
University of Bamberg

Applied Computer Science

Seminar AI: yesterday, today, tomorrow

Ant Colony Optimization
An exploration of application criteria the context of pathfinding

scenarios

by

Eva Klein

27th February 2017

advised by

Prof. Dr. Ute Schmid

Contents

1 Introduction: Algorithms inspired by Nature 1

2 Ant Colony Optimization - From natural inspiration to algorithm 2
2.1 The double bridge experiment by Goss et al. (1989) 2
2.2 The Ant Colony Optimization Algorithm 5

2.2.1 Construction of Ant Solutions . 6
2.2.2 Pheromone Update . 6

3 Two Application Examples - ACO in path-finding scenarios 7
3.1 Comparison of application settings . 9
3.2 Results . 11
3.3 Comparison to Genetic Algorithm . 11

3.3.1 Characteristics . 12
3.3.2 Performance . 12

3.4 Possible disadvantages . 14

4 Summary and Outlook 14

References 16

In our current day and age, we seem to be as keen as ever to optimize every
tiny aspect of our lives. How to minimize the amount of water, electricity and
calories we consume, how to maximize the profit of our enterprises or how to
find the fastest, safest or most beautiful way from one location to another.
This paper will present the Ant Colony Optimization Meta-Heuristic, a class
of algorithms inspired by the ability of some ant species to find the shortest
path to a food source with only local knowledge, and its applicability to three
optimization tasks in the fields of rescue planning and robotic pathfinding.

1 Introduction: Algorithms inspired by Nature

The fascination of humankind with nature’s ability to adapt to harsh, continuously chan-
ging environments has existed ever since Darwin’s ”The Evolutionof Species” made its
impact into our societies and thought processes. Every day we can read about new
accomplishments in science and technology, achieved by taking a closer look at mechan-
isms in our surrounding environment and imitating them. There are drones copying the
flight behaviour of dragon flies, wall and car paint with ”lotus effect”, causing liquids to
run off these surfaces in droplets. There are even surgical staples mimicking porcupine
quills, creating smaller punctures and thus decreasing infection risks compared to com-
mon staples (Cho et al., 2012). But these advances are not only found in bioengineering,
medicine or aerodynamics, they have entered the field of Computational Intelligence
with the early works of Ingo Rechenberg, George Friedman and Michael Conrad in the
1960s and 1970s and especially in the form of Genetic Algorithms in the work of John
Holland (1975).

This class of algorithms has been increasingly popular with researchers in recent years,
not only due to the fact that a sheer endless supply of inspirational examples seems to
exist and ways to observe nature and its mechanics are improving, but also because most
of the algorithms can be used as meta-heuristics1, producing approximate solutions to
highly complex optimization problems in little time with only few resources. Examples of
the newer nature-inspired algorithms known today are firefly algorithms, cuckoo search,
bat algorithms and flower pollination algorithms (Yang, 2014).

Figure 1 on page 3 presents an attempt at categorising these and many other nature-
inspired algorithms by the domain they originate from: Brownlee (2011) distinguishes
between Neural Algorithms, Immune Algorithms, Stochastic Algorithms, Evolutionary
Algorithms, Physical Algorithms, Probabilistic Algorithms and Swarm Algorithms. It is
important to point out that while most of these classes are modelled analogously after a
phenomenon occurring in nature, Neural Algorithms are not derived by analogy but by
metaphor, as they are not modelled after biological neurons and synapses. Stochastic
Algorithms on the other hand are not inspired by a specific phenomenon but occur
generally in nature.

1A meta-heuristic is a ”fairly general computational technique [...] that (is) typically used to solve
numerical and combinatorial optimization problems approximately in several iterations” (Kruse et al.,
2016, p. 138)

1

This paper will present one member of the growing number of Swarm Algorithms: Ant
Colony Optimization (ACO), first introduced by Marco Dorigo in 1996 (Dorigo et al.,
1996). First, we will take a look at the natural analogy which inspired its invention.
Second, the ACO algorithm is presented in detail. In the third section, two concrete path
finding applications of ACO are described (Goodwin et al. (2015); Purian et al. (2013)),
including some advantages and disadvantages of ACO, as well as a direct comparison to
a genetic algorithm implementation (Purian et al., 2013). A short summary and outlook
will conclude this paper.

2 Ant Colony Optimization - From natural inspiration to
algorithm

2.1 The double bridge experiment by Goss et al. (1989)

In 1989, Goss et al. discovered in a laboratory experiment that the Argentine ant species
Iridomyrmex humilis is able to select the shortest path from their nest to a food source
with great reliability, even though each ant itself only has a very limited possibility
to orientate in the environment. This notion of a group of single, unintelligent agents
showing intelligent global behaviour by exchanging information between one another is
also known as swarm intelligence.

The setting of the experiment was the following: Laboratory colonies of the Iridomyrmex
humilis had access to a food source via crossing a bridge. This bridge was formed by
connecting two identical modules, each consisting of two branches of different length.
All paths were wide enough to allow ants to pass one another in both directions. At the
beginning of each module, the ants had to decide which path to choose, as well as on the
way back to the nest. Each fork junction branch was at 30◦angle to avoid bias towards
one of the paths and to not restrict the ants movements by making sharp turns.

The results were that five to ten minutes after starting the experiment by placing the
two modules, the first ants had crossed it and had discovered the food source at the other
end. They turned back to the nest to recruit other ants to carry the food and all ants
appeared to choose their paths randomly. After some minutes however, this abruptly
changed and almost all ants visibly prefer the shortest branch.

They achieve this remarkable feat by communicating with each other via pheromone
trails left behind while walking back and forth between food source and nest. These
ant species is naturally biased towards following the path with the highest amount of
pheromone, indicating that many other members of the colony have already used it.
This technique of making changes to the environmental circumstances which then act
as a stimulus to further activity by other insects is called stigmergy (”stigmergy, n.”,
2016). Figure 2 on page 4 shows how the disposal of pheromones influenced the choice
of the ants over time, simplified to only one bridge module by Kruse et al. (2016).

2

Figure 1: Overview of Algorithms inspired by nature, adapted from Brownlee (2011)

3

Figure 2: Double bridge experiment by Goss et al. (1989) as sketched by Kruse et al.
(2016), p. 319. The shading indicates the amount of pheromone left on each
path.

1 No pheromone on both branches. Starting ants select branch randomly.

2 About 50% of the ants choose the left branch and 50% the right one.

3 As the right path is shorter, the ants on this branch reach the food source first.

4 The ants from the right branch start to travel back to the nest. They have to choose a
path to return and are biased by the higher pheromone level on the right branch.
By doing so, they add another pheromone layer to the right path.

5 More and more ants choose the right branch because of the increasing pheromone
level.

6 After some time the ants almost exclusively travel on the right path.

However, there is an undeniable disadvantage to the way ants determine the shortest
path to a food source: In the event that an even shorter branch is added to the ex-
perimental set-up after the ants have already established a shortest trail, they will not
recognize the new branch as being shorter but will continue on the previous path. This
is due to the high bias towards the pheromone on the path, which hardly change over
time.

We will see how this disadvantage is tackled by the ACO algorithm in section 2.2.2.

4

2.2 The Ant Colony Optimization Algorithm

To apply this knowledge about ants and their path-finding strategies to optimisation
problems in the world of computational intelligence, certain steps are necessary.

First, the ants we are considering in this context are artificial ants, stochastic solution
procedures which build candidate solutions. Each ant hereby represents a partial or
complete candidate solution.

These artificial ants operate on a constructed graph, which can be a model of real-world
locations, e.g. a building whose rooms are represented by vertices and the corridors and
stairs as edges in the graph (cf. Goodwin et al. (2015)). But this graph representation
also means that ACO can be applied to optimisation problems other than path finding,
as will be shown in section 3.

Second, an additional heuristics η can be introduced to improve edge selection and
incorporate background knowledge, as we will see in section 2.2.1.

Third, most applications of ACO make use of a concept not commonly found in
nature: pheromone cannot only build up on a path but they can also decrease over time.
This pheromone evaporation is used to minimise the influence of old, less re-inforced
pheromone to avoid premature convergence of the algorithm, as seen in the results of
the double bridge experiment in section 2.1. It greatly improves the applicability of
ACO in dynamic environments, as better candidate solutions are not ignored due to the
fact that they were found in a later iteration than others.

With these adaptations in mind, we will now take a look at the typical structure of
the ACO meta-heuristic:

Algorithm 1 ACO Algorithm for combinatorial optimisation problems after Dorigo and
Stützle (2010), p. 233

Initialization
while (termination condition not met) do

Construct Ant Solutions
Update Pheromones

end while

Initialisation

In the beginning, all relevant parameters are set, for example the number of artificial
ants m, a given heuristics function η, the initial pheromone level τ0 for each edge, the
total amount Q of available pheromone in each iteration and the the evaporation factor
ρ.

Termination

One possible termination criterion for Algorithm 1 is the moment when a candidate
solution becomes ”good enough” in the sense that it qualifies with respect to a pre-defined
evaluation or fitness function, as it is the case in evolutionary algorithms. Secondly, the
algorithm could terminate after a certain amount of time has passed and the algorithm

5

is then forced to terminate and return the best candidate solution found up to that time.
Thirdly, a pre-set maximum of iteration could have been reached2.

One iteration of algorithm 1 is completed after all ants have each constructed a can-
didate solution, i.e. reached the goal vertex.

2.2.1 Construction of Ant Solutions

In this step, each of the m ants constructs a candidate solution to the problem setting
at hand. They each start with an originally empty partial solution sp which is then
expanded in each construction step by adding the next edge the ant chooses to walk on.

The key to the construction of ant solutions in algorithm 1 is the criterion by which
an artificial ant selects this next edge in the graph. Formula 1 shows the most widely
used selection rule of the original Ant System (Dorigo and Stützle, 2010, p. 234) and
describes the probability pi,k with which an ant k takes edge ei,j from vertix i to vertix
j:

pki,k =

ταi,jη

β
i,j∑

ei,l∈N(sp) τ
α
i,lη

β
i,l

if ei,j ∈ N(sp)

0 otherwise
(1)

Where:

s : is a route from the source vs to the goal ve
sp : is the partial solution of s
τi,j : is the number of pheromone on edge ei,j

N(sp) : is the set of outgoing edges given sp

ηi,j : is the inverse heuristic estimate of the distance between vertices i and j
α, β ∈ [0, 1] : give weight to the pheromone τ and the heuristics function η

In the case that a partial solution cannot reach the goal state due to problem con-
straints, it is usually either discarded as infeasible or kept as a candidate solution and
later penalized (Dorigo and Stützle, 2010), depending on the implemented construction
mechanism.

2.2.2 Pheromone Update

After all ants have constructed a candidate solution, i.e. they have each found a route
s from the source vs to the sink node ve, the pheromone on the graph edges is updated.
Unlike in nature, where an ant constantly leaves pheromone behind while walking, most
updating strategies add pheromone to the edges an ant used on its path to the sink only
after that ant has reached the goal vertex, thus omitting edges which are not part of

2The second and third termination options are only possible because ACO falls into the category of
so-called anytime algorithms, which means that it is able to return at least some available solution
candidates at any point in time. It is important to note that most of the time, longer allocated CPU
times are related to improving values (cf. Battiti and Brunato, 2010, p. 554).

6

successful searches. This method also tackles the problem of self-intensifying circles, as
cycles can be removed from the path when then ant reaches ve.

The two main mechanisms used in the updating step are firstly the depositing of
pheromone to increase the pheromone level of those edges which are part of a (good)
candidate solution and secondly the evaporation of pheromone, which decreases the
pheromone deposited by ants in previous iterations.

Since the invention of the ACO in its original form, the Ant System by Dorigo et al.
(1996), researchers have developed numerous extensions of this algorithm, which often
differ in their pheromone distribution step. An overview of the most common updating
strategies can be seen in Table 1 on page 8. This paper will focus on the original
pheromone update implementation of Ant System as it is used by Goodwin et al. (2015)
(see equation (2)).

τi,j ← (1− ρ)τi,j +

m∑
k=1

∆τki,j . (2)

Where:

m : is the total number of ants
ρ : is the pheromone evaporation coefficient
s : is a route from the source to the sink

∆τki,j : is the amount of pheromone deposited by the kth ant

∆τki,j =

{
Q
|s| if ei,j ∈ s;Q const.

0 otherwise

This strategy guarantees that only those edges receive new pheromone that are part
of a candidate solution in the current iteration.

As Dorigo and Gambardella (1997b) point out, by allocating a greater amount of
pheromone to shorter routes, the practice of pheromone update is similar to a rein-
forcement learning scheme. It comprises the addition of new pheromone left on the
trails to a candidate solution as well as the evaporation of pheromone on less-travelled
paths. The pheromone left on the edges of the graph thus acts as a ”distributed long-
term memory”(Dorigo and Gambardella, 1997b, p. 55), which is stored not within the
individual ant but in the environment of the graph.

3 Two Application Examples - ACO in path-finding scenarios

Currently, there are hundreds of successful applications of the ACO meta-heuristic
(Dorigo and Stützle, 2010, p. 244f), following the first use in the context of the Travelling
Salesman routing problem by Dorigo et al. (1996).

Generally, these applications can be divided into two classes: First, there are those
dealing with static NP -hard combinatorial optimization problems, which often use local
search algorithms between constructing ant solutions and the pheromone update step

7

Name Principle
Time of
Update

Updated edges
Advantage/
Disadvantage

Ant System
(Dorigo and
Gambardella,
1997b)

proportional update by all
ants launched in each iter-
ation at the end of the iter-
ation

end of
each
iteration

all edges used by at least one
ant

	 not competitive with
algorithms tailored to
specific NP -hard problems

Elitist Strategy
(Dorigo et al.,
1996)

reinforcement of best known
solution

end of
each
iteration

all edges used by at least one
ant + additional pheromone
on all edges of currently best
solution

⊕ faster convergence

Strict Elitist
Strategy

only the best candidate
solution is kept for the next
iteration

end of
each
iteration

only edges of best candidate
solution of last iteration or
globally best candidate solu-
tion

	 risk of premature
convergence in local
optimum

Rank based
Ant System
(Bullnheimer
et al., 1997)

candidate solutions are
ranked and only the k best
are kept for next iteration

end of
each
iteration

only edges of k best candid-
ate solutions of last iteration
and optionally of one glob-
ally best candidate solution

⊕ faster convergence

Max-Min
(Stützle and
Hoos, 2000)

uses τmin and τmax bound-
aries for the probability of
selecting an edge and initial-
ises edges to τmax

end of
each
iteration

only edges of best candidate
solution of last iteration or
globally best candidate solu-
tion

⊕ better exploration of
search space
	 slower convergence

Ant Colony
System
(Dorigo and
Gambardella,
1997a)

ants select next edge us-
ing pseudo-random propor-
tional rule, introducing a
parameter to favour explor-
ation over exploitation

after
every
edge
selection

only edges of best candidate
solution of last iteration or
overall best candidate solu-
tion

⊕ better exploration of
search space as ants remove
pheromone from edges
when choosing them

Table 1: An overview of common approaches to pheromone updating (cf. Tumeo et al., 2008; Dorigo and Stützle, 2010; Kruse
et al., 2016)

in order to improve their performance. Dorigo and Stützle (2004) gives an overview
over many such applications, which comprise problems from the fields of assignment,
scheduling (e.g. car sequencing by Solnon (2008)), subset problems, machine learning
(using so called hybrid -approaches which build on other existing classifiers like Decision
Trees or SVMs) and Bio-Informatics (e.g. DNA Sequencing by Blum et al. (2008)).

The second class of applications are dynamic network routing problems, which are
characterized by the circumstance that the availability of edges in the problem graph
(here: links in the network) and the costs of traversing these edges are not constant, but
time-dependent.

This chapter will explore two applications of ACO to path finding problems in dy-
namic environments comparable to those of network routing, namely the simulations of
Goodwin et al. (2015) and Brand et al. (2010). We will see which aspects of the ACO
meta-heuristic make it especially applicable in these two cases and finally how ACO
performs compared to a genetic algorithm in Purian et al. (2013).

3.1 Comparison of application settings

ACO can be applied to any optimization problem that can be formulated as a search
in a graph. A solution candidate must then be describable as a set of edges, which do
not necessarily have to form a path, as long as there is a mechanism to iteratively select
edges from the set. Each such selection can be seen as a decision about which edge will
be added next to a partial candidate solution, and the construction of these candidate
solutions is therefore equivalent to a sequence of decisions, which can be represented as
a path in a decision graph.

In the examples we are going to explore in this chapter, however, the problems ACO
is applied to are typical, but dynamic path finding problems: Goodwin et al. (2015) set
out to propose a near-optimal escape plan for every person in a fire evacuation scenario,
taking into account static environments, dynamic spread of the fire, movability and
visibility impairments as well as incompleteness of information. Brand et al. (2010) use
ACO to find the shortest, collision-free path - if one exists - between the starting point
of a robot and a destination point in a grid network. To simulate dynamism, they added
obstacles once one optimal path had been found.

The first step to apply ACO to any Optimization Problem is to translate it into a
search graph. Table 2 shows how the two applications defined the nodes and edges of
this graph, how they modelled contraints, how pheromone updates were handled, which
heuristics were used (if any) and finally how the candidate solutions were generated.

It is important to point out that ACO algorithms typically achieve especially high
performance values if the parameters are fine-tuned to the specific problem at hand,
exploiting available background knowledge in form of heuristics, using fine-tuned local
search algorithms or making informed choices for the construction mechanism (Dorigo
and Stützle, 2010).

While both applications considered in this chapter do not openly use any heuristic
function to influence edge selection, they both use background information to decide
which edges receive more pheromone than others after each iteration.

9

Goodwin et al. (2015) Brand et al. (2010)

Application
Domain

Fire Escape Planning Robot Path Planning

Graph
modelling

Vertices: rooms of a ship or building
Edges: corridors

Grid of 20x20, 30x30 and 40x40 evenly distributed
vertices. Inner edges only connect in the direction
up, down, left and right. Robot: top-left, goal:
bottom-right.

Constraint
handling

h(vi, t) describes probability that there is a hazard
at vertex vi at time t (0=hazard-free)
m(vi, t) describes whether evacuee can move from vi

Barriers are added to the grid. The robot cannot
move to vertices covered by these barriers.

Dynamic
Environ-
ment

5 stages represented via different hazard functions
1. random static assignment of h(vi) ∈ [0, 1]
2. h(vi, t) switches to polar opposites every n time

units
3. h(vi, t) represents realistic probabilities based on

exposure levels of heat radiation and temperat-
ure (computer simulation)

4. m(vi, t) ∈ true, false indicates whether evacuee
can move away from room vi due to smoke ob-
scuration

5. environment is updated with imperfect know-
ledge: only hazard functions close to evacuee are
available (ad-hoc network setting)

Barriers which are proportional to the grid size and
of different shapes and sizes are added after the
algorithm converges once. Then the pheromone is
re-initialized comparing two variants:

Global initialization: τ is reset to 0.1 for all
edges.

Local initialization: τi,j is set to 50% of the
highest pheromone level of the last iteration if
ei, j is directly next to the barrier. With growing
distance from the barrier, τi,j decreases by a
pre-defined fraction.

Pheromone
update

See (2). Q replaced by Q(s, t) =
∏
vi∈s(1 − h(vi, t))

(inv. hazard probability on route s at time t),ρ = 0.2
See (2). ∆τki,j = 1

Ck
where Ck is the cost or reward

of ant k choosing ei,j , here: total path length

Heuristics – –

Solution
generation

See (1) with β = 0 See (1), τ0 is initialized to 0.1 on all edges

Table 2: A comparison of the simulation settings in Goodwin et al. (2015) and Brand et al. (2010)

Goodwin et al. (2015) use so-called hazard functions to determine whether an edge
belongs to a safe path or to one containing risks and include this information in the form
of Q(s, t) =

∏
vi∈s(1− h(vi, t)) in the pheromone update step.

Brand et al. (2010) on the other hand use the technique of re-initializing those edges
which are close to a newly added barrier even before the ants started their exploration,
therefore heavily drawing from global knowledge.

There is therefore a noticeable difference between the two applications. While both use
a considerable amount of background knowledge to increase their performance, Good-
win et al. (2015) clearly state where this knowledge originates: In their experimental
setting the realistic radiation and smoke development included in the hazard functions
was provided by the Fire Dynamics Simulator tool, but in a realistic mobile-app im-
plementation, this information would come from fixed or mobile sensors. In contrast,
the information source about the location of the obstacles in Brand et al. (2010) is not
mentioned, leaving some open questions.

3.2 Results

Both approaches show that ACO can be very effective, especially in dynamic envir-
onments. Goodwin et al. (2015) conclude that in all 5 scenarios tested (see Table 2),
ACO was empirically able to reach a near-optimal solution as long as the evaporation
coefficient ρ was not set to 0. They especially showed what (Dorigo and Stützle, 2010,
p.254) prophesied as the ”greatest advantage” of ACO algorithms: An application in a
highly dynamic domain where only local information is available. The last experimental
scenario worked only with hazard functions containing sensor data from 5, 10, 25 or 50
rooms around the current location of an ant. While solutions had to be updated again
and again after gaining new information with each changing room, even with only data
from 5 rooms in each direction 100 ants were able to keep the probability of an evacuee
encountering a hazard on the calculated route below 2% for almost 10 minutes after the
fire started.

Brand et al. (2010) showed that their mechanism of a global initialization after the
addition of an obstacle needed 23.8% more iterations to find an optimal path than the
localized initialization. This further confirms the assumption that those extensions of
ACO which can include more background knowledge and which are more closely tailored
to the problem at hand out-perform their counterparts.

All in all, both papers show that ”[ACO] techniques tend to exhibit a high degree of
flexibility and robustness in a dynamic environment”(Bonabeau et al., 2000, p. 39). The
advantage of an on-line application allowing for dynamic re-routing if obstacles appear
or environment grows hostile is apparent.

3.3 Comparison to Genetic Algorithm

As the applications considered in sections 3.1 and 3.2 do not provide any comparison to
other algorithms used in dynamic environments, this chapter will present a short com-
parison of the key characteristics of ACO and Genetic Algorithms as well as a comparison

11

of performance values from Purian et al. (2013).

3.3.1 Characteristics

While many sources (cf. Brownlee, 2011; Kruse et al., 2016; Gerdes et al., 2004) do not
consider ACO to be a sub-class of Genetic or Evolutionary Algorithms, but of Swarm
Intelligence Algorithms (recall Figure 1), there are some noticeable similarities.

Both are algorithms inspired by nature and fall into the category of population-based
algorithms. In genetic algorithms, a population is a multiset of candidate solutions
which are subject to the selection process and ranked via a fitness function (Kruse et al.,
2016, p. 193f). These populations correspond to the candidate solutions constructed by
artificial ants in each iteration of the ACO.

Also, both algorithms do not guarantee to return a globally optimal solution but are
anytime algorithms that find the best solution up to the point where the algorithms is
stopped.

But where Genetic Algorithms construct new candidate solutions in each iteration by
certain mutation and selection steps, ACO algorithms do not evolve in their genetics but
through communication with the environment. Each new iteration (or ”generation”) of
ants does not differ from the previous generation, but the environment has been changed
by the help of artificial pheromone. Thus, ACO algorithms can be said to evolve through
their social behaviour (cf. Elbeltagi et al., 2005, p. 46).

When it comes to mutation, Yang (2014) notes that ACO’s step is ”not as simple as
flipping digits” but that new solutions are generally constructed by fitness-proportional
mutation, meaning that only some of the candidate solutions receive additional pher-
omone, providing the basis for the next iteration. The author also points out, that unlike
Genetic Algorithms, ACO algorithms lack an explicit crossover, which can lead to slower
convergence in comparison 3.

3.3.2 Performance

Purian et al. (2013) provide a direct performance comparison of ACO and a Genetic
Algorithm. Their simulation setting was as follows:

The genetic algorithm used a chromosome structure of variable length. Here each
gene expresses the number of intermediate nodes along with the path determined by
each chromosome. Thus the first gene represents the initial point and the last gene the
target. First, a random initial population is generated by starting at the start node and
then successively adding one of the 8 surrounding nodes which are not on the black list.
If choosing a node decreases the angle to the target, this node has a higher probability
of being chosen. The members of this first population are then ranked using their
length and smoothness of their angles in each step. Following an elitist strategy, the 5
best chromosomes are then selected as the new parent generation. New solutions are
generated by randomly selecting two parents and using a crossover with a probability

3Many extensions of the original Ant System counteract this deficit by introducing parameters to
increase exploitation, e.g. Ant Colony System (see Table 1 on page 8)

12

Purian et al. (2013)

Application
Domain

Robot Path Planning

Graph modelling

Networked environment of the moving robot divided
into equally sized cells
This grid is populated by fixed and moving obstacles,
forming three workspaces of increasing complexity
Vertices: grid cells, edges: connecting one cell with 8
surrounding neighbours (also diagonally)

Constraint handling

Static and moving obstacles. A ”black list” of fixed and
moving barriers is re-calculated for every time unit. If a
node is part of the black list, the robot cannot move
there.

Dynamic
Environment

Moving obstacles with different speeds, sizes and
directions

Pheromone update
Rank-based strategy: only 5 best candidate solutions
release pheromones on their edges according to their
ranking. ρ = 0.1

Heuristics
Takes into account the angle between the next possible
node and the target, this favouring the ”right” direction

Solution generation
See (1) with β = 0.5, α = 1, τ0 = 0.5 and N(sp) the
adjacent nodes which are not on the ”black list”

Table 3: Simulation settings in Purian et al. (2013)

of 0.9 and a mutation step with probability 0.05 (for further details, see Purian et al.
(2013, p. 33f)).

Even though both algorithms were designed in a similar way, using the same heuristics
and an elitist selection strategy, the ACO implementation outperformed the Genetic
Algorithm in all workspace settings modelling a routing environment for a moving root.
It was able to find the optimal path using a smaller population (number of ants) and
fewer iterations of the algorithm. While both algorithms needed approximately the
same amount of time to finish one iteration, ACO needed significantly less time to find
a collision-free route from start to target as it needed fewer iterations in general. The
results of the simulations can be seen in Table 4.

Workspace complexity low medium high

Algorithm ACO Genetic ACO Genetic ACO Genetic

Time in s 47.721 1522.03 684.69 1865.28 972.65 2560.42

Iterations 30 50 45 80 50 100

Population size 20 20 25 35 30 50

Table 4: Runtime results of ACO and Genetic Algorithm from Purian et al. (2013, p. 41)

13

The authors explained these different results by pointing out that as the complexity
of the environment increases, the population size of the Genetic Algorithm needs to be
adapted accordingly. ACO on the other hand does not need increase its population, as
in each iteration only one ant alone will construct an entire candidate solution whose
length is variable.

3.4 Possible disadvantages

After having shown some of the advantages in efficiency and robustness of ACO, there
are also some disadvantages to keep in mind.

Especially in safety-critical environments such as fire rescue scenarios, one should keep
in mind that ACO remains a meta-heuristic without any guarantee to find an optimal
solution at a known point in time. These scenarios are built on the expectancy to find
an optimal way from the fire to the evacuation zone, i.e. a path where the probability
that a person encounters a hazard in at least one of the vertices in the chosen route is
0. Dorigo and Stützle (2004) proved that as the number of computation steps approach
infinity, the probability that the optimal solution is found approaches 1. However, there
is no guarantee as to when or if this optimal solution is reached with iterations below
infinity, which is an insecurity factor hard to handle when every second counts and less
optimal paths may lead to injury or death.

Another disadvantage of the ACO is that it can take quite long until the algorithm
returns failure, i.e. that there is no path from the source to the sink in the graph. It can
only report this non-existence with certainty after having visited all nodes in the graph,
having thus constructed a partial candidate solution which can no longer be extended -
and this for all ants in this iteration. In many applications where life and death do not
depend on a few seconds or minutes, this might be acceptable, but especially in cases
like Goodwin et al. (2015), any additional minute needed might see the fire spread to
block another path to safety.

4 Summary and Outlook

Since its beginning, Ant Colony Optimization has seen many improvements and alter-
ations to customize it to many different application scenarios. It is this flexibility of a
relatively simple, resource-efficient meta-heuristic that still drives researchers to invent
new variants and create hybrids with other optimization techniques to further explore
where the limits of ACO truly lie. Current developments have been presented at the
ANTS 2016, Tenth International Conference on Swarm Intelligence.

One of the most recent advances in this direction has been made by Goodwin and
Yazidi (2016) who introduced an Ant Colony based classifier operating in two dimen-
sional space, utilizing ray casting. This extended the applicability of ACO from stochastic
optimization problems to classification, which had only been achieved by hybrid models
before. Their results were promising, as the new system outperformed existing classifiers,
such as polynomial and linear Support Vector Machines.

14

ACO’s true powers lie in this possibility to extend it in many directions and the fact
that it is explicitly formulated in terms of computational agents, making it generally
very useful in the design of problem-solving systems (Bonabeau et al., 2000, p. 40).
Used with the disadvantages of section 3.4 in mind, ACO may be a candidate for many
other unsolved optimisation - and now even classification - problems.

In a time, where an algorithm inspired by ants can save lives in fire escape planning
and even leads to the development of a mobile application to aid people in such dynamic
situations using only incomplete knowledge (cf. Radianti et al., 2015), we can only ima-
gine what other natural analogies still lie in the dark that can be used in their own
creative and unique way in a computational intelligence setting.

15

References

Roberto Battiti and Mauro Brunato. 2010. Reactive search optimization: learning while
optimizing. In Handbook of Metaheuristics. Springer, 543–571.

Christian Blum, Mateu Yábar Vallès, and Maria J Blesa. 2008. An ant colony optim-
ization algorithm for DNA sequencing by hybridization. Computers & Operations
Research 35, 11 (2008), 3620–3635.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. 2000. Inspiration for optimization
from social insect behaviour. Nature 406, 6791 (2000), 39–42.

Michael Brand, Michael Masuda, Nicole Wehner, and Xiao-Hua Yu. 2010. Ant Colony
Optimization algorithm for robot path planning. In International Conference on Com-
puter Design and Applications (ICCDA), 2010, Jinkuan Wang (Ed.). IEEE, Piscat-
away, NJ, V3–436–V3–440. DOI:http://dx.doi.org/10.1109/ICCDA.2010.5541300

J. Brownlee. 2011. Clever Algorithms: Nature-inspired Programming Recipes. Lulu.com.
https://books.google.de/booksid=SESWXQphCUkC

Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. 1997. A new rank based
version of the Ant System. A computational study. (1997).

Woo Kyung Cho, James A Ankrum, Dagang Guo, Shawn A Chester, Seung Yun Yang,
Anurag Kashyap, Georgina A Campbell, Robert J Wood, Ram K Rijal, Rohit Karnik,
and others. 2012. Microstructured barbs on the North American porcupine quill enable
easy tissue penetration and difficult removal. Proceedings of the National Academy of
Sciences 109, 52 (2012), 21289–21294.

Marco Dorigo and Luca Maria Gambardella. 1997a. Ant colonies for the travelling
salesman problem. biosystems 43, 2 (1997), 73–81.

Marco Dorigo and Luca Maria Gambardella. 1997b. Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Transactions on evolu-
tionary computation 1, 1 (1997), 53–66.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. 1996. Ant system: optimiza-
tion by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics) 26, 1 (1996), 29–41.

Marco Dorigo and Thomas Stützle. 2004. Ant Colony Optimization. Bradford Company,
Scituate, MA, USA.

Marco Dorigo and Thomas Stützle. 2010. Ant Colony Optimization: Overview and Re-
cent Advances. In Handbook of Metaheuristics, Michel Gendreau and Jean-Yves Potvin
(Eds.). International Series in Operations Research & Management Science, Vol. 146.
Springer Science + Business Media, s.l., 227–263. DOI:http://dx.doi.org/10.1007/978-
1-4419-1665-5 8

16

Emad Elbeltagi, Tarek Hegazy, and Donald Grierson. 2005. Comparison among five
evolutionary-based optimization algorithms. Advanced Engineering Informatics 19, 1
(2005), 43–53. DOI:http://dx.doi.org/10.1016/j.aei.2005.01.004

Ingrid Gerdes, Frank Klawonn, and Rudolf Kruse. 2004. Evolutionäre Algorithmen: Ge-
netische Algorithmen – Strategien und Optimierungsverfahren – Beispielanwendungen.
Vieweg+Teubner Verlag, Wiesbaden.

Morten Goodwin, Ole-Christoffer Granmo, and Jaziar Radianti. 2015. Escape planning
in realistic fire scenarios with Ant Colony Optimisation. Applied Intelligence 42, 1
(2015), 24–35. DOI:http://dx.doi.org/10.1007/s10489-014-0538-9

Morten Goodwin and Anis Yazidi. 2016. Ant Colony Optimisation-Based Classification
Using Two-Dimensional Polygons. In International Conference on Swarm Intelligence.
Springer, 53–64.

S. Goss, S. Aron, J. L. Deneubourg, and J. M. Pasteels. 1989. Self-organized short-
cuts in the Argentine ant. Naturwissenschaften 76, 12 (1989), 579–581. DOI:

http://dx.doi.org/10.1007/BF00462870

John H Holland. 1975. Adaptation in natural and artificial systems. An introductory
analysis with application to biology, control, and artificial intelligence. Ann Arbor,
MI: University of Michigan Press (1975).

Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim, and Mat-
thias Steinbrecher. 2016. Computational intelligence: a methodological introduction.
Springer.

Fatemeh Khosravi Purian, Fardad Farokhi, and Reza Sabbaghi Nadooshan. 2013. Com-
paring the performance of genetic algorithm and ant colony optimization algorithm for
mobile robot path planning in the dynamic environments with different complexities.
Journal of Academic and Applied Studies 3, 2 (2013), 29–44.

Jaziar Radianti, Mehdi Ben Lazreg, and Ole-Christoffer Granmo. 2015. Fire simulation-
based adaptation of SmartRescue App for serious game: Design, setup and user ex-
perience. Engineering Applications of Artificial Intelligence 46 (2015), 312–325.

Christine Solnon. 2008. Combining two pheromone structures for solving the car se-
quencing problem with Ant Colony Optimization. European Journal of Operational
Research 191, 3 (2008), 1043–1055.

”stigmergy, n.”. 2016. OED Online. Oxford University Press.

Thomas Stützle and Holger H Hoos. 2000. MAX–MIN ant system. Future generation
computer systems 16, 8 (2000), 889–914.

Antonino Tumeo, Christian Pilato, Fabrizio Ferrandi, Donatella Sciuto, and Pier Luca
Lanzi. 2008. Ant colony optimization for mapping and scheduling in heterogeneous

17

multiprocessor systems. In Embedded Computer Systems: Architectures, Modeling,
and Simulation, 2008. SAMOS 2008. International Conference on. IEEE, 142–149.

Xin-She Yang. 2014. Nature-inspired optimization algorithms. Elsevier.

18

