Lecture 4: Artificial Neural Networks
Perceptrons, Multi-Layer Perceptrons, Delta-Rule, Backpropagation

Ute Schmid

Cognitive Systems, Applied Computer Science, University of Bamberg
www.uni-bamberg.de/cogsys

1VERS,
\’)$‘,\\CH Shes
o

2%

N g@
s 225
Pp=p
Zhw
<N
& d
.zf"o
Hua®

Last change: November 21, 2020

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 1/29

www.uni-bamberg.de/cogsys

Outline

©

Perceptron
Delta Rule
Backpropagation

©

©

©

Multi-layer Perceptron (feed forwards netowrk)

Inductive Bias

©

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 2/29

Biological Motivation

o biological learning systems are
built of complex webs of
interconnected neurons

Dendrite A

Schematic of biological neuron. Terminal buttons

Artificial Neural Networks
o realize highly parallel computation
o are based on distributed representation
o are highly performant but data intensive machine learning algorithms

o typically are only very roughly related to biological processes

<

Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 3/29

Computer vs. Brain

Computer

Brain

computation units
memory units

clock
transmission

1 CPU (> 107 transistors)
64 GB RAM

10 TB HDD

10710 sec

> 10! bits/sec

10! neurons
10 neurons
10'* synapses
1073 sec

> 101 bits/sec

o Computer: typically serial, fast

o Brain: parallel, slow,

robust wrt noisy data

(Magnitudes given for computers are open to change.)

U. Schmid (CogSys, UniBA)

ML-4-NeuralNets

November 21, 2020

4/29

Appropriate Problems — Perceptron

The perceptron algorithm is an early neuro-inspired approach to machine
learning
o instances are represented as many attribute-value pairs
» input values can be any real values

o target function output is binary

o Hypotheses are linear, that is, hyper-planes which partition the
hypothesis space in two areas (concept/not concept)

o When Minsky and Papert showed in their book Perceptrons (1969)
that perceptrons cannot learn XOR problems, research in

neuro-inspired approaches was mainly given up until it re-emerged
end of the 1980ies.

o Support Vector Machines also rely on learning hyper-planes, but use
the kernel trick to deal with data sets which are not linearly separable.

c

. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 5/29

Appropriate Problems — Backpropagation

The backpropagation algorithm is the most commonly used ANN learning
technique with the following characteristics:

o instances are represented as many attribute-value pairs
» input values can be any real values

o target function output may be discrete-, real- or vector- valued
o training examples may contain errors

o long training times are acceptable

o fast evaluation of the learned target function may be required

» many iterations may be necessary to converge to a good approximation

o ability of humans to understand the learned target function is not
important

» learned weights are not intuitively understandable

c

. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 6/29

Perceptrons

-1 otherwise

0=

o takes a vector of real-valued inputs (xi, ..., x,) weighted with
(Wi, ..., wp)
o calculates the linear combination of these inputs
> DT WiXi = WoXo + Wixy + ... + WXy
» —wy denotes a threshold value, i.e. that value which must be reached
by the linear combination of inputs to cause the perceptron to output 1
> Xp is always 1

o outputs 1 if the result is greater than 0, otherwise —1

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 7/29

Representational Power

o a perceptron represents a hyperplane decision surface in the
n-dimensional space of instances

o some sets of examples cannot be separated by any hyperplane, those
that can be separated are called linearly separable

@ many boolean functions can be represented by a perceptron: AND,
OR, NAND, NOR

XA %4
+
+ + -
+
Y, > .
> >
X X,

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 8/29

Perceptron Training Rule

o problem: determine a weight vector w that causes the perceptron to
produce the correct output for each training example
o perceptron training rule:
w; = w; + Aw;whereAw; = n(t — 0)x;

t target output
o perceptron output
7 learning rate (usually some small value, e.g. 0.1)

Algorithm

@ initialize w to random weights
@ repeat, until each training example is classified correctly
= apply perceptron training rule to each training example

o convergence guaranteed provided linearly separable training examples
and sufficiently small »

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 9/29

Delta Rule

o perceptron rule fails if data is not linearly separable

o delta rule converges toward a best-fit approximation
o uses gradient descent to search the hypothesis space

» perceptron cannot be used, because it is not differentiable
» hence, a unthresholded linear unit is appropriate
» error measure (instead of perceptron training rule):

E(w) = 5 Y (ta — o)

deD

o to understand gradient descent, it is helpful to visualize the entire
hypothesis space with

» all possible weight vectors and
» associated E values

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 10/29

Error Surface

o the axes wy, wy represent possible values for the two weights of a
simple linear unit

SO SIS
O S S SO SIS
TSSO S S
S

I

= error surface must be parabolic with a single global minimum

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 11/29

Derivation of Gradient Descent

o problem: How calculate the steepest descent along the error surface?

derivative of E with respect to each component of w

©

(]

this vector derivative is called gradient of E, written VE(w) (the
nabla operator)
OE OE OE

VE(w) [Tm’ﬁiwl’"" 87w,,]

©

VE(w) specifies the steepest ascent, so —V E(W) specifies the steepest
descent

o training rule: w; = w; + Aw;

and 25 =3 p(ta — 0a)(—xid)

= AW,- = nZdeD(td — Od)X,'d

OE
Aw; = —n B

c

. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 12/29

Differentiating E

OE _
*
o 3 odep(ta — 04)° =
> Xaen gu (ta — 0a)* =
3> den 2ta — Od)aev,-(td —od) =
> depltd — Od)aev,-(td —WXg) =
> dep(tda — 0q)(—xXid)
Remember:
2. & _ dydu vl =t — oy

Outer and inner derivation for y = u=: 2 = %

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020

13/29

Incremental Gradient Descent

o application difficulties of gradient descent
» convergence may be quite slow
» in case of many local minima, the global minimum may not be found

o idea: approximate gradient descent search by updating weights
incrementally, following the calculation of the error for each individual
example

1
Aw; = n(t — o)x; where Ey(i) = 5 (ts — 04)*

o key differences:

» weights are not summed up over all examples before updating
» requires less computation
» better for avoidance of local minima

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 14 /29

Gradient Descent

Algorithm
GRADIENT-DESCENT (training _examples,)

Each training example is a pair of the form (X, t) , where X is the vector of input values, and t is
the target output value. n is the learning rate.

o Initialize each w; to some small random value
o Until the termination condition is met, Do
» Initialize each Aw; to zero
» For each (X, t) in training_examples, Do
® |nput the instance X to the unit and compute the output o
® For each linear unit weight w;, Do Aw; = Aw; + n(t — 0)x
» For each linear unit weight w;, Do w; <— w; + Aw;*™

To implement incremental approximation, equation ** is deleted and
equation * is replaced by w; < w; + n(t — 0)x;.

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 15/29

Perceptron vs. Delta Rule

o perceptron training rule:

> uses thresholded unit

» converges after a finite number of iterations

» output hypothesis classifies training data perfectly
» linearly separability necessary

o delta rule:

» uses unthresholded linear unit
» converges asymptotically toward a minimum error hypothesis

» termination is not guaranteed
> linear separability not necessary

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 16 /29

Multi-layer Networks (ANNs)

o capable of learning non-linear decision surfaces

o normally directed and acyclic = Feed-forward Network
o based on sigmoid unit
» much like a perceptron
» but based on a smoothed, differentiable threshold function
o(net) = =
liMpet— 400 o(net) =1

liMpet— —oo o(net) = 0

n
net = v, x; 0= o(net) =

“net
l+e

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020

17 /29

Backpropagation

o learns weights for a feed-forward multilayer network with a fixed set of
neurons and interconnections

o employs gradient descent to minimize error

o redefinition of E
» has to sum the errors over all units

> E(VT/) = %ZdeD Zkeoutputs(tkd - Okd)2

o problem:
search through a large H defined
over all possible weight values
for all units in the network

O O

input hidden layer output layer

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 18/29

Backpropagation - Algorithm

BACKPROPAGATION(training _examples, 1, nin, Nout, Nhidden)

The input from unit i to unit j is denoted x;; and the weight from unit i to unit j is denoted w;;.
@ Create a feed-forward network with nj, inputs, npidgen hidden units, and noyt output units
@ Initialize all network weights to small random numbers
@ Until the termination condition is met, Do (EPOCHE)
> For each (X, t) in training_examples, Do
Propagate the input forward through the network:
1. Input X to the network and compute o, of every unit u
Propagate the errors back through the network:
2. For each network output unit k, calculate its error term dy
O < Ok(l — Ok)(tk — Ok)
3. For each hidden unit h, calculate its error term dp

On < Oh(]- - Oh) Zk60utputs Win Ok

4. Update each weight w;i
Wi < Wi =+ AVVJ, where AVVJ, = T](SJ'XJ','

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 19/29

Termination conditions

fixed number of iterations

©

error falls below some threshold

©

o error on a separate validation set falls below some threshold

©

important:

» too few iterations reduce error insufficiently

» too many iterations can lead to overfitting the data

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 20/29

Adding Momentum

o one way to avoid local minima in the error surface or flat regions

o make the weight update in the n®” iteration depend on the update in
the (n — 1) iteration

Awji(n) = ndjxji + aAw;i(n — 1)

Note: Aw;ji(n — 1) represents the cumulative updates for this weight in
the complete last epoch.

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 21/29

Representational Power

o boolean functions:
» every boolean function can be represented by a two-layer network

o continuous functions:

» every continuous function can be approximated with arbitrarily small
error by a two-layer network (sigmoid units at the hidden layer and
linear units at the output layer)

o arbitrary functions:

» each arbitrary function can be approximated to arbitrary accuracy by a
three-layer network

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 22/29

Inductive Bias

o every possible assignment of network weights represents a
syntactically different hypothesis

H = {w|w ¢ R(+1)}

o inductive bias: smooth interpolation between data points

» Multilayer Networks: smooth interpolation between data points
= Preference bias

» Perceptron: linear separability necessary
= Restriction bias

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 23/29

Illustrative Example - Face Recognition

Task:

» classifying camera image of faces of various people

» images of 20 people were made, including approximately 32 different
images per person

» image resolution 120 x 128 with each pixel described by a grey-scale
intensity between 0 and 255

» identifying the direction in which the persons are looking
(i.e., left, right, up, ahead)

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 24/29

Illustrative Example - Design Choices

o input encoding:
» image encoded as a set of 30 x 32
» pixel intensity values ranging from 0 to 255 linearly scaled
from 0 to 1
= reduces the number of inputs and network weights
= reduces computational demands
o output encoding:
» network must output one of four values indicating the face direction
» I-of-n output encoding: 1 output unit for each direction
= more degrees of freedom
= difference between highest and second-highest output can be used as a
measure of classification confidence

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 25/29

Illustrative Example - Design Choices

o network graph structure:
» BACKPROPAGATION works with any DAG of sigmoid units
» question of how many units and how to interconnect them

» using standard design: hidden layer and output layer where every unit
in the hidden layer is connected with every unit in the output layer

= 30 hidden units

= test accuracy of 90%

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 26 /29

Further Topics

o hidden layer representations

o alternative error functions

o recurrent networks

o dynamically modifying network structure

o different variants of Deep Learning Networks

c

. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 27/29

Summary

o able to learn discrete-, real- and vector-valued target functions
o noise in the data is allowed

o perceptrons learn hyperplane decision surfaces
(linear separability)

o multilayer networks can learn non-linear decision surfaces

o Backpropagation works on all feed-forward networks and uses
gradient-descent to minimize the squared error over the set of training
examples

o an arbitrary function can be approximated to arbitrary accuracy by a
three-layer network

c

. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 28/29

Perceptrons / Multilayer Perceptrons

] Supervised Learning \ unsupervised learning
Approaches:
Concept / Classification Policy Learning
symbolic statistical / neuronal network
inductive analytical
Learning Strategy: learning from examples
Data: categorial /metric features
Target Values: arbitrary (concept, class, value, vector)

U. Schmid (CogSys, UniBA) ML-4-NeuralNets November 21, 2020 29/29

	Outline
	Motivation
	Perceptrons
	Backpropagation
	Inductive Bias
	Example
	Summary

