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Motivation

Motivation

probabilistic approach to inference
basic assumption:

quantities of interest are governed by probability distributions
optimal decisions can be made by reasoning about these
probabilities together with observed training data

Bayesian Learning is relevant for two reasons
first reason: explicit manipulation of probabilities
• among the most practical approaches to certain types of learning

problems
• e.g. Bayes classifier is competitive with decision tree and neural

network learning
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Motivation

Motivation

Bayesian Learning is relevant for two reasons (cont.)
second reason: useful perspective for understanding learning
methods that do not explicitly manipulate probabilities
• determine conditions under which algorithms output the most

probable hypothesis
• e.g. justification of the error functions in ANNs
• e.g. justification of the inductive bias of decision trees

features of Bayesian Learning methods:
each observed training example can incrementally decrease or
increase the estimated probability that a hypothesis is correct
prior knowledge can be combined with observed data to determine
the final probability of a hypothesis
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Motivation

Motivation

features of Bayesian Learning methods (cont.):
hypotheses make probabilistic predictions
new instances can be classified by combining the predictions of
multiple hypotheses, weighted by their probabilities
standard of optimal decision making against which other practical
methods can be measured

practical difficulties:
initial knowledge of many probabilities is required
significant computational costs

Ute Schmid (CogSys, WIAI) ML – Bayesian Learning December 8, 2015 4 / 1



Outline

Outline

Bayes Theorem
MAP Hypothesis
Byes Theorem and Concept Learning
Brute-Force MAP Learning
Naive Byes Classifier
Estimating Probabilities
Bayes Belief Networks / Graphical Models

Notation
Representation
Inference

Maximum Likelihood and Least-Squared Error
Minimum Description Length Principle
Summary
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Bayes Theorem

Bayes Theorem

machine learning is interested in the best hypothesis h from
some space H, given observed training data D
best hypothesis ≈ most probable hypothesis

⇒ Bayes Theorem provides a direct method of calculating the
probability of such a hypothesis based on its prior probability,
the probabilities of observing various data given the hypothesis,
and the observed data itself

Ute Schmid (CogSys, WIAI) ML – Bayesian Learning December 8, 2015 6 / 1



Bayes Theorem

Bayes Theorem

more formal:
P(h) prior probability of h, reflects any background knowledge
about the chance that h is correct
P(D) prior probability of D, probability that D will be observed
P(D|h) probability of observing D given a world in which h holds
P(h|D) posterior probability of h, reflects confidence that h holds
after D has been observed

Bayes Theorem:

P(h|D) =
P(D|h)P(h)

P(D)
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MAP Hypothesis

MAP Hypothesis

in many learning scenarios, the learner considers some set of
candidate hypotheses H and is interested in finding the most
probable hypothesis h ∈ H given the observed training data D
any maximally probable hypothesis is called maximum a posteriori
(MAP) hypotheses

hMAP = argmax
h∈H

P(h|D)

= argmax
h∈H

P(D|h)P(h)
P(D)

= argmax
h∈H

P(D|h)P(h)

note that P(D) can be dropped, because it is a constant
independent of h
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MAP Hypothesis

ML Hypothesis

sometimes it is assumed that every hypothesis is equally probable
a priori
in this case, the equation before can be simplified
because P(D|h) is often called the likelihood of D given h, any
hypothesis that maximizes P(D|h) is called maximum likelihood
(ML) hypothesis

hML = argmax
h∈H

P(D|h)

note that in this case P(h) can be dropped, because it is equal for
each h ∈ H
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MAP Hypothesis

Example
consider a medical diagnosis problem in which there are two
alternative hypotheses

the patient has a particular form of cancer (denoted by cancer )
the patient does not (denoted by ¬cancer )

the available data is from a particular laboratory with two possible
outcomes:
⊕ (positive) and 	 (negative)

P(cancer) = 0.008 P(¬cancer) = 0.992
P(⊕|cancer) = 0.98 P(	|cancer) = 0.02

P(⊕|¬cancer) = 0.03 P(	|¬cancer) = 0.97
suppose a new patient is observed for whom the lab test returns a
positive (⊕) result
Should we diagnose the patient as having cancer or not?

P(⊕|cancer)P(cancer) = (0.98)0.008 = 0.0078
P(⊕|¬cancer)P(¬cancer) = (0.03)0.992 = 0.0298

⇒ hMAP = ¬cancer
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MAP Hypothesis

Example

the exact posterior probabilities can be determined by normalizing
the above properties to 1

P(cancer |⊕) = 0.0078
0.0078 + 0.0298

= 0.21

P(¬cancer |⊕) = 0.0298
0.0078 + 0.0298

= 0.79

⇒ the result of Bayesian inference depends strongly on the prior
probabilities, which must be available in order to apply the method
directly
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Byes Theorem and Concept Learning

Bayes Theorem and Concept Learning

What is the relationship between Bayes theorem and the problem
of concept learning?
it can be used for designing a straightforward learning algorithm
Brute-Force MAP LEARNING algorithm

1 For each hypothesis h ∈ H, calculate the posterior probability

P(h|D) =
P(D|h)P(h)

P(D)

2 Output hypothesis hMAP with the highest posterior probability

hMAP = argmax
h∈H

P(h|D)
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Brute-Force MAP LEARNING

Brute-Force MAP LEARNING

in order to specify a learning problem for the algorithm, values for
P(h) and P(D|h) must be specified
assumptions

1 training data D is noise free (i.e., di = c(xi))
2 target concept c is contained in H

(i.e. (∃h ∈ H)[(∀x ∈ X )[h(x) = c(x)]])
3 no reason to believe that any hypothesis is more probable than any

other

⇒ P(h) =
1
|H|

for all h ∈ H

⇒ P(D|h) =

{
1 if di = h(xi) for all di ∈ D
0 otherwise
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Brute-Force MAP LEARNING

Brute-Force MAP LEARNING

now the problem for the learning algorithms is fully-defined
in a first step, we have to determine the probabilities for P(h|D)

h is inconsistent with training data D

P(h|D) =
0 · P(h)
P(D)

= 0

h is consistent with training data D

P(h|D) =
1 · 1

|H|

P(D)
=

1 · 1
|H|

|VSH,D|
|H|

=
1

|VSH,D|

⇒ The sum over all hypotheses of P(h|D) must be one and
the number of hypotheses consistent with D is by definition
|VSH,D|.

⇒ this analysis implies that, under these assumptions, each
consistent hypothesis is a MAP hypothesis, because for each
consistent hypothesis P(h|D) = 1

|VSH,D |
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Brute-Force MAP LEARNING

Brute-Force MAP LEARNING

hypotheseshypotheses hypotheses

P(h|D1,D2)P(h|D1)P(h)

evolution of probabilities
(a) all hypotheses have the same probability
(b) + (c) as training data accumulates, the posterior probability of
inconsistent hypotheses becomes zero while the total probability
summing to 1 is shared equally among the remaining consistent
hypotheses
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Brute-Force MAP LEARNING

Consistent Learners

every consistent learner outputs a MAP hypothesis, if we assume
a uniform prior probability distribution over H and deterministic,
noise-free training data
FIND-S

if c is contained in H, then
outputs a consistent hypothesis and therefore a MAP hypothesis
under the probability distributions P(h) and P(D|h) defined above
i.e. for each P(h) that favors more specific hypotheses, FIND-S
outputs a MAP hypothesis

⇒ Bayesian framework is a way to characterize the behaviour of
learning algorithms

⇒ by identifying probability distributions P(h) and P(D|h) under
which the output is a optimal hypothesis, implicit assumptions of
the algorithm can be characterized (Inductive Bias)

⇒ inductive inference is modeled by an equivalent probabilistic
reasoning system based on Bayes theorem
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Bayes Optimal Classifier

Bayes Optimal Classifier

question: What is the most probable classification of the new
instance given the training data?
simply applying hMAP is not the best solution (as one could
wrongly think of)
example:

H = {h1,h2,h3} where P(h1|D) = .4, P(h2|D) = P(h3|D) = .3
hMAP = h1
consider a new instance x encountered, which is classified positive
by h1 and negative by h2,h3
taking all hypotheses into account,
• the probability that x is positive is .4 and
• the probability that x is negative is .6

⇒ most probable classification 6= classification of hMAP
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Bayes Optimal Classifier

Bayes Optimal Classifier

the most probable classification is obtained by combining the
predictions of all hypotheses, weighted by their posterior
probabilities

P(vj |D) =
∑
hi∈H

P(vj |hi)P(hi |D)

where P(vj |D) is the probability that the correct classification is vj

Bayes optimal classifier:

argmax
vj∈V

∑
hi∈H

P(vj |hi)P(hi |D)
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Bayes Optimal Classifier

Illustrative Example

V = {⊕,	}

P(h1,D) = 0.4 P(	,h1) = 0 P(⊕,h1) = 1
P(h2,D) = 0.3 P(	,h2) = 1 P(⊕,h2) = 0
P(h3,D) = 0.3 P(	,h3) = 1 P(⊕,h3) = 0

therefore ∑
hi∈H

P(⊕|hi)P(hi |D) = 0.4

∑
hi∈H

P(	|hi)P(hi |D) = 0.6

and

argmax
vj∈{⊕,	}

∑
hi∈H

P(vj |hi)P(hi |D) = 	
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Naive Bayes Classifier

Naive Bayes Classifier

applies to learning tasks where each instance x is described by a
conjunction of attribute values and where the target function f (x)
can take on any value from some finite set V
training examples are described by 〈a1,a2, ...,an〉
Bayesian approach

vMAP = argmax
vj∈V

P(vj |a1,a2, ...,an)

= argmax
vj∈V

P(a1,a2, ...,an|vj)P(vj)

P(a1,a2, ...,an)

= argmax
vj∈V

P(a1,a2, ...,an|vj)P(vj)
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Naive Bayes Classifier

Naive Bayes Classifier

P(vj) can be estimated by counting the frequency of vj in D
P(a1,a2, ...,an|vj) cannot by estimated in this fashion

number of these terms is |X | · |V |
simplification of naive Bayes classifier

attribute values are conditionally independent
hence, P(a1,a2, ...,an|vj) =

∏
i P(ai |vj)

hence, number terms is

|distinct attributes| · |distinct target values|

no explicit search through H, just counting frequencies

⇒ Naive Bayes Classifier

vNB = argmax
vj∈V

P(vj)
∏

i

P(ai |vj)
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Naive Bayes Classifier

Illustrative Example
example days:
Day Sunny Temp. Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Naive Bayes Classifier

Illustrative Example

novel instance:
〈Outlook = Sunny ,Temperature = Cool ,Humidity = High,Wind = Strong〉

Instantiation of the Naive Bayes Classifier

vNB = argmax
vj∈{yes,no}

P(vj)
∏

i

P(ai |vj)

where∏
i

P(ai |vj) =P(Outlook = sunny |vj) · P(Temperature = cool |vj)·

P(Humidity = high|vj) · P(Wind = strong|vj)

estimation of probabilities
P(PlayTennis = yes) = 9

14 = 0.64
P(PlayTennis = no) = 5

14 = 0.36
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Naive Bayes Classifier

Illustrative Example

similarly, conditional probabilities can be estimated
(e.g. Wind = Strong)

P(Wind = Strong|PlayTennis = yes) = 3
9 = 0.33

P(Wind = Strong|PlayTennis = no) = 3
5 = 0.60

calculation of vNB
P(yes)P(sunny |yes)P(cool |yes)P(high|yes)P(strong|yes) = 0.0053

P(no)P(sunny |no)P(cool |no)P(high|no)P(strong|no) = 0.0206

⇒ vNB = no

normalization
0.0206

0.0206+0.0053 = 0.795
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Estimating Probabilities

Estimating Probabilities

normally, probabilities are estimated by the fraction of times the
event is observed to occur over the total number of opportunities
(nc

n )
in most cases, this method is a good estimate
but if nc is very small, it provides poor results

biased underestimate of the probability
if this estimate equals zero, it will dominate the Bayes classifier

Bayesian approach: m-estimate

nc + mp
n + m

where p is a prior estimate of the probability we wish to determine,
and m is a constant called the equivalent sample size which
determines how heavily to weight p relative to the observed data
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Estimating Probabilities

Estimating Probabilities

in the absence of information, it is common to assume a uniform
distribution for p
hence, p = 1

k where k is the number of possible attribute values
if m = 0, the m-estimate is equivalent to nc

n

m can be interpreted as the number of virtual samples distributed
according to p that are added the n actual observed examples
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Bayesian Belief Networks

Bayesian Belief Networks

motivation
naive Bayes classifier makes significant use of the assumption of
conditional independence
this assumption dramatically reduces the complexity of the
learning task
however, in many cases this assumption is overly restrictive

Bayesian Belief Network
describes probability distribution governing a set of variables by
specifying a set of conditional independence assumptions
along with a set of conditional probabilities
conditional independence assumption applies only to subsets of
the variables
Graphical models such as Hidden Markov Models are special
cases of Bayesian networks
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Bayesian Belief Networks Notation

Notation

Bayesian Belief Networks describe the probability distribution over
a set of variables
arbitrary set of random variables Y1, ...,Yn where V (Yi) is the set
of possible values for Yi

joint space: V (Y1)× V (Y2)× ...× V (Yn)

joint probability distribution specifies the probability for each of the
possible variable bindings for the tuple 〈Y1,Y2, ...,Yn〉
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Bayesian Belief Networks Representation

Representation

ForestFireThunder

Lightening Campfire

Storm BusTourGroup

Conditional Probability Table for “CampFire”

S,B S, ¬B ¬S,B ¬S,¬B
C 0.4 0.1 0.8 0.2
¬C 0.6 0.9 0.2 0.8
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Bayesian Belief Networks Representation

Representation

joint probability distribution over the boolean variables Storm,
Lighting, Thunder , ForestFire, CampFire, and BusTourGroup
set of conditional independence assumptions

represented by a directed acyclic graph (DAG)
node ≈ variables in the joint space
arcs ≈ conditional dependence of the originator

for each node a conditional probability table is given
describes probability distribution for the variable given the values of
its immediate predecessors
the joint probability for any desired assignment of 〈y1, y2, ..., yn〉 is
computed by

P(y1, y2, ..., yn) =
n∏

i=1

P(yi |Parents(Yi))

where Parents(Yi) denotes the set of immediate predecessors of Yi
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Bayesian Belief Networks Inference

Inference

task: inference of the probability distribution for a target value,
e.g. ForestFire
if values are known for all other variables in the network, the
inference is straightforward
in the more general case, values are only known for a subset of
the network variables
a Bayesian Network can be used to compute the probability
distribution for any subset of network variables given the values or
distributions for any subset of the remaining variables
exact inference is NP-hard, even approximate inference can be
NP-hard
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Bayesian Belief Networks Inference

Categorisation of Algorithms

network structure: known or unknown
network variables: observable or partially observable
in case of known structure and fully observable variables, the
conditional probabilities can be estimated as for naive Bayes
classifier
in case of known structure and partially observable variables, the
learning problem can be compared to learning weights for an ANN
(Russel et al., 1995)
in case of unknown structure, heuristic algorithms or scoring
metric have to be used (Cooper and Herskovits, 1992)

Ute Schmid (CogSys, WIAI) ML – Bayesian Learning December 8, 2015 32 / 1



Bayesian Belief Networks Inference

Using the Bayes Approach to Characterize
ML-Algorithms

Maximum Likelihood and Least-Squared Error
problem: learning continuous-valued target functions
(e.g. neural networks, linear regression, etc.)
under certain assumptions any learning algorithm that minimizes
the squared error between the output hypothesis and the training
data, will output a ML hypothesis

Minimum Description Length Principle
closely related to Occam’s razor:
choose the shortest explanation for the observed data
consider hMAP by basic concepts of information theory
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Maximum Likelihood and Least-Squared Error

Maximum Likelihood and Least-Squared Error

problem: learning continuous-valued target functions (e.g. neural
networks, linear regression, etc.)
under certain assumptions any learning algorithm that minimizes
the squared error between the output hypothesis and the training
data, will output a ML hypothesis
problem setting:

(∀h ∈ H)[h : X → <] and training examples of the form 〈xi ,di〉
unknown target function f : X → <
m training examples, where the target value of each example is
corrupted by random noise drawn according to a Normal probability
distribution with zero mean (di = f (xi) + ei )

f

h ML

e
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Maximum Likelihood and Least-Squared Error

Maximum Likelihood and Least-Squared Error

hML = argmax
h∈H

p(D|h)

The training examples are assumed to be mutually independent given
h.

hML = argmax
h∈H

m∏
i=1

p(di |h)

Given that the noise ei obeys a normal distribution with zero mean and
unknown variance σ2, each di must also obey a Normal distribution
around the true target value f (xi).
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Maximum Likelihood and Least-Squared Error

Maximum Likelihood and Least-Squared Error

Density Function of Normal Distribution:

1√
2πσ2

e−
1

2σ2 (x−µ)
2

Because we are writing the expression for P(D|h), we assume h is the
correct description of f . Hence, µ = f (xi) = h(xi)

hML = argmax
h∈H

m∏
i=1

1√
2πσ2

e−
1

2σ2 (di−h(xi ))
2
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Maximum Likelihood and Least-Squared Error

Maximum Likelihood and Least-Squared Error

It is common to maximize the less complicated logarithm, which is
justified because of the monotonicity of this function.

hML = argmax
h∈H

m∑
i=1

ln
1√

2πσ2
− 1

2σ2 (di − h(xi))
2

The first term in this expression is a constant independent of h and can
therefore be discarded.

hML = argmax
h∈H

m∑
i=1

− 1
2σ2 (di − h(xi))

2

Maximizing this negative term is equivalent to minimizing the
corresponding positive term.

hML = argmin
h∈H

m∑
i=1

1
2σ2 (di − h(xi))

2
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Maximum Likelihood and Least-Squared Error

Maximum Likelihood and Least-Squared Error

Finally, all constants independent of h can be discarded.

hML = argmin
h∈H

m∑
i=1

(di − h(xi))
2

⇒ the hML is one that minimizes the sum of the squared errors

Why is it reasonable to choose the Normal distribution to
characterize noise?

good approximation of many types of noise in physical systems
Central Limit Theorem shows that the sum of a sufficiently large
number of independent, identically distributed random variables
itself obeys a Normal distribution

Only noise in the target value is considered, not in the attributes
describing the instances themselves
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Minimum Description Length Principle

Minimum Description Length Principle

recall Occam’s razor: choose the shortest explanation for the
observed data
here, we consider a Bayesian perspective on this issue and a
closely related principle
Minimum Description Length (MDL) Principle

motivated by interpreting the definition of hMAP in the light from
information theory

hMAP = argmax
h∈H

P(D|h)P(h)

hMAP = argmax
h∈H

log2 P(D|h) + log2 P(h)

hMAP = argmin
h∈H

− log2 P(D|h)− log2 P(h)

this equation can be interpreted as a statement that short
hypotheses are preferred, assuming a particular representation
scheme for encoding hypotheses and data
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Minimum Description Length Principle

Minimum Description Length Principle

introduction to a basic result of information theory
consider the problem of designing a code C to transmit messages
drawn at random
probability of encountering message i is pi
interested in the most compact code C
Shannon and Weaver (1949) showed that the optimal code
assigns − log2 pi bits to encode message i
LC(i) ≈ description length of message i with respect to C

LCH (h) = − log2 P(h), where CH is the optimal code for hypothesis
space H
LCD|h(D|h) = − log2 P(D|h), where CD|h is the optimal code for
describing data D assuming that both the sender and receiver
know hypothesis h

⇒ Minimum description length principle
hMAP = argmin

h∈H
LCH (h) + LCD|h(D|h)
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Minimum Description Length Principle

Minimum Description Length Principle

to apply this principle in practice, specific encodings or
representations appropriate for the given learning task must be
chosen
application to decision tree learning

CH might be some obvious encoding, in which the description
length grows with the number of nodes and with the number of
edges
choice of CD|h?
• sequence of instances 〈x1, ..., xm〉 is known to the transmitter and the

receiver
• we need only to transmit the classifications 〈f (x1), ..., f (xm)〉
• if h correctly predicts the classification, no transmission is necessary

(LCD|h (D|h) = 0)
• in case of misclassified examples, for each misclassification a

message has to be sent that identifies this example (at most log2 m
bits) as well as its correct classification (at most log2 k bits, where k is
the number of possible classifications)
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Minimum Description Length Principle

Minimum Description Length Principle

MDL principle provides a way for trading off hypothesis complexity
for the number of errors committed by the hypothesis
one way of dealing with the issue of overfitting
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Summary

Summary

Bayes classification learning is based on the concept of the
probability of hypotheses given observations
Typically, maximum likelihood (ML) or maximum a posteriori
(MAP) hypotheses are learned
Probabilities are estimated from the training data
Naive Bayes Classifiers are competitive with decision trees and
ANNs
Bayesian Networks are graphical models where a graph
represents the conditional dependence structure between random
variables
The conceputalization of machine learning in the Bayesian
framework offers the possibility to formally analyse properties of
learning algorithms
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Summary

Learning Terminology

Naive Bayes

Supervised Learning unsupervised learning

Approaches:
Concept / Classification Policy Learning

symbolic statistical / neuronal network
inductive analytical

Learning Strategy: learning from examples
Data: categorial/metric features

Target Values: concept
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