
Lecture 4: Artificial Neural Networks
Perceptrons, Multi-Layer Perceptrons, Delta-Rule, Backpropagation

Ute Schmid

Cognitive Systems, Applied Computer Science, University of Bamberg
www.uni-bamberg.de/cogsys

Last change: November 21, 2020

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 1 / 29

www.uni-bamberg.de/cogsys


Outline

Perceptron

Delta Rule

Backpropagation

Multi-layer Perceptron (feed forwards netowrk)

Inductive Bias

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 2 / 29



Biological Motivation

biological learning systems are
built of complex webs of
interconnected neurons

Artificial Neural Networks

realize highly parallel computation

are based on distributed representation

are highly performant but data intensive machine learning algorithms

typically are only very roughly related to biological processes

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 3 / 29



Computer vs. Brain

Computer Brain

computation units 1 CPU (> 107 transistors) 1011 neurons
memory units 64 GB RAM 1011 neurons

10 TB HDD 1014 synapses
clock 10−10 sec 10−3 sec
transmission > 1011 bits/sec > 1014 bits/sec

Computer: typically serial, fast

Brain: parallel, slow, robust wrt noisy data

(Magnitudes given for computers are open to change.)

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 4 / 29



Appropriate Problems – Perceptron

The perceptron algorithm is an early neuro-inspired approach to machine
learning

instances are represented as many attribute-value pairs
I input values can be any real values

target function output is binary

Hypotheses are linear, that is, hyper-planes which partition the
hypothesis space in two areas (concept/not concept)

When Minsky and Papert showed in their book Perceptrons (1969)
that perceptrons cannot learn XOR problems, research in
neuro-inspired approaches was mainly given up until it re-emerged
end of the 1980ies.

Support Vector Machines also rely on learning hyper-planes, but use
the kernel trick to deal with data sets which are not linearly separable.

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 5 / 29



Appropriate Problems – Backpropagation

The backpropagation algorithm is the most commonly used ANN learning
technique with the following characteristics:

instances are represented as many attribute-value pairs
I input values can be any real values

target function output may be discrete-, real- or vector- valued

training examples may contain errors

long training times are acceptable

fast evaluation of the learned target function may be required
I many iterations may be necessary to converge to a good approximation

ability of humans to understand the learned target function is not
important

I learned weights are not intuitively understandable

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 6 / 29



Perceptrons

takes a vector of real-valued inputs (x1, ..., xn) weighted with
(w1, ...,wn)

calculates the linear combination of these inputs
I

∑n
i=0 wixi = w0x0 + w1x1 + ...+ wnxn

I −w0 denotes a threshold value, i.e. that value which must be reached
by the linear combination of inputs to cause the perceptron to output 1

I x0 is always 1

outputs 1 if the result is greater than 0, otherwise −1

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 7 / 29



Representational Power

a perceptron represents a hyperplane decision surface in the
n-dimensional space of instances

some sets of examples cannot be separated by any hyperplane, those
that can be separated are called linearly separable

many boolean functions can be represented by a perceptron: AND,
OR, NAND, NOR

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 8 / 29



Perceptron Training Rule

problem: determine a weight vector ~w that causes the perceptron to
produce the correct output for each training example

perceptron training rule:
wi = wi + ∆wiwhere∆wi = η(t − o)xi

t target output
o perceptron output
η learning rate (usually some small value, e.g. 0.1)

Algorithm

1 initialize ~w to random weights
2 repeat, until each training example is classified correctly

⇒ apply perceptron training rule to each training example

convergence guaranteed provided linearly separable training examples
and sufficiently small η

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 9 / 29



Delta Rule

perceptron rule fails if data is not linearly separable

delta rule converges toward a best-fit approximation

uses gradient descent to search the hypothesis space
I perceptron cannot be used, because it is not differentiable
I hence, a unthresholded linear unit is appropriate
I error measure (instead of perceptron training rule):

E (~w) ≡ 1

2

∑
d∈D

(td − od)2

to understand gradient descent, it is helpful to visualize the entire
hypothesis space with

I all possible weight vectors and
I associated E values

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 10 / 29



Error Surface

the axes w0,w1 represent possible values for the two weights of a
simple linear unit

⇒ error surface must be parabolic with a single global minimum

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 11 / 29



Derivation of Gradient Descent

problem: How calculate the steepest descent along the error surface?

derivative of E with respect to each component of ~w

this vector derivative is called gradient of E , written ∇E (~w) (the
nabla operator)

∇E (~w) ≡ [
∂E

∂w0
,
∂E

∂w1
, ...,

∂E

∂wn
]

∇E (~w) specifies the steepest ascent, so −∇E (~w) specifies the steepest
descent

training rule: wi = wi + ∆wi

∆wi = −η ∂E
∂wi

and ∂E
∂wi

=
∑

d∈D(td − od)(−xid)

⇒ ∆wi = η
∑

d∈D(td − od)xid

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 12 / 29



Differentiating E

∂E
∂wi

=

∂
∂wi

1
2

∑
d∈D(td − od)2 =

1
2

∑
d∈D

∂
∂wi

(td − od)2 =

1
2

∑
d∈D 2(td − od) ∂

∂wi
(td − od) =∑

d∈D(td − od) ∂
∂wi

(td − ~w~xd) =∑
d∈D(td − od)(−xid)

Remember:
Outer and inner derivation for y = u2: dy

dx = dy
du

du
dx with u = td − od

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 13 / 29



Incremental Gradient Descent

application difficulties of gradient descent
I convergence may be quite slow
I in case of many local minima, the global minimum may not be found

idea: approximate gradient descent search by updating weights
incrementally, following the calculation of the error for each individual
example

∆wi = η(t − o)xi where Ed(~w) =
1

2
(td − od)2

key differences:
I weights are not summed up over all examples before updating
I requires less computation
I better for avoidance of local minima

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 14 / 29



Gradient Descent

Algorithm

GRADIENT-DESCENT(training examples, η)
Each training example is a pair of the form 〈~x , t〉 , where ~x is the vector of input values, and t is

the target output value. η is the learning rate.

Initialize each wi to some small random value

Until the termination condition is met, Do
I Initialize each ∆wi to zero
I For each 〈~x , t〉 in training examples, Do

• Input the instance ~x to the unit and compute the output o
• For each linear unit weight wi , Do ∆wi = ∆wi + η(t − o)x∗i

I For each linear unit weight wi , Do wi ← wi + ∆w∗∗i

To implement incremental approximation, equation ∗∗ is deleted and
equation ∗ is replaced by wi ← wi + η(t − o)xi .

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 15 / 29



Perceptron vs. Delta Rule

perceptron training rule:
I uses thresholded unit
I converges after a finite number of iterations
I output hypothesis classifies training data perfectly
I linearly separability necessary

delta rule:
I uses unthresholded linear unit
I converges asymptotically toward a minimum error hypothesis
I termination is not guaranteed
I linear separability not necessary

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 16 / 29



Multi-layer Networks (ANNs)

capable of learning non-linear decision surfaces

normally directed and acyclic ⇒ Feed-forward Network

based on sigmoid unit
I much like a perceptron
I but based on a smoothed, differentiable threshold function

σ(net) = 1
1+e−net

limnet→+∞ σ(net) = 1

limnet→−∞ σ(net) = 0

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 17 / 29



Backpropagation

learns weights for a feed-forward multilayer network with a fixed set of
neurons and interconnections

employs gradient descent to minimize error

redefinition of E
I has to sum the errors over all units
I E (~w) ≡ 1

2

∑
d∈D

∑
k∈outputs(tkd − okd)2

problem:
search through a large H defined
over all possible weight values
for all units in the network

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 18 / 29



Backpropagation - Algorithm

BACKPROPAGATION(training examples, η, nin, nout , nhidden)
The input from unit i to unit j is denoted xji and the weight from unit i to unit j is denoted wji .

Create a feed-forward network with nin inputs, nhidden hidden units, and nout output units

Initialize all network weights to small random numbers

Until the termination condition is met, Do (EPOCHE)

I For each 〈~x , ~t〉 in training examples, Do

Propagate the input forward through the network:

1. Input ~x to the network and compute ou of every unit u

Propagate the errors back through the network:

2. For each network output unit k, calculate its error term δk
δk ← ok(1− ok)(tk − ok)

3. For each hidden unit h, calculate its error term δh
δh ← oh(1− oh)

∑
k∈outputs wkhδk

4. Update each weight wji

wji ← wji + ∆wji where ∆wji = ηδjxji

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 19 / 29



Termination conditions

fixed number of iterations

error falls below some threshold

error on a separate validation set falls below some threshold

important:

I too few iterations reduce error insufficiently

I too many iterations can lead to overfitting the data

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 20 / 29



Adding Momentum

one way to avoid local minima in the error surface or flat regions

make the weight update in the nth iteration depend on the update in
the (n − 1)th iteration

∆wji (n) = ηδjxji + α∆wji (n − 1)

Note: ∆wji (n − 1) represents the cumulative updates for this weight in
the complete last epoch.

0 ≤ α ≤ 1

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 21 / 29



Representational Power

boolean functions:
I every boolean function can be represented by a two-layer network

continuous functions:
I every continuous function can be approximated with arbitrarily small

error by a two-layer network (sigmoid units at the hidden layer and
linear units at the output layer)

arbitrary functions:
I each arbitrary function can be approximated to arbitrary accuracy by a

three-layer network

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 22 / 29



Inductive Bias

every possible assignment of network weights represents a
syntactically different hypothesis

H = {~w |~w ∈ <(n+1)}

inductive bias: smooth interpolation between data points

I Multilayer Networks: smooth interpolation between data points
⇒ Preference bias

I Perceptron: linear separability necessary
⇒ Restriction bias

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 23 / 29



Illustrative Example - Face Recognition

Task:
I classifying camera image of faces of various people
I images of 20 people were made, including approximately 32 different

images per person
I image resolution 120× 128 with each pixel described by a grey-scale

intensity between 0 and 255
I identifying the direction in which the persons are looking

(i.e., left, right, up, ahead)

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 24 / 29



Illustrative Example - Design Choices

input encoding:
I image encoded as a set of 30× 32
I pixel intensity values ranging from 0 to 255 linearly scaled

from 0 to 1
⇒ reduces the number of inputs and network weights
⇒ reduces computational demands

output encoding:
I network must output one of four values indicating the face direction
I 1-of-n output encoding: 1 output unit for each direction
⇒ more degrees of freedom
⇒ difference between highest and second-highest output can be used as a

measure of classification confidence

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 25 / 29



Illustrative Example - Design Choices

network graph structure:

I BACKPROPAGATION works with any DAG of sigmoid units

I question of how many units and how to interconnect them

I using standard design: hidden layer and output layer where every unit
in the hidden layer is connected with every unit in the output layer

⇒ 30 hidden units

⇒ test accuracy of 90%

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 26 / 29



Further Topics

hidden layer representations

alternative error functions

recurrent networks

dynamically modifying network structure

different variants of Deep Learning Networks

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 27 / 29



Summary

able to learn discrete-, real- and vector-valued target functions

noise in the data is allowed

perceptrons learn hyperplane decision surfaces
(linear separability)

multilayer networks can learn non-linear decision surfaces

Backpropagation works on all feed-forward networks and uses
gradient-descent to minimize the squared error over the set of training
examples

an arbitrary function can be approximated to arbitrary accuracy by a
three-layer network

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 28 / 29



Perceptrons / Multilayer Perceptrons

Supervised Learning unsupervised learning

Approaches:

Concept / Classification Policy Learning

symbolic statistical / neuronal network
inductive analytical

Learning Strategy: learning from examples
Data: categorial/metric features

Target Values: arbitrary (concept, class, value, vector)

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 29 / 29


	Outline
	Motivation
	Perceptrons
	Backpropagation
	Inductive Bias
	Example
	Summary

