Lecture 4: Artificial Neural Networks

Perceptrons, Multi-Layer Perceptrons, Delta-Rule, Backpropagation

Ute Schmid

Cognitive Systems, Applied Computer Science, University of Bamberg www.uni-bamberg.de/cogsys

Last change: November 21, 2020

Outline

- Perceptron
- Delta Rule
- Backpropagation
- Multi-layer Perceptron (feed forwards netowrk)
- Inductive Bias

Biological Motivation

Artificial Neural Networks

- realize highly parallel computation
- are based on distributed representation
- are highly performant but data intensive machine learning algorithms
- typically are only very roughly related to biological processes

Computer vs. Brain

	Computer	Brain
computation units	1 CPU ($> 10^7$ transistors)	10^{11} neurons
memory units	64 GB RAM	10 ¹¹ neurons
	10 TB HDD	10 ¹⁴ synapses
clock	10^{-10} sec	10^{-3} sec
transmission	$> 10^{11} \ { m bits/sec}$	$> 10^{14} \; \mathrm{bits/sec}$

Computer: typically serial, fast

• Brain: parallel, slow, robust wrt noisy data

(Magnitudes given for computers are open to change.)

Appropriate Problems - Perceptron

The perceptron algorithm is an early neuro-inspired approach to machine learning

- instances are represented as many attribute-value pairs
 - ► input values can be any real values
- target function output is binary
- Hypotheses are linear, that is, hyper-planes which partition the hypothesis space in two areas (concept/not concept)
- When Minsky and Papert showed in their book *Perceptrons* (1969) that perceptrons cannot learn XOR problems, research in neuro-inspired approaches was mainly given up until it re-emerged end of the 1980ies.
- Support Vector Machines also rely on learning hyper-planes, but use the kernel trick to deal with data sets which are not linearly separable.

Appropriate Problems - Backpropagation

The backpropagation algorithm is the most commonly used ANN learning technique with the following characteristics:

- instances are represented as many attribute-value pairs
 - ► input values can be any real values
- target function output may be discrete-, real- or vector- valued
- training examples may contain errors
- long training times are acceptable
- fast evaluation of the learned target function may be required
 - ▶ many iterations may be necessary to converge to a good approximation
- ability of humans to understand the learned target function is not important
 - ▶ learned weights are not intuitively understandable

Perceptrons

- takes a vector of real-valued inputs $(x_1, ..., x_n)$ weighted with $(w_1, ..., w_n)$
- calculates the linear combination of these inputs

 - $-w_0$ denotes a threshold value, i.e. that value which must be reached by the linear combination of inputs to cause the perceptron to output 1
 - \triangleright x_0 is always 1
- outputs 1 if the result is greater than 0, otherwise -1

Representational Power

- a perceptron represents a hyperplane decision surface in the n-dimensional space of instances
- some sets of examples cannot be separated by any hyperplane, those that can be separated are called **linearly separable**
- many boolean functions can be represented by a perceptron: AND, OR, NAND, NOR

Perceptron Training Rule

- ullet problem: determine a weight vector \vec{w} that causes the perceptron to produce the correct output for each training example
- perceptron training rule:

```
w_i = w_i + \Delta w_i where \Delta w_i = \eta(t-o)x_i t target output o perceptron output \eta learning rate (usually some small value, e.g. 0.1)
```

Algorithm

- f 1 initialize ec w to random weights
- ② repeat, until each training example is classified correctly
 ⇒ apply perceptron training rule to each training example
- \bullet convergence guaranteed provided $\it linearly~separable$ training examples and sufficiently small η

Delta Rule

- perceptron rule fails if data is not linearly separable
- delta rule converges toward a best-fit approximation
- uses gradient descent to search the hypothesis space
 - perceptron cannot be used, because it is not differentiable
 - hence, a unthresholded linear unit is appropriate
 - error measure (instead of perceptron training rule):

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- to understand gradient descent, it is helpful to visualize the entire hypothesis space with
 - ▶ all possible weight vectors and
 - associated F values

Error Surface

• the axes w_0 , w_1 represent possible values for the two weights of a simple linear unit

⇒ error surface must be parabolic with a single global minimum

Derivation of Gradient Descent

- problem: How calculate the steepest descent along the error surface?
- ullet derivative of E with respect to each component of $ec{w}$
- this vector derivative is called *gradient* of E, written $\nabla E(\vec{w})$ (the nabla operator)

$$\nabla E(\vec{w}) \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, ..., \frac{\partial E}{\partial w_n}\right]$$

- $\nabla E(\vec{w})$ specifies the steepest ascent, so $-\nabla E(\vec{w})$ specifies the steepest descent
- training rule: $w_i = w_i + \Delta w_i$

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$
 and $\frac{\partial E}{\partial w_i} = \sum_{d \in D} (t_d - o_d)(-x_{id})$
 $\Rightarrow \Delta w_i = \eta \sum_{d \in D} (t_d - o_d)x_{id}$

Differentiating E

$$\frac{\partial E}{\partial w_i} =
\frac{\partial}{\partial w_i} \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2 =
\frac{1}{2} \sum_{d \in D} \frac{\partial}{\partial w_i} (t_d - o_d)^2 =
\frac{1}{2} \sum_{d \in D} 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d) =
\sum_{d \in D} (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \vec{x}_d) =
\sum_{d \in D} (t_d - o_d) (-x_{id})$$

Remember:

Outer and inner derivation for $y = u^2$: $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ with $u = t_d - o_d$

Incremental Gradient Descent

- application difficulties of gradient descent
 - ► convergence may be quite slow
 - ▶ in case of many local minima, the global minimum may not be found
- idea: approximate gradient descent search by updating weights incrementally, following the calculation of the error for each individual example

$$\Delta w_i = \eta(t-o)x_i$$
 where $E_d(\vec{w}) = \frac{1}{2}(t_d-o_d)^2$

- key differences:
 - ▶ weights are not summed up over all examples before updating
 - ► requires less computation
 - better for avoidance of local minima

Gradient Descent

Algorithm

GRADIENT-DESCENT(training_examples, η)

Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate.

- Initialize each w_i to some small random value
- Until the termination condition is met, Do
 - ▶ Initialize each Δw_i to zero
 - ► For each $\langle \vec{x}, t \rangle$ in training_examples, Do
 - Input the instance \vec{x} to the unit and compute the output o
 - For each linear unit weight w_i , Do $\Delta w_i = \Delta w_i + \eta(t-o)x_i^*$
 - ► For each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i^{**}$

To implement incremental approximation, equation ** is deleted and equation * is replaced by $w_i \leftarrow w_i + \eta(t - o)x_i$.

Perceptron vs. Delta Rule

perceptron training rule:

- ▶ uses thresholded unit
- converges after a finite number of iterations
- output hypothesis classifies training data perfectly
- ► linearly separability necessary

delta rule:

- uses unthresholded linear unit
- ► converges asymptotically toward a minimum error hypothesis
- ▶ termination is not guaranteed
- ► linear separability not necessary

Multi-layer Networks (ANNs)

- capable of learning non-linear decision surfaces
- normally directed and acyclic ⇒ Feed-forward Network
- based on sigmoid unit
 - ► much like a perceptron
 - ▶ but based on a smoothed, differentiable threshold function

$$\begin{split} \sigma(\textit{net}) &= \frac{1}{1 + e^{-\textit{net}}} \\ \lim_{\textit{net} \to +\infty} \sigma(\textit{net}) &= 1 \\ \lim_{\textit{net} \to -\infty} \sigma(\textit{net}) &= 0 \end{split}$$

Backpropagation

- learns weights for a feed-forward multilayer network with a fixed set of neurons and interconnections
- employs gradient descent to minimize error
- redefinition of F
 - has to sum the errors over all units
 - $\blacktriangleright E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text{outputs}} (t_{kd} o_{kd})^2$

problem:

search through a large H defined over all possible weight values for all units in the network

Backpropagation - Algorithm

BACKPROPAGATION(training_examples, η , n_{in} , n_{out} , n_{hidden})

The input from unit i to unit j is denoted x_{ij} and the weight from unit i to unit j is denoted w_{ij} .

- \bullet Create a feed-forward network with n_{in} inputs, n_{hidden} hidden units, and n_{out} output units
- Initialize all network weights to small random numbers
- Until the termination condition is met, Do (EPOCHE)
 - ► For each $\langle \vec{x}, \vec{t} \rangle$ in training_examples, Do

Propagate the input forward through the network:

1. Input \vec{x} to the network and compute o_u of every unit u

Propagate the errors back through the network:

- 2. For each network **output unit** k, calculate its error term δ_k $\delta_k \leftarrow o_k (1 o_k) (t_k o_k)$
- 3. For each **hidden unit** h, calculate its error term δ_h $\delta_h \leftarrow o_h(1 o_h) \sum_{k \in \text{outputs}} w_{kh} \delta_k$
- 4. Update each weight wij

$$w_{ji} \leftarrow w_{ji} + \Delta w_{ji}$$
 where $\Delta w_{ji} = \eta \delta_j x_{ji}$

Termination conditions

- fixed number of iterations
- error falls below some threshold
- error on a separate validation set falls below some threshold
- important:
 - ► too few iterations reduce error insufficiently
 - ▶ too many iterations can lead to overfitting the data

Adding Momentum

- one way to avoid local minima in the error surface or flat regions
- make the weight update in the n^{th} iteration depend on the update in the $(n-1)^{th}$ iteration

$$\Delta w_{ji}(n) = \eta \delta_j x_{ji} + \alpha \Delta w_{ji}(n-1)$$

Note: $\Delta w_{ji}(n-1)$ represents the cumulative updates for this weight in the complete last epoch.

$$0 < \alpha < 1$$

Representational Power

- boolean functions:
 - every boolean function can be represented by a two-layer network
- continuous functions:
 - every continuous function can be approximated with arbitrarily small error by a two-layer network (sigmoid units at the hidden layer and linear units at the output layer)
- arbitrary functions:
 - ► each arbitrary function can be approximated to arbitrary accuracy by a three-layer network

Inductive Bias

 every possible assignment of network weights represents a syntactically different hypothesis

$$H = \{\vec{w} | \vec{w} \in \Re^{(n+1)}\}$$

- inductive bias: smooth interpolation between data points
 - ► Multilayer Networks: smooth interpolation between data points ⇒ Preference bias
 - ► Perceptron: linear separability necessary
 - ⇒ Restriction bias

Illustrative Example - Face Recognition

Task:

- classifying camera image of faces of various people
- ► images of 20 people were made, including approximately 32 different images per person
- \blacktriangleright image resolution 120×128 with each pixel described by a grey-scale intensity between 0 and 255
- identifying the direction in which the persons are looking (i.e., left, right, up, ahead)

Illustrative Example - Design Choices

• input encoding:

- ▶ image encoded as a set of 30 × 32
- pixel intensity values ranging from 0 to 255 linearly scaled from 0 to 1
- ⇒ reduces the number of inputs and network weights
- ⇒ reduces computational demands

output encoding:

- network must output one of four values indicating the face direction
- ► 1-of-n output encoding: 1 output unit for each direction
- ⇒ more degrees of freedom
- ⇒ difference between highest and second-highest output can be used as a measure of classification confidence

Illustrative Example - Design Choices

network graph structure:

- ► BACKPROPAGATION works with any DAG of sigmoid units
- question of how many units and how to interconnect them
- ► using *standard design*: hidden layer and output layer where every unit in the hidden layer is connected with every unit in the output layer
- ⇒ 30 hidden units
- \Rightarrow test accuracy of 90%

Further Topics

- hidden layer representations
- alternative error functions
- recurrent networks
- dynamically modifying network structure
- different variants of Deep Learning Networks

Summary

- able to learn discrete-, real- and vector-valued target functions
- noise in the data is allowed
- perceptrons learn hyperplane decision surfaces (linear separability)
- multilayer networks can learn non-linear decision surfaces
- Backpropagation works on all feed-forward networks and uses gradient-descent to minimize the squared error over the set of training examples
- an arbitrary function can be approximated to arbitrary accuracy by a three-layer network

${\sf Perceptrons} \ / \ {\sf Multilayer} \ {\sf Perceptrons}$

	Supervised Learning	unsupervised learning
--	---------------------	-----------------------

Approaches:

Concept / Classification	Policy Learning
symbolic	statistical / neuronal network
inductive	analytical

Learning Strategy:	learning from examples
Data:	categorial/metric features
Target Values:	arbitrary (concept, class, value, vector)