
Lecture 12: Reinforcement Learning
Cognitive Systems - Machine Learning

Part III: Learning Programs and Strategies

Q Learning, Dynamic Programming

last change February 23, 2015

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 1 / 25



Motivation

Motivation

addressed problem: How can an autonomous agent that senses
and acts in its environment learn to choose optimal actions to
achieve its goals?
consider building a learning robot (i.e., agent)

the agent has a set of sensors to observe the state of its
environment and
a set of actions it can perform to alter its state
the task is to learn a control strategy, or policy, for choosing actions
that achieve its goals

assumption: goals can be defined by a reward function that
assigns a numerical value to each distinct action the agent may
perform from each distinct state

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 2 / 25



Motivation

Motivation

considered settings:
deterministic or non-deterministic outcomes
prior background knowledge available or not

similarity to function approximation:
approximating the function π : S → A

where S is the set of states and A the set of actions

differences to function approximation:
Delayed reward: training information is not available in the form
< s, π(s) >. Instead the trainer provides only a sequence of
immediate reward values.
Temporal credit assignment: determining which actions in the
sequence are to be credited with producing the eventual reward

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 3 / 25



Motivation

Motivation

differences to function approximation (cont.):
exploration: distribution of training examples is influenced by the
chosen action sequence

• which is the most effective exploration strategy?
• trade-off between exploration of unknown states and exploitation of

already known states

partially observable states: sensors only provide partial information
of the current state (e.g. forward-pointing camera, dirty lenses)
life-long learning: function approximation often is an isolated task,
while robot learning requires to learn several related tasks within
the same environment

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 4 / 25



Outline

Outline

The Learning Task
Q Learning

Algorithm

Experimentation Strategies
Generalizing From Examples
Relationship to Dynamic Programming
Advanced Topics

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 5 / 25



The Learning Task

The Learning Task

based on Markov Decision Processes (MDP)

the agent can perceive a set S of distinct states of its environment
and has a set A of actions that it can perform

at each discrete time step t , the agent senses the current state st ,
chooses a current action at and performs it

the environment responds by returning a reward rt = r(st ,at) and
by producing the successor state st+1 = δ(st ,at)

the functions r and δ are part of the environment and not
necessarily known to the agent

in an MDP, the functions r(st ,at) and δ(st ,at) depend only on the
current state and action

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 6 / 25



The Learning Task

The Learning Task

the task is to learn a policy π : S → A
one approach to specify which policy π the agent should learn is
to require the policy that produces the greatest possible
cumulative reward over time (discounted cumulative reward)

Vπ(st) ≡ rt + γrt+1 + γ2rt+2 . . .

≡
∞∑

i=0

γ i rt+i

where Vπ(st) is the cumulative value achieved by following an
arbitrary policy π from an arbitrary initial state st
rt+i is generated by repeatedly using the policy π and γ
(0 ≤ γ < 1) is a constant that determines the relative value of
delayed versus immediate rewards

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 7 / 25



The Learning Task

The Learning Task

Goal: Learn to choose actions that maximize
r0 + γr1 + γ2r2 + . . . , where 0 ≤ γ ≤ 1

hence, the agent’s learning task can be formulated as

π∗ ≡ argmax
π

Vπ(s), (∀s)

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 8 / 25



The Learning Task

Illustrative Example

the left diagram depicts a simple grid-world environment
squares ≈ states, locations
arrows ≈ possible transitions (with annotated r(s,a))
G ≈ goal state (absorbing state)

γ = 0.9
once states, actions and rewards are defined and γ is chosen, the
optimal policy π∗ with its value function V ∗(s) can be determined

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 9 / 25



The Learning Task

Illustrative Example

the right diagram shows the values of V ∗ for each state

e.g. consider the bottom-right state
V ∗ = 100, because π∗ selects the “move up” action that
receives a reward of 100
thereafter, the agent will stay in G and receive no further awards
V ∗ = 100 + γ · 0 + γ2 · 0 + ... = 100

e.g. consider the bottom-center state
V ∗ = 90, because π∗ selects the “move right” and “move up”
actions
V ∗ = 0 + γ · 100 + γ2 · 0 + ... = 90

recall that V ∗ is defined to be the sum of discounted future awards
over infinite future

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 10 / 25



Q Learning

Q Learning

it is easier to learn a numerical evaluation function than implement
the optimal policy in terms of the evaluation function
question: What evaluation function should the agent attempt to
learn?
one obvious choice is V ∗

the agent should prefer s1 to s2 whenever V ∗(s1) > V ∗(s2)

problem: the agent has to chose among actions, not among
states

π∗(s) = argmax
a

[r(s,a) + γV ∗(δ(s,a))]

the optimal action in state s is the action a that maximizes the sum
of the immediate reward r(s,a) plus the value of V ∗ of the
immediate successor, discounted by γ

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 11 / 25



Q Learning

Q Learning

thus, the agent can acquire the optimal policy by learning V ∗,
provided it has perfect knowledge of the immediate reward
function r and the state transition function δ
in many problems, it is impossible to predict in advance the exact
outcome of applying an arbitrary action to an arbitrary state
the Q function provides a solution to this problem

Q(s,a) indicates the maximum discounted reward that can be
achieved starting from s and applying action a first

Q(s,a) = r(s,a) + γV ∗(δ(s,a))

⇒ π∗(s) = argmax
a

Q(s,a)

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 12 / 25



Q Learning

Q Learning

hence, learning the Q function corresponds to learning the optimal
policy π∗

if the agent learns Q instead of V ∗, it will be able to select optimal
actions even when it has no knowledge of r and δ
it only needs to consider each available action a in its current state
s and chose the action that maximizes Q(s,a)
the value of Q(s,a) for the current state and action summarizes in
one value all information needed to determine the discounted
cumulative reward that will be gained in the future if a is selected
in s

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 13 / 25



Q Learning

Q Learning

the right diagram shows the corresponding Q values
the Q value for each state-action transition equals the r value for
this transition plus the V ∗ value discounted by γ

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 14 / 25



Q Learning Algorithm

Q Learning Algorithm

key idea: iterative approximation
relationship between Q and V ∗

V ∗(s) = max
a′

Q(s,a′)

Q(s,a) = r(s,a) + γmax
a′

Q(δ(s,a),a′)

this recursive definition is the basis for algorithms that use iterative
approximation
the learner’s estimate Q̂(s,a) is represented by a large table with
a separate entry for each state-action pair

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 15 / 25



Q Learning Algorithm

Q Learning Algorithm

Algorithm
For each s,a initialize the table entry Q̂(s,a) to zero
Observe the current state s
Do forever:

Select an action a and execute it

Receive immediate reward r

Observe new state s′

Update the table entry for Q̂(s,a) as follows

Q̂(s,a)← r + γmaxa′Q̂(s′,a′)

s ← s′

⇒ Using this algorithm the agent’s estimate Q̂ converges to the actual Q,
provided the system can be modeled as a deterministic Markov decision
process, r is bounded, and actions are chosen so that every state-action pair
is visited infinitely often.

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 16 / 25



Q Learning Algorithm

Illustrative Example

Q̂(s1,aright)← r + γ ·max
a′

Q̂(s2,a′)

← 0 + 0.9 ·max{63,81,100}
← 90

the old values are read from our Q̂-table, which are about to be
updated in each step
each time the agent moves, Q Learning propagates Q̂ estimates
backwards from the new state to the old and updates the
corresponding value in the table

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 17 / 25



Q Learning Algorithm

Illustrative Example

Table before the move

(s,a) Q̂
1,→ 72
2,← 63
2,→ 100
2, ↓ 81

Table after the move

(s,a) Q̂
1,→ 90
2,← 63
2,→ 100
2, ↓ 81

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 18 / 25



Experimentation Strategies

Experimentation Strategies

algorithm does not specify how actions are chosen by the agent

obvious strategy: select action a that maximizes Q̂(s,a)
risk of overcommitting to actions with high Q̂ values during earlier
trainings
exploration of yet unknown actions is neglected

alternative: probabilistic selection

P(ai |s) =
k Q̂(s,ai )∑
j k Q̂(s,aj )

k > 0 indicates how strongly the selection favors actions with high
Q̂ values

k large⇒ exploitation strategy
k small⇒ exploration strategy

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 19 / 25



Generalizing From Examples

Generalizing From Examples

so far, the target function is represented as an explicit lookup table
the algorithm performs a kind of rote learning and makes no
attempt to estimate the Q value for yet unseen state-action pairs

⇒ unrealistic assumption in large or infinite spaces or when
execution costs are very high

incorporation of function approximation algorithms such as
BACKPROPAGATION

table is replaced by a neural network using each Q̂(s,a) update as
training example (s and a are inputs, Q̂ the output)
a neural network for each action a

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 20 / 25



Relationship to Dynamic Programming

Relationship to Dynamic Programming

Q Learning is closely related to dynamic programming
approaches that solve Markov Decision Processes

dynamic programming
assumption that δ(s,a) and r(s,a) are known
focus on how to compute the optimal policy
mental model can be explored (no direct interaction with
environment)

⇒ offline system

Q Learning
assumption that δ(s,a) and r(s,a) are not known
direct interaction inevitable

⇒ online system

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 21 / 25



Relationship to Dynamic Programming

Relationship to Dynamic Programming

relationship is append by considering the Bellman’s equation,
which forms the foundation for many dynamic programming
approaches solving Markov Decision Processes

(∀s ∈ S)V ∗(s) = E [r(s, π(s)) + γV ∗(δ(s, π(s)))]

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 22 / 25



Advanced Topics

Advanced Topics

different updating sequences

proof of convergence

non-deterministic rewards and actions

temporal difference learning

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 23 / 25



Summary

Summary

Reinforcement learning is an incremental approach to learning
where an agent improves its performance by optimizing a reward
function
In contrast to classification learning, a policy (strategy to select
actions) is learned
A basic approach to RL is Q-Learning where the numerical
evaluation function is learned based on a dynamic programming
principle

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 24 / 25



Summary

Learning Terminology

Q-Learning, Reinforcement Learning

Supervised Learning unsupervised learning

Approaches:
Concept / Classification Policy Learning

symbolic statistical / neuronal network
inductive analytical

Learning Strategy: incremental learning from reinforcement
Data: categorial/metric features

Output: action sequence

Ute Schmid (CogSys, WIAI) ML – Reinforcement Learning February 23, 2015 25 / 25


	Motivation
	Outline
	The Learning Task
	Q Learning
	Algorithm

	Experimentation Strategies
	Generalizing From Examples
	Relationship to Dynamic Programming
	Advanced Topics
	Summary

