). MagicHaskeller on the Web: Automated Programming as
a Service. Online; https://www.haskell.org/haskell-symposium/2013/

magichaskeller.pdf; accessed 20.03.2015.

Katayama, S. (2015). MagicHaskeller: An Inductive Functional Program-
ming System for Casual/Beginner Haskell Programmers. Online; http://

nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html; accessed
20.03.2015.

Martina, M. (2012). Applying Inductive Programming to Solving Number Series
Problems - Comparing Performance of IGOR with Humans. Master’s Thesis.

Ragni, M. and Klein, A. (2011). Predicting Numbers: An AI Approach to
Solving Number Series. In KI 2011: Advances in Artificial Intelligence, pages
255–259. Springer.

19

http://www.cogsys.wiai.uni-bamberg.de/aaip11/accepted/katayama_short.pdf
http://www.cogsys.wiai.uni-bamberg.de/aaip11/accepted/katayama_short.pdf
https://www.haskell.org/haskell-symposium/2013/magichaskeller.pdf
https://www.haskell.org/haskell-symposium/2013/magichaskeller.pdf
http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html
http://nautilus.cs.miyazaki-u.ac.jp/~skata/MagicHaskeller.html

Appendix A

First Appendix Chapter

A.1 E-Mail about a possible Combination for a
running System

Guten Morgen,

MagicHaskeller ist nun auf allen Laborrechnern eingerichtet. [...] Dann bootet
ein Ubuntu 10.04 Server. [...] Es ist GHC6.12.1 mit dem MagicHaskeller0.8.6.3
installiert.

Mit besten Grüßen,
Michael Sünkel

21

APPENDIX A. FIRST APPENDIX CHAPTER

A.2 Extended 20 Number Series

Number Original Extended possible
Series Number Series Number Series’ Solution

NS1 3,5,7,9,11,(13) 3,5,7,9,11,(13) fn = fn−1 + 2
NS2 2,7,13,20,28,(37) 2,7,13,20,28,(37) fn = fn−1 + (n + 4)
NS3 5,7,10,12,15,(17) 5,7,10,12,15,17, fn=2k−1 = fn−1 + 2 ||

20,22,25,27,(30) fn=2k = fn−1 + 3
NS4 2,2,4,6,10,(16) 2,2,4,6,10,16, fn = fn−1 + fn−2

26,42,68,110,(178)
NS5 1,2,4,7,12,(20) 1,2,4,7,12,20, fn = fn−1 + fn−2 + 1

33,54,88,143,(232)
NS6 107,291,475,659,843,(1027) 107,291,475,659,843,(1027) fn = fn−1 + 184
NS7 237,311,386,462,539,(617) 237,311,386,462,539,(617) fn = fn−1 + (n + 73)
NS8 128,254,381,507,634,(760) 128,254,381,507,634,760, fn=2k−1 = fn−1 + 126 ||

887,1013,1140,1266,(1393) fn=2k = fn−1 + 127
NS9 103,103,206,309,515,(824) 103,103,206,309,515,824, fn = fn−1 + fn−2

1339,2163,3502,5665,(9167)
NS10 1,24,47,93,162,(277) 1,24,47,93,162,277, fn = fn−1 + fn−2 + 22

461,760,1243,2025,(3290)
NS11 1,4,9,16,25,(36) 1,4,9,16,25,(36) fn = n2

NS12 1,1,2,6,24,(120) 1,1,2,6,24,(120) fn = fn−1 ∗ n
NS13 4,6,12,14,28,(30) 4,6,12,14,28,30, fn=2k−1 = fn−1 + 2 ||

60,62,124,126,(252) fn=2k = fn−1 ∗ 2
NS14 2,2,4,8,32,(256) 2,2,4,8,32,256, fn = fn−1 ∗ fn−2

(8192),2097152,17 ∗ 109,...
NS15 1,1,3,12,84,(924) 1,1,3,12,84,(924), fn = fn−1 ∗ fib(1, 1, 3)

16632,482∗103,...
NS16 121,144,169,196,225,(256) 121,144,169,196,225,(256) fn = (n + 10)2

NS17 7,7,14,42,168,(840) 7,7,14,42,168,(840) fn = fn−1 ∗ n
NS18 16,48,51,153,156,(468) 16,48,51,153,156,468, fn=2k−1 = fn−1 ∗ 3 ||

471,1413,1416,(4248) fn=2k = fn−1 + 3
NS19 2,3,6,18,108,(1944) 2,3,6,18,108,(1944), fn = fn−1 ∗ fn−2

209952,408 ∗ 106,...
NS20 3,3,9,36,252,(2772) 3,3,9,36,252,(2772), fn = fn−1 ∗ fib(1, 1, 3) ∗ 3

49896,1,4∗106,...

22

A.3. SOLUTIONS OF MAGICHASKELLER ON THE WEB

A.3 Solutions of MagicHaskeller on the Web

A.3.1 Solutions for Input List - Output Successor Value

Table A.1: forward Input NS1-NS10, e.g. f [3,5,7,9] == 11
Number

Number Series Solutions
Series

NS1 3,5,7,9,11,(13) f = (\a→ 2 + last(0 : a))
f = (\a→ sum(drop 1 a)− 10)
f = (\a→ sum(drop 1(reverse a))− 4)

NS2 2,7,13,20,28,(37) f = (\a→ ord′′ − length a)
f = (\a→ ceiling(sinh(fromIntegral(length a))))
f = (\a→ sum(map(\ → exponent 100) a))

NS3’ 5,7,10,12,15,17, f = (\a→ 2 + last(0 : a))
20,22,25,27,(30) f = (\a→ 3 ∗ (1 + length a))

f = (\a→ sum(take 2(drop 3 a)))
NS4’ 2,2,4,6,10,16, f = (\a→ sum(take 2(reverse a)))

26,42,68,110,(178) f = (\a→ sum(drop 1(reverse(2 : a))))
f = (\a→ 2 + sum(drop 1(reverse a)))

NS5’ 1,2,4,7,12,20, f = (\a→ sum(drop 1(reverse(10 : a))))
33,54,88,143,(232) f = (\a→ 1 + sum(take 2(reverse a)))

f = (\a→ sum(drop 1(reverse((1 + length a) : a))))
NS6 107,291,475,659,843,(1027) no solutions
NS7 237,311,386,462,539,(617) f = (\a→ 1001− last(0 : a))
NS8’ 128,254,381,507,634,760, no solutions

887,1013,1140,1266,(1393)
NS9’ 103,103,206,309,515,824, f = (\a→ sum(take 2(reverse a)))

1339,2163,3502,5665,(9167) f = (\a→ sum(drop(exponent 100) a))
f = (\a→ sum(drop 1(reverse(take 3(reverse a)))))

NS10’ 1,24,47,93,162,277, no solutions
461,760,1243,2025,(3290)

23

APPENDIX A. FIRST APPENDIX CHAPTER

Table A.2: forward Input NS11-NS20
Number

Number Series Solutions
Series

NS11 1,4,9,16,25,(36) f = (\a→ sum(drop 2 a))
f = (\a→ sum(take 2(reverse a)))
f = (\a→ sum(scanr1(\ → 3) a))

NS12 1,1,2,6,24,(120) f = (\a→ 2 ∗ product a)
f = (\a→ sum(scanr1(\ c→ c) a))
f = (\a→ product(drop 1 (reverse(a++a))))

NS13’ 4,6,12,14,28,30, f = (\a→ 2 + last(0 : a))
60,62,124,126,(252) f = (\a→ 1 + abs(1 + last(0 : a)))

f = (\a→ 2 + abs(last(0 : a)))
NS14’ 2,2,4,8,32,256, f = (\a→ product(drop 3 a))

(8192) f = (\a→ product(take 2(reverse a)))
f = (\a→ product(drop 1(reverse(2 : a))))

NS15’ 1,1,3,12,84,(924) f = (\a→ 100− sum(drop 1 a))
f = (\a→ 101− sum a))
f = (\a→ ceiling(1000/fromIntegral(last(0 : a))))

NS16 121,144,169,196,225, no solutions
(256)

NS17 7,7,14,42,168,(840) f = (\a→ sum(scanr1(\ c→ c) a))
f = (\a→ 4 ∗ last(0 : a))
f = (\a→ (sum(drop 1(reverse(concat(replicate 3 a)))))

NS18’ 16,48,51,153,156,468, f = (\a→ 3 + last(0 : a))
471,1413,1416,(4248) f = (\a→ sum(nub(scanr1(\ → 3) a)))

f = (foldl(\ c→ 3 + c) 0)
NS19’ 2,3,6,18,108,(1944) f = (\a→ product(drop 2 a))

f = (\a→ sum(concatMap(\ → drop 1 a) a))
f = (\a→ product(take 2(reverse a)))

NS20’ 3,3,9,36,252,(2772) f = (\a→ exponent 100 * last(0 : a))
f = (\a→ sum(drop 1(a++concatMap(\ → a) a)))
f = (\a→ lcm(exponent 100)(last(0 : a)))

24

A.3. SOLUTIONS OF MAGICHASKELLER ON THE WEB

Table A.3: backward Input NS1-NS10, e.g. f [9,7,5,3] == 11
Number

Number Series Solutions
Series

NS1 3,5,7,9,11,(13) f = (\a→ 2 + foldr const 0 a)
f = (\a→ sum(drop 1(reverse a))− 10)
f = (\a→ sum(drop 1 a)−4)

NS2 2,7,13,20,28,(37) f = (\a→ ord′′ − length a)
f = (\a→ ceiling(sinh(fromIntegral(length a))))
f = (\a→ sum(map(\ → exponent 100) a))

NS3’ 5,7,10,12,15,17, f = (\a→ sum(map(\ → 3) a))
20,22,25,27,(30) f = (\a→ 2 + foldr const 0 a)

f = (\a→ sum(map(\b→ min b 3) a))
NS4’ 2,2,4,6,10,16, f = (\a→ sum(take 2 a))

26,42,68,110,(178) f = (\a→ abs(sum(take 2 a)))
f = (\a→ 2 + sum(drop 1 a))

NS5’ 1,2,4,7,12,20, f = (\a→ 1 + sum(take 2 a))
33,54,88,143,(232) f = (\a→ abs(1 + sum(take 2 a)))

f = (\a→ 1 + abs(sum(take 2 a)))
NS6 107,291,475,659,843,(1027) no solutions
NS7 237,311,386,462,539,(617) no solutions
NS8’ 128,254,381,507,634,760, no solutions

887,1013,1140,1266,(1393)
NS9’ 103,103,206,309,515,824, f = (\a→ sum(take 2 a))

1339,2163,3502,5665,(9167) f = (\a→ abs(sum(take 2 a)))
f = (\a→ sum(drop 1(reverse(take 3 a))))

NS10’ 1,24,47,93,162,277, no solutions
461,760,1243,2025,(3290)

25

APPENDIX A. FIRST APPENDIX CHAPTER

Table A.4: backward Input NS11-NS20
Number

Number Series Solutions
Series

NS11 1,4,9,16,25,(36) f = (\a→ sum(take 2 a))
f = (\a→ sum(drop 2(reverse a)))
f = (\a→ sum(scanl1(\ → 3) a))

NS12 1,1,2,6,24,(120) f = (\a→ 2 ∗ product a)
f = (\a→ sum(scanl1 const a))
f = (\a→ product(drop 1 (a++a)))

NS13’ 4,6,12,14,28,30, f = (\a→ 2 + foldr const 0 a)
60,62,124,126,(252) f = (\a→ abs(2 + foldr const 0 a))

f = (\a→ 1 + abs(1 + foldr const 0 a))
NS14’ 2,2,4,8,32,256, f = (\a→ product(take 2 a))

(8192) f = (\a→ product(drop 1(reverse(take 3 a))))
f = (\a→ abs(product(take 2 a)))

NS15’ 1,1,3,12,84,(924) f = (\a→ 100− sum(drop 1(reverse a)))
f = (\a→ 101− sum a))
f = (\a→ ceiling(1000/fromIntegral(foldr const 0 a)))

NS16 121,144,169,196,225, no solutions
(256)

NS17 7,7,14,42,168,(840) f = (\a→ sum(scanl1 const a))
f = (\a→ 4 ∗ foldr const 0 a)
f = (\a→ 3 ∗ sum(take 2 a))

NS18’ 16,48,51,153,156,468, f = (\a→ 3 + foldr const0 a)
471,1413,1416,(4248) f = (\a→ sum(nub(scanl1(\ → 3) a)))

f = (foldr(\b→ 3 + b) 0)
NS19’ 2,3,6,18,108,(1944) f = (\a→ product(take 2 a))

f = (\a→ product(drop 1(reverse(take 3 a))))
f = (\a→ abs(product(take 2 a)))

NS20’ 3,3,9,36,252,(2772) f = (\a→ exponent 100 * foldr const 0 a)
f = (\a→ sum(drop 1(reverse(a++concatMap(\ → a) a))))
f = (\a→ lcm(exponent 100)(foldr const 0 a))

26

A.3. SOLUTIONS OF MAGICHASKELLER ON THE WEB

A.3.2 Solutions for Input Position - Output List

Table A.5: forward and backward Input, e.g. f 4 == [3,5,7,9,11] or f 4 ==
[11,9,7,5,3]

Number
Number Series Solutions

Series

NS1 3,5,7,9,11,(13) no solutions
NS2 2,7,13,20,28,(37) no solutions
NS3’ 5,7,10,12,15,17,20,22,25,27,(30) no solutions
NS4’ 2,2,4,6,10,16,26,42,68,110,(178) no solutions
NS5’ 1,2,4,7,12,20,33,54,88,143,(232) no solutions
NS6 107,291,475,659,843,(1027) no solutions
NS7 237,311,386,462,539,(617) no solutions
NS8’ 128,254,381,507,634,760,887,1013,1140,1266,(1393) no solutions
NS9’ 103,103,206,309,515,824,1339,2163,3502,5665,(9167) no solutions
NS10’ 1,24,47,93,162,277,461,760,1243,2025,(3290) no solutions
NS11 1,4,9,16,25,(36) no solutions
NS12 1,1,2,6,24,(120) no solutions
NS13’ 4,6,12,14,28,30,60,62,124,126,(252) no solutions
NS14’ 2,2,4,8,32,256,(8192) no solutions
NS15’ 1,1,3,12,84,(924) no solutions
NS16 121,144,169,196,225,(256) no solutions
NS17 7,7,14,42,168,(840) no solutions
NS18’ 16,48,51,153,156,468,471,1413,1416,(4248) no solutions
NS19’ 2,3,6,18,108,(1944) no solutions
NS20’ 3,3,9,36,252,(2772) no solutions

27

APPENDIX A. FIRST APPENDIX CHAPTER

A.3.3 Solutions for Input Position - Output Value

Table A.6: forward Input, e.g. f 0 == 3 && f 1 == 5 && f 2 == 7 && f 3 ==
9 && f 4 == 11

Number
Number Series Solutions

Series

NS1 3,5,7,9,11,(13) f = (\a→ 1 + (2∗(1 + a)))
f = (\a→ 1 + sum(replicate∗(1 + a) 2))
f = (\a→ abs(1 + (2∗(1 + a))))

NS2 2,7,13,20,28,(37) no solutions
NS3’ 5,7,10,12,15,17,... no solutions
NS4’ 2,2,4,6,10,16,26,... no solutions
NS5’ 1,2,4,7,12,20,... no solutions
NS6 107,291,475,659,... no solutions
NS7 237,311,386,462,... no solutions
NS8’ 128,254,381,507,... no solutions
NS9’ 103,103,206,309,... no solutions
NS10’ 1,24,47,93,162,... no solutions
NS11 1,4,9,16,25,(36) f = (\a→ product(replicate 2(1 + a)))

f = (\a→ (1 + a)∗(1 + abs a))
f = (\a→ (1 + a) ∗ abs(1 + a))

NS12 1,1,2,6,24,(120) f = (\a→ product[1..a])
f = (\a→ product[1..abs a])
f = (\a→ product(take 3[2..a]))

NS13’ 4,6,12,14,28,30,... no solutions
NS14’ 2,2,4,8,32,256,(8192) no solutions
NS15’ 1,1,3,12,84,924,... no solutions
NS16 121,144,169,196,... no solutions
NS17 7,7,14,42,168,(840) no solutions
NS18’ 16,48,51,153,... no solutions
NS19’ 2,3,6,18,108,... no solutions
NS20’ 3,3,9,36,252... no solutions

28

A.3. SOLUTIONS OF MAGICHASKELLER ON THE WEB

Table A.7: backward Input, e.g. f 0 == 11 && f 1 == 9 && f 2 == 7 && f 3
== 5 && f 4 == 3

Number
Number Series Solutions

Series

NS1 3,5,7,9,11,(13) f = (\a→ length(drop a [a..10]))
f = (\a→ 11-(a+a))
f = (\a→ length[a..10-a])

NS2 2,7,13,20,28,(37) no solutions
NS3’ 5,7,10,12,15,17, no solutions

20,22,25,27,(30)
NS4’ 2,2,4,6,10,16, no solutions

26,42,68,110,(178)
NS5’ 1,2,4,7,12,20, no solutions

33,54,88,143,(232)
NS6 107,291,475,659,843,(1027) no solutions
NS7 237,311,386,462,539,(617) no solutions
NS8’ 128,254,381,507,634,760, no solutions

887,1013,1140,1266,(1393)
NS9’ 103,103,206,309,515,824, no solutions

1339,2163,3502,5665,(9167)
NS10’ 1,24,47,93,162,277, no solutions

461,760,1243,2025,(3290)
NS11 1,4,9,16,25,(36) no solutions
NS12 1,1,2,6,24,(120) f = (\a→ product[1..4 - a])
NS13’ 4,6,12,14,28,30, no solutions

60,62,124,126,(252)
NS14’ 2,2,4,8,32,256, no solutions

(8192)
NS15’ 1,1,3,12,84,(924) no solutions
NS16 121,144,169,196,225,(256) no solutions
NS17 7,7,14,42,168,(840) no solutions
NS18’ 16,48,51,153,156,468, no solutions

471,1413,1416,(4248)
NS19’ 2,3,6,18,108,(1944) no solutions
NS20’ 3,3,9,36,252,(2772) no solutions

29

APPENDIX A. FIRST APPENDIX CHAPTER

A.4 Evaluation of Solutions

A.4.1 Evaluation for Input List - Output Successor Value

Table A.8: Evaluation of forward Input NS1-NS10, e.g. f [3,5,7,9] == 11

NS Solutions
correct for correct for
Input Number Series

NS1 f = (\a→ 2 + last(0 : a)) Yes Yes
f = (\a→ sum(drop 1 a)− 10) Yes No
f = (\a→ sum(drop 1(reverse a))− 4) Yes No

NS2 f = (\a→ ord′′ − length a) Yes No
f = (\a→ ceiling(sinh(fromIntegral(length a)))) Yes No
f = (\a→ sum(map(\ → exponent 100) a)) Yes No

NS3’ f = (\a→ 2 + last(0 : a)) Yes No
f = (\a→ 3 ∗ (1 + length a)) Yes No
f = (\a→ sum(take 2(drop 3 a))) Yes No

NS4’ f = (\a→ sum(take 2(reverse a))) Yes Yes
f = (\a→ sum(drop 1(reverse(2 : a)))) Yes Yes
f = (\a→ 2 + sum(drop 1(reverse a))) Yes Yes

NS5’ f = (\a→ sum(drop 1(reverse(10 : a)))) Yes No
f = (\a→ 1 + sum(take 2(reverse a))) Yes Yes
f = (\a→ sum(drop 1(reverse((1 + length a) : a)))) Yes Yes

NS6 no solutions - -
NS7 f = (\a→ 1001− last(0 : a)) Yes No
NS8’ no solutions - -
NS9’ f = (\a→ sum(take 2(reverse a))) Yes Yes

f = (\a→ sum(drop(exponent 100) a)) Yes No
f = (\a→ sum(drop 1(reverse(take 3(reverse a))))) Yes Yes

NS10’ no solutions - -

30

A.4. EVALUATION OF SOLUTIONS

Table A.9: Evaluation of forward Input NS11-NS20

NS Solutions
correct for correct for
Input Number Series

NS11 f = (\a→ sum(drop 2 a)) Yes No
f = (\a→ sum(take 2(reverse a))) Yes No
f = (\a→ sum(scanr1(\ → 3) a)) Yes No

NS12 f = (\a→ 2 ∗ product a) Yes No
f = (\a→ sum(scanr1(\ c→ c) a)) Yes Yes
f = (\a→ product(drop 1 (reverse(a++a)))) Yes No

NS13’ f = (\a→ 2 + last(0 : a)) Yes No
f = (\a→ 1 + abs(1 + last(0 : a))) Yes No
f = (\a→ 2 + abs(last(0 : a))) Yes No

NS14’ f = (\a→ product(drop 3 a)) Yes No
f = (\a→ product(take 2(reverse a))) Yes Yes
f = (\a→ product(drop 1(reverse(2 : a)))) Yes Yes

NS15’ f = (\a→ 100− sum(drop 1 a)) Yes No
f = (\a→ 101− sum a)) Yes No
f = (\a→ ceiling(1000/fromIntegral(last(0 : a)))) Yes No

NS16 no solutions - -
NS17 f = (\a→ sum(scanr1(\ c→ c) a)) Yes Yes

f = (\a→ 4 ∗ last(0 : a)) Yes No
f = (\a→ (sum(drop 1(reverse(concat(replicate 3 a))))) Yes No

NS18’ f = (\a→ 3 + last(0 : a)) Yes No
f = (\a→ sum(nub(scanr1(\ → 3) a))) Yes No
f = (foldl(\ c→ 3 + c) 0) Yes No

NS19’ f = (\a→ product(drop 2 a)) Yes Yes
f = (\a→ sum(concatMap(\ → drop 1 a) a)) Yes No
f = (\a→ product(take 2(reverse a))) Yes Yes

NS20’ f = (\a→ exponent 100 * last(0 : a)) Yes No
f = (\a→ sum(drop 1(a++concatMap(\ → a) a))) Yes No
f = (\a→ lcm(exponent 100)(last(0 : a))) Yes No

31

APPENDIX A. FIRST APPENDIX CHAPTER

Table A.10: Evaluation of backward Input NS1-NS10, e.g. f [9,7,5,3] == 11

NS Solutions
correct for correct for
Input Number Series

NS1 f = (\a→ 2 + foldr const 0 a) Yes Yes
f = (\a→ sum(drop 1(reverse a))− 10) Yes No
f = (\a→ sum(drop 1 a)−4) Yes No

NS2 f = (\a→ ord′′ − length a) Yes No
f = (\a→ ceiling(sinh(fromIntegral(length a)))) Yes No
f = (\a→ sum(map(\ → exponent 100) a)) Yes No

NS3’ f = (\a→ sum(map(\ → 3) a)) Yes No
f = (\a→ 2 + foldr const 0 a) Yes No
f = (\a→ sum(map(\b→ min b 3) a)) Yes No

NS4’ f = (\a→ sum(take 2 a)) Yes Yes
f = (\a→ abs(sum(take 2 a))) Yes Yes
f = (\a→ 2 + sum(drop 1 a)) Yes Yes

NS5’ f = (\a→ 1 + sum(take 2 a)) Yes Yes
f = (\a→ abs(1 + sum(take 2 a))) Yes Yes
f = (\a→ 1 + abs(sum(take 2 a))) Yes Yes

NS6 no solutions - -
NS7 no solutions - -
NS8’ no solutions - -
NS9’ f = (\a→ sum(take 2 a)) Yes Yes

f = (\a→ abs(sum(take 2 a))) Yes Yes
f = (\a→ sum(drop 1(reverse(take 3 a)))) Yes Yes

NS10’ no solutions - -

32

A.4. EVALUATION OF SOLUTIONS

Table A.11: Evaluation of backward Input NS11-NS20

NS Solutions
correct for correct for
Input Number Series

NS11 f = (\a→ sum(take 2 a)) Yes No
f = (\a→ sum(drop 2(reverse a))) Yes No
f = (\a→ sum(scanl1(\ → 3) a)) Yes No

NS12 f = (\a→ 2 ∗ product a) Yes No
f = (\a→ sum(scanl1 const a)) Yes Yes
f = (\a→ product(drop 1 (a++a))) Yes No

NS13’ f = (\a→ 2 + foldr const 0 a) Yes No
f = (\a→ abs(2 + foldr const 0 a)) Yes No
f = (\a→ 1 + abs(1 + foldr const 0 a)) Yes No

NS14’ f = (\a→ product(take 2 a)) Yes Yes
f = (\a→ product(drop 1(reverse(take 3 a)))) Yes Yes
f = (\a→ abs(product(take 2 a))) Yes Yes

NS15’ f = (\a→ 100− sum(drop 1(reverse a))) Yes No
f = (\a→ 101− sum a)) Yes No
f = (\a→ ceiling(1000/fromIntegral(foldr const 0 a))) Yes No

NS16 no solutions - -
NS17 f = (\a→ sum(scanl1 const a)) Yes Yes

f = (\a→ 4 ∗ foldr const 0 a) Yes No
f = (\a→ 3 ∗ sum(take 2 a)) Yes No

NS18’ f = (\a→ 3 + foldr const0 a) Yes No
f = (\a→ sum(nub(scanl1(\ → 3) a))) Yes No
f = (foldr(\b→ 3 + b) 0) Yes No

NS19’ f = (\a→ product(take 2 a)) Yes Yes
f = (\a→ product(drop 1(reverse(take 3 a)))) Yes Yes
f = (\a→ abs(product(take 2 a))) Yes Yes

NS20’ f = (\a→ exponent 100 * foldr const 0 a) Yes No
f = (\a→ sum(drop 1(reverse(a++concatMap(\ → a) a)))) Yes No
f = (\a→ lcm(exponent 100)(foldr const 0 a)) Yes No

33

	Introduction
	Theoretical Background
	Number Series
	Number Series and Intelligence
	A collection of Number Series

	Inductive Programming with MagicHaskeller
	Inductive Programming
	MagicHaskeller
	MagicHaskeller on the Web
	MagicHaskeller vs. MagicHaskeller on the Web

	Induction on Number Series with MagicHaskeller on the Web
	Input List - Output Successor Value
	Input Position - Output List
	Input Position - Output Value

	Realization and Evaluation
	Conclusion and further Works
	Bibliography
	First Appendix Chapter
	E-Mail about a possible Combination for a running System
	Extended 20 Number Series
	Solutions of MagicHaskeller on the Web
	Solutions for Input List - Output Successor Value
	Solutions for Input Position - Output List
	Solutions for Input Position - Output Value

	Evaluation of Solutions
	Evaluation for Input List - Output Successor Value

