Lecture 12: Reinforcement Learning
Cognitive Systems - Machine Learning

Part III: Learning Programs and Strategies

Q Learning, Dynamic Programming

last change February 23, 2015
Motivation

- **addressed problem**: How can an autonomous agent that senses and acts in its environment learn to choose optimal actions to achieve its goals?

- consider building a learning robot (i.e., agent)
 - the agent has a set of *sensors* to observe the *state* of its environment and
 - a set of *actions* it can perform to alter its state
 - the task is to learn a control strategy, or *policy*, for choosing actions that achieve its goals

- **assumption**: goals can be defined by a *reward function* that assigns a numerical value to each distinct action the agent may perform from each distinct state
Motivation

- **considered settings:**
 - deterministic or non-deterministic outcomes
 - prior background knowledge available or not

- **similarity to function approximation:**
 - approximating the function $\pi : S \rightarrow A$
 where S is the set of states and A the set of actions

- **differences to function approximation:**
 - Delayed reward: training information is not available in the form $<s, \pi(s)>$. Instead the trainer provides only a sequence of immediate reward values.
 - Temporal credit assignment: determining which actions in the sequence are to be credited with producing the eventual reward
differences to function approximation (cont.):

- exploration: distribution of training examples is influenced by the chosen action sequence
 - which is the most effective exploration strategy?
 - trade-off between exploration of unknown states and exploitation of already known states

- partially observable states: sensors only provide partial information of the current state (e.g. forward-pointing camera, dirty lenses)

- life-long learning: function approximation often is an isolated task, while robot learning requires to learn several related tasks within the same environment
Outline

- The Learning Task
- Q Learning
 - Algorithm
- Experimentation Strategies
- Generalizing From Examples
- Relationship to Dynamic Programming
- Advanced Topics
The Learning Task

- based on Markov Decision Processes (MDP)
 - the agent can perceive a set S of distinct states of its environment and has a set A of actions that it can perform
 - at each discrete time step t, the agent senses the current state s_t, chooses a current action a_t and performs it
 - the environment responds by returning a reward $r_t = r(s_t, a_t)$ and by producing the successor state $s_{t+1} = \delta(s_t, a_t)$
 - the functions r and δ are part of the environment and not necessarily known to the agent
 - in an MDP, the functions $r(s_t, a_t)$ and $\delta(s_t, a_t)$ depend only on the current state and action
The Learning Task

- the task is to learn a policy $\pi : S \rightarrow A$
- one approach to specify which policy π the agent should learn is to require the policy that produces the greatest possible cumulative reward over time (discounted cumulative reward)

$$V^\pi(s_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} \ldots$$

$$\equiv \sum_{i=0}^{\infty} \gamma^i r_{t+i}$$

where $V^\pi(s_t)$ is the cumulative value achieved by following an arbitrary policy π from an arbitrary initial state s_t

r_{t+i} is generated by repeatedly using the policy π and γ ($0 \leq \gamma < 1$) is a constant that determines the relative value of delayed versus immediate rewards
The Learning Task

Goal: Learn to choose actions that maximize
\[r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots, \] where \(0 \leq \gamma \leq 1 \)

- hence, the agent’s learning task can be formulated as

\[\pi^* \equiv \arg\max_{\pi} V^\pi(s), (\forall s) \]
the left diagram depicts a simple grid-world environment
- squares \(\approx \) states, locations
- arrows \(\approx \) possible transitions (with annotated \(r(s, a) \))
- \(G \approx \) goal state (absorbing state)
- \(\gamma = 0.9 \)

once states, actions and rewards are defined and \(\gamma \) is chosen, the optimal policy \(\pi^* \) with its value function \(V^*(s) \) can be determined
The Learning Task

Illustrative Example

- the right diagram shows the values of V^* for each state

- e.g. consider the bottom-right state
 - $V^* = 100$, because π^* selects the “move up” action that receives a reward of 100
 - thereafter, the agent will stay in G and receive no further awards
 - $V^* = 100 + \gamma \cdot 0 + \gamma^2 \cdot 0 + ... = 100$

- e.g. consider the bottom-center state
 - $V^* = 90$, because π^* selects the “move right” and “move up” actions
 - $V^* = 0 + \gamma \cdot 100 + \gamma^2 \cdot 0 + ... = 90$

- recall that V^* is defined to be the sum of discounted future awards over infinite future
it is easier to learn a numerical evaluation function than implement the optimal policy in terms of the evaluation function

question: What evaluation function should the agent attempt to learn?

one obvious choice is V^*

the agent should prefer s_1 to s_2 whenever $V^*(s_1) > V^*(s_2)$

problem: the agent has to choose among actions, not among states

\[
\pi^*(s) = \arg\max_a [r(s, a) + \gamma V^*(\delta(s, a))]
\]

the optimal action in state s is the action a that maximizes the sum of the immediate reward $r(s, a)$ plus the value of V^* of the immediate successor, discounted by γ
thus, the agent can acquire the optimal policy by learning V^*, provided it has perfect knowledge of the immediate reward function r and the state transition function δ.

In many problems, it is impossible to predict in advance the exact outcome of applying an arbitrary action to an arbitrary state.

The Q function provides a solution to this problem.

- $Q(s, a)$ indicates the maximum discounted reward that can be achieved starting from s and applying action a first.

$$Q(s, a) = r(s, a) + \gamma V^*(\delta(s, a))$$

$$\Rightarrow \pi^*(s) = \arg\max_a Q(s, a)$$
Q Learning

- hence, learning the Q function corresponds to learning the optimal policy π^*
- if the agent learns Q instead of V^*, it will be able to select optimal actions even when it has *no knowledge of* r and δ
- it only needs to consider each available action a in its current state s and chose the action that maximizes $Q(s, a)$
- the value of $Q(s, a)$ for the current state and action summarizes in one value all information needed to determine the discounted cumulative reward that will be gained in the future if a is selected in s
Q Learning

- the right diagram shows the corresponding Q values
- the Q value for each state-action transition equals the r value for this transition plus the V^* value discounted by γ
Q Learning Algorithm

- **key idea**: iterative approximation
- relationship between Q and V^*
 \[V^*(s) = \max_{a'} Q(s, a') \]
 \[Q(s, a) = r(s, a) + \gamma \max_{a'} Q(\delta(s, a), a') \]

- this recursive definition is the basis for algorithms that use iterative approximation
- the learner’s estimate $\hat{Q}(s, a)$ is represented by a large table with a separate entry for each state-action pair
Q Learning Algorithm

Algorithm

For each \(s, a \) initialize the table entry \(\hat{Q}(s, a) \) to zero

Observe the current state \(s \)

Do forever:

1. Select an action \(a \) and execute it
2. Receive immediate reward \(r \)
3. Observe new state \(s' \)
4. Update the table entry for \(\hat{Q}(s, a) \) as follows
 \[
 \hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \hat{Q}(s', a')
 \]
5. \(s \leftarrow s' \)

⇒ Using this algorithm the agent’s estimate \(\hat{Q} \) converges to the actual \(Q \), provided the system can be modeled as a deterministic Markov decision process, \(r \) is bounded, and actions are chosen so that every state-action pair is visited infinitely often.
Illustrative Example

\[
\hat{Q}(s_1, a_{\text{right}}) \leftarrow r + \gamma \cdot \max_{a'} \hat{Q}(s_2, a') \\
\leftarrow 0 + 0.9 \cdot \max\{63, 81, 100\} \\
\leftarrow 90
\]

- the old values are read from our \(\hat{Q} \)-table, which are about to be updated in each step
- each time the agent moves, Q Learning propagates \(\hat{Q} \) estimates backwards from the new state to the old and updates the corresponding value in the table
Illustrative Example

Table before the move

<table>
<thead>
<tr>
<th>((s, a))</th>
<th>(\hat{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, (\rightarrow)</td>
<td>72</td>
</tr>
<tr>
<td>2, (\leftarrow)</td>
<td>63</td>
</tr>
<tr>
<td>2, (\rightarrow)</td>
<td>100</td>
</tr>
<tr>
<td>2, (\downarrow)</td>
<td>81</td>
</tr>
</tbody>
</table>

Table after the move

<table>
<thead>
<tr>
<th>((s, a))</th>
<th>(\hat{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, (\rightarrow)</td>
<td>90</td>
</tr>
<tr>
<td>2, (\leftarrow)</td>
<td>63</td>
</tr>
<tr>
<td>2, (\rightarrow)</td>
<td>100</td>
</tr>
<tr>
<td>2, (\downarrow)</td>
<td>81</td>
</tr>
</tbody>
</table>
Experimentation Strategies

- algorithm does not specify how actions are chosen by the agent
- **obvious strategy**: select action a that maximizes $\hat{Q}(s, a)$
 - risk of overcommitting to actions with high \hat{Q} values during earlier trainings
 - exploration of yet unknown actions is neglected
- **alternative**: probabilistic selection

\[
P(a_i|s) = \frac{k\hat{Q}(s,a_i)}{\sum_j k\hat{Q}(s,a_j)}
\]

$k > 0$ indicates how strongly the selection favors actions with high \hat{Q} values

- k large \Rightarrow exploitation strategy
- k small \Rightarrow exploration strategy
so far, the target function is represented as an explicit lookup table

the algorithm performs a kind of rote learning and makes no attempt to estimate the Q value for yet unseen state-action pairs

⇒ unrealistic assumption in large or infinite spaces or when execution costs are very high

incorporation of function approximation algorithms such as BACKPROPAGATION

- table is replaced by a neural network using each $\hat{Q}(s, a)$ update as training example (s and a are inputs, \hat{Q} the output)
- a neural network for each action a
Q Learning is closely related to dynamic programming approaches that solve Markov Decision Processes.

Dynamic Programming
- assumption that $\delta(s, a)$ and $r(s, a)$ are known
- focus on how to compute the optimal policy
- mental model can be explored (no direct interaction with environment)
 \[\Rightarrow \text{offline system} \]

Q Learning
- assumption that $\delta(s, a)$ and $r(s, a)$ are not known
- direct interaction inevitable
 \[\Rightarrow \text{online system} \]
relationship is append by considering the Bellman’s equation, which forms the foundation for many dynamic programming approaches solving Markov Decision Processes

\[(\forall s \in S)V^*(s) = E[r(s, \pi(s)) + \gamma V^*(\delta(s, \pi(s)))]\]
Advanced Topics

- different updating sequences
- proof of convergence
- non-deterministic rewards and actions
- temporal difference learning
Reinforcement learning is an incremental approach to learning where an agent improves its performance by optimizing a reward function.

In contrast to classification learning, a policy (strategy to select actions) is learned.

A basic approach to RL is Q-Learning where the numerical evaluation function is learned based on a dynamic programming principle.
Learning Terminology

Q-Learning, Reinforcement Learning

<table>
<thead>
<tr>
<th>Supervised Learning</th>
<th>unsupervised learning</th>
</tr>
</thead>
</table>

Approaches:

<table>
<thead>
<tr>
<th>Concept / Classification</th>
<th>Policy Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>symbolic</td>
<td>statistical / neuronal network</td>
</tr>
<tr>
<td>inductive</td>
<td>analytical</td>
</tr>
</tbody>
</table>

Learning Strategy:	incremental learning from reinforcement
Data:	categorial/metric features
Output:	action sequence